Орбитальный лифт


Опубликовано Tiniel в 29 марта, 2007 — 16:57

запуск космического лифта намечен на 12 апреля 2018 года

Сегодня для того, чтобы выйти в космическое пространство, необходимо проделать опасное путешествие на ракете. Чтобы вас взяли в космос, нужно хорошее здоровье, крепкие нервы и много денег.

Исследователи из NASA и компания LiftPort Inc. предлагают упростить вывод крупных объектов на орбиту, используя систему, названную ими «Космическим лифтом».

Что это вообще такое

Вот как объясняет концепцию космического лифта доктор Брэдли Эдвардс в отчете NIAC:

«Космический лифт – это лента, один конец которой присоединен к поверхности Земли, а другой находится на геосинхронизированной орбите в космосе (на высоте 100 000 км). Гравитационное притяжение нижнего конца ленты компенсируется силой, вызванной центростремительным ускорением верхнего конца. Таким образом лента постоянно находится в натянутом состоянии.


меняя длину ленты, можно достигать разных орбит. Космическая капсула, содержащая полезный груз, будет передвигаться вдоль ленты. Для начального старта капсулы потребуется усилие, но, как только она будет приближаться к концевой станции, ее скорость будет увеличиваться из-за центростремительного ускорения всей системы. На конечной станции, если это необходимо, капсула отсоединяется от лифта и выходит в открытый космос. Скорость капсулы при этом будет составлять 11 км/с. Этой скорости будет достаточно для того, чтобы начать путешествие к Марсу и другим планетам. Таким образом, затраты на пуск капсулы будут только в начале ее пути на орбиту. Спуск будет производиться в обратном порядке – в конце спуска капсулу будет ускорять гравитационное поле Земли. Можно использовать космический лифт в качестве «пусковой платформы» для космических кораблей, запускаемых к другим планетам, спутникам и астероидам (Марсу, Венере, Луне). Это поможет сократить расходы, связанные с традиционным запуском химических ракет. Также можно построить лифт грузоподъемностью до 100 тонн, что позволит строить на орбите большие колонии и орбитальные станции».

Kosmolift.jpegРис. 1. Космический лифт от компании LiftPort Inc.

Отчет можно скачать здесь (4,5 Мб): http://flightprojects.msfc.nasa.gov/…elevator.pdf

Естественно, что после ознакомления с этим проектом возникает ряд сомнительных вопросов. Компания LiftPort Inc. приводит список наиболее распространенных вопросов и своих ответов на них.


Как вы собираетесь сохранять угловой момент постоянным?

Большей частью мы полагаемся на то, что это сделает Земля. Но мы предусмотрели тяжелые «якоря» на обоих концах лифта для того, чтобы увеличить инерцию системы и, таким образом, держать ее в равновесии.

Что случится, если порвется лента?

Начнем с того, что спроектированная лента будет вдвое жестче, чем это необходимо. Погодные условия в месте, выбранном для расположения космического лифта, будут исключать возможность ураганов и молний. Скорее всего, станция лифта будет расположена в океане. Но все же, что произойдет, если лента порвется? Большая часть ленты улетит в космическое пространство, причем некоторая ее часть сгорит от высокой скорости полета в атмосфере. Нижняя часть ленты упадет в океан. Не загрязнит ли лента и ее не сгоревшие в атмосфере остатки океан? Вряд ли, так как вес километра ленты – 7,5 кг. При падении с высоты лента не разовьет большей скорости, чем раскрытая падающая газета. Посторонний наблюдатель увидит, скорее всего, только яркую полоску через все небо (от сгоревшей ленты) и все. Конечно, куски ленты будут долго находиться во взвешенном состоянии в воздухе. Наибольшую опасность представляют собой транспортируемые грузы, потерявшие связь с лифтом. Грузы, достигшие орбит, останутся на орбитах. Те грузы, которые только начали движение упадут вниз. Некоторые из грузов, достигшие скорости 11 км/с вылетят в открытый космос.


Будут ли влиять на лифт неблагоприятные погодные условия?

Будет ли ветер на больших высотах проблемой? Математическое моделирование показало, что предложенная в конструкции лифта лента разорвется при скорости 72 м/с, т.е. при 5-бальном ветре, или урагане. Предложенное расположение лифта (на платформе в океане) не будет находиться в зоне сильных ветров и ураганов.

Basovaya_nazemnaya_stantsiya.jpegBazovaya_kosmicheskaya_stantsiya.jpegРис. 2. Вид базовых станций (наземной и космической)

Будет ли лента производить электрический ток из-за разности потенциалов? Будет ли лента длиной 100000 км представляет собой электрическую угрозу?

В этой проблеме есть несколько аспектов. Электрический ток по ленте космического лифта может течь только благодаря: 1) электрическим свойствам земной атмосферы; 2) перекачивании через лифт космической плазмы; 3) постоянном пересечении лифтом магнитных полей Земли.

1) Атмосфера Земли содержит регионы разного заряда, которые все время находятся в движении. Они могут дать разность потенциалов, но только на малых дистанциях. Когда идет гроза и перемещение зарядов затрагивает большие дистанции, есть возможность того, что молния повредит ленту лифта, но как было сказано выше, конструкторы постараются так выбрать место расположения базовой станции, чтобы исключить возможность грозы. Базовая станция будет расположена на корабле, поэтому лифт будет обладать «мобильностью» и сможет, при необходимости, передвинуться, избегая шторма.


2) Заряды, связанные с космической плазмой, могут собираться на верхней станции лифта. Но ток, провоцируемый ими, настолько мал, что не сравним с током, полученным от присоединения к противоположным концам ленты обычной батарейки. Малое количество зарядов позволяет не учитывать эту опасность.

3) При пересечении магнитных полей проводником в нем производится электрический ток. В нашем случае лента неподвижна по отношению к магнитному полю Земли, и электрический ток, производимый в ленте, будет очень мал, поэтому этой опасностью тоже можно пренебречь. В современных телевышках электрический ток, производимый магнитными полями земли, практически отсутствует.

Будут ли различные объекты задевать ленту?

Будет ли космический мусор и спутники проблемой? Космические объекты, находящиеся на низкой орбите Земли (Low Earth Orbit – LEO), будут составлять серьезную проблему. Для того, чтобы лифт не сталкивался с различными объектами, будет предусмотрена система активного избегания препятствий. В среднем необходимо будет избегать различных объектов один раз в 14 часов. Для построения системы отклонения необходимо разработать систему трассирования объектов, работающую с точностью до 1 сантиметра. Разработка такой системы входит в план исследований компании LiftPort.


Существует несколько концепций построения космического лифта. В некоторых предлагается свободный конец ленты присоединять к астероиду. Этим решается проблема противовеса и добыча с астероида полезных ископаемых. Некоторые проекты предлагают протянуть кабель толщиной от 10 до 30 метров в диаметре. Как говорят специалисты из LiftPort, это просто невозможно реализовать.

Odin_iz_proektov_kosmolifta.jpegРис. 3. Один из проектов космического лифта

Причем тут нанотехнологии

Правда, если бы не быстрое развитие нанотехнологий и открытие нанотрубок, концепция космического лифта не продвинулась бы дальше научной фантастики. Надо сказать, что идее космического лифта уже больше ста лет. Впервые о подъемнике такого рода заговорил в 1895 году Константин Циолковский. Основоположник современной космонавтики предложил построить башню высотой в тысячи километров, которая должна была быть укреплена на какой-либо тверди на околоземной орбите. Самым прочным материалом в то время была сталь, но для строительства «башни» она была слишком тяжела.

Однослойные углеродные нанотрубки, изобретенные в 1991 году, достаточно прочны для того, чтобы служить основой ленты лифта. Они прочнее стали в 100 раз. Теоретически, они в 3–5 раз прочнее, чем надо для постройки лифта.


Prochnost__nanotrubki.jpegРис. 4. Диаграмма прочности нанотрубок по сравнению с высокопрочной сталью

Правда, самые длинные нанотрубки, которые удалось изготовить, длиной всего несколько сантиметров. А это даже не километр, не говоря о 100 000 километрах.

Но совсем нет необходимости делать всю ленту длиной 100 000 км из цельных нанотрубок. Отдельные фракции, состоящие из нанотрубок длиной до 2 сантиметров, будут иметь такую же прочность разрыва, как и длинные. Правда, исследователи из LiftPort пытаются найти методы соединения фракций в более длинные полосы без потери прочности. Как они утверждают, лента будет представлять собой полимерную структуру с включениями нанотрубок. Для ленты космического лифта алмазоид был бы универсальным материалом. Он будет характеризоваться большей прочностью, но, опять-таки, пока нет эффективных способов получения и массового производства алмазоидных материалов.

Компания настроена вполне оптимистично, так как недавно стало известно о новых технологиях в производстве нанотрубок. Так, ученые из Кембриджского университета разработали способ формирования пряжи из длинных волокон, которые состоят из нанотрубок. Алан Уиндл (Alan Windle) и его коллеги из Кембриджа для изготовления пряжи использовали свежеприготовленные нанотрубки.


Исходный материал – нанотрубки – обрабатывают этанолом, который в дальнейшем служит источником углерода, затем добавляют катализатор (ферроцен) и еще один реагент – тиофен. Смесь загружают в горячую печь, куда постоянно подают водород. Продукт получают в форме спутанных волокон, по виду похожих на сахарную вату. Затем эти волокна наматывают на вращающиеся стержни, в итоге получались скрученные волокна.

Ученые признают, что создан лишь прототип новой технологии. Да и прочность полученного волокна пока не впечатляет – она не сильно отличается от прочности традиционных волокон. Однако уже видны различные пути увеличения прочности, например, за счет ориентирования углеродных трубок в одном направлении. Если прочность удастся повысить в 10 раз, то это значение приблизится к прочности углеродных волокон, а само производство волокна при этом может оказаться более дешевым за счет использования более дешевых компонентов. Пока не ясно, можно ли этим способом создать такой канат, который по прочности на разрыв будет сопоставим с прочностью самих нанотрубок. Но если это удастся сделать, то компания LiftPort получит шанс на сокращение срока постройки лифта.

Prototip_kapsuly_lifta.jpegРис. 5. Модельный прототип капсулы лифта

В 2000 году доктор Брэд Эдвардс выпустил отчет, в котором говорилось что предварительные исследования по построению космического лифта проделаны.


лее Мишелем Лэйном в Сиэтле была основана компания HighLift Systems, которой NASA выделила финансирование для разработки и постройки космического лифта. Как планирует компания LiftPort Inc., космический лифт будет построен, опробован и запущен в работу через 15 лет. В первые шесть лет компания будет привлекать инвестиции, с шестого года по десятый разрабатывать конструкцию лифта, и, наконец, в оставшиеся годы будет проходить непосредственно постройка.

Здесь можно найти видеоролик в формате Real Player, презентующий одну из концепций космического лифта (5 Мб): http://wid.ap.org/…/elevator.rm

Автор Свидиненко Юрий


Источник: www.NanoNewsNet.ru

image

Хотя постройка космического лифта находится уже в пределах наших инженерных возможностей, страсти вокруг этого сооружения в последнее время, к сожалению, поутихли. Причина в том, что учёные пока никак не могут получить технологию для производства углеродных нанотрубок нужной прочности в промышленных масштабах.

Идею безракетного вывода грузов на орбиту предложил тот же самый человек, который основал и теоретическую космонавтику – Константин Эдуардович Циолковский. Вдохновившись увиденной в Париже Эйфелевой башней, он описал своё видение космического лифта в виде башни огромной высоты. Её верхушка как раз находилась бы на геоцентрической орбите.


Лифт-башня основывается на прочных материалах, препятствующих сжатию – но современные идеи космических лифтов всё же рассматривают версию с тросами, которые должны быть прочными на растяжение. Такую идею впервые предложил в 1959 году ещё один русский учёный, Юрий Николаевич Арцутанов. Впервые научная работа с подробными расчётами по космическому лифту в виде троса была опубликована в 1975 году, а в 1979 Артур Кларк популяризовал её в своём произведении «Фонтаны рая».

Хотя нанотрубки в данный момент признаются самым прочным материалом, и единственным, подходящим для постройки лифта в виде троса, тянущегося с геостационарного спутника, прочности получаемых в лаборатории нанотрубок пока не хватает до расчётной.

Теоретически прочность нанотрубок должна быть более 120 ГПа, но на практике самая высокая растяжимость однослойной нанотрубки была 52 ГПа, а в среднем они ломались в диапазоне 30-50 ГПа. Для космического лифта необходимы материалы с прочностью 65-120 ГПа.

В конце прошлого года на крупнейшем американском фестивале документальных фильмов DocNYC был показан фильм Sky Line, в котором описаны попытки инженеров из США построить космический лифт – включая участников конкурса X-Prize от НАСА.

Главными героями фильма выступают Брэдли Эдвардс [Bradley Edwards] и Майкл Лэйн [Michael Laine]. Эдвардс – астрофизик, работавший над идеей космического лифта с 1998 года. Лэйн – предприниматель и основатель компании LiftPort, пропагандирующей коммерческое использование углеродных нанотрубок.


В конце 90-х и начале 2000-х Эдвардс, получив гранты от НАСА, плотно разрабатывал идею космического лифта, рассчитывая и оценивая все аспекты проекта. Все его расчёты показывают, что эта идея осуществима – если только появится достаточно прочное для троса волокно.

Эдвардс какое-то время заключал партнёрское соглашение с LiftPort для поисков финансирования проекта лифта, но из-за внутренних разногласий проект так и не состоялся. LiftPort закрылась в 2007 году – хотя годом ранее, в рамках доказательства работоспособности некоторых своих технологий, успешно продемонстрировала робота, карабкающегося по вертикальному тросу в милю длиной, подвешенному на воздушных шарах.

Сейчас Лэйн считает, что частный космос, сконцентрировавшийся на повторно используемых ракетах, может полностью вытеснить разработку космического лифта в обозримом будущем. По его словам, космический лифт привлекателен только тем, что предлагает более дешёвые способы доставки грузов на орбиту, а многоразовые ракеты разрабатываются именно для удешевления этой доставки.

Эдвардс же винит в стагнации идеи отсутствие реальной поддержки проекта. «Именно так выглядят проекты, которые сотни людей, разбросанные по всему миру, разрабатывают в качестве хобби. Никакого серьёзного прогресса достигнуто не будет, пока не появится реальной поддержки и централизованного управления».

image

Иная ситуация с разработкой идеи космического лифта в Японии. Страна славится наработками в области робототехники, а японский физик Сумио Иидзима считается пионером в области нанотрубок. Идея космического лифта здесь является чуть ли не национальной.

image

Японская компания Обаяши [Obayashi Company] клянётся к 2050 году представить работающий космический лифт. Руководитель компании, Йожи Ишикава [Yoji Ishikawa] рассказывает, что они работают с частными подрядчиками и местными университетами в целях улучшения существующей технологии получения нанотрубок.

image

Ишикава говорит, что хотя компания понимает всю сложность проекта, они не видят принципиальных препятствий для его осуществления. Также он считает, что популярность идеи космического лифта в Японии вызвана необходимостью наличия какой-то национальной идеи, сплачивающей людей на фоне тяжёлого экономического положения последней пары десятков лет.

Ишикава уверен, что хотя идея такого масштаба, скорее всего, может быть реализована только путём международного сотрудничества, Япония вполне может стать её локомотивом благодаря большой популярности космического лифта в стране.

image

Тем временем канадская космическая и оборонная компания Thoth Technology получила летом прошлого года патент США № 9085897 на их вариант космического лифта. Точнее, концепция предусматривает постройку башни, которая сохраняет жёсткость благодаря сжатому газу.

Башня должна доставлять грузы на высоту в 20 км, откуда они уже будут выводиться на орбиту при помощи обычных ракет. Такой промежуточный вариант, по расчётам компании, позволит экономить до 30% топлива, по сравнению с ракетой.

Источник: habr.com

С чего всё начиналось?

Считается, что первым к идее космического лифта обратился советский учёный Константин Циолковский. В 1895 году он предположил, что можно построить «Небесный замок» на геостационарной земной орбите, присоединённый к опоре на земле. Вдохновила же http://science.nasa.gov/science-news/science-at-nasa/2000/ast07sep_1/ учёного Эйфелева башня. Ему пришло в голову, что если вытянуть башню до орбиты, то получится что-то вроде лестницы в небо.

Первый подробный проект космического лифта принадлежит ленинградскому инженеру Юрию Арцупанову. В 1960 году он написал статью «В Космос — на электровозе»: «Возьмите кусочек шпагата и привяжите к нему камень. Начните вращать его. Под влиянием центробежной силы камень будет стремиться оторваться и туго натянет верёвку. Ну, а что будет, если такую «верёвку» укрепить на земном экваторе и, протянув далеко в Космос, «подвесить» на ней соответствующий груз?»

Арцупанов предположил, что если трос сделать достаточно длинным, то на определённом расстоянии центробежная сила станет растягивать его, не давая грузу упасть на землю. Так будет происходить потому, что сила притяжения Земли уменьшается пропорционально квадрату расстояния, а центробежная сила растёт с увеличением расстояния.

Как инженер он понимал, что главная проблема — это невероятно длинный трос, требующийся для космического лифта. Арцупанов предложил изготовить его из нескольких нитей, связанных между собой поперечными жгутами. Он считал, что это поможет защитить трос от внешних воздействий, например метеоров.

Верёвки, из которых будет состоять трос, должны быть разной толщины: снизу, у Земли, тоньше, а чем выше, тем толще. Максимальная толщина должна быть в точке, где центробежная сила уравновешивает силу тяжести. Это нужно для того, чтобы растягивающее напряжение по всей длине было одинаковым. А в верёвки, из которых будет состоять трос, нужно вплести металлические провода, чтобы осуществлять электроснабжение.

Материал для троса

Даже самые прочные из известных материалов, такие, как сталь, или алмазная нить, не подходят для троса космического лифта. Главная надежда в этом смысле на углеродные нанотрубки. За счёт своей структуры (они могут быть однослойные и многослойные, прямые и спиральные) нанотрубки имеют необычные свойства, и самое примечательное из них — это прочность. Помимо того что они обладают невероятно большой прочностью на растяжение и изгиб, это ещё и неплотный материал, а значит, весит он совсем немного, что является его явным преимуществом. Отношение предела прочности к весу у нанотрубок достигает 74000 кНм/кг. По этому показателю они превосходят сталь в 117 раз, а кевлар — в 30 раз (подробнее об этом можно прочитать в статье «A New Lower Limit for the Ultimate Breaking Strain of Carbon Nanotubes»).

Но промышленное применение нанотрубок пока невозможно из-за ряда проблем. Первая причина — наука пока не нашла экономически приемлемого способа выращивать нанотрубки в нужных количествах. Также пока невозможно создавать углеродные нанотрубки неограниченной длины с однородными физическими свойствами, то есть без структурных дефектов (хотя успешные попытки и делаются).

Несмотря на огромные перспективы этого материала, пока оценки специалистов относительно применения нанотрубок в проекте космического лифта пессимистичные. Итальянский учёный Никола Пуньо сделал вычисления, согласно которым неизбежные дефекты нанотрубок сделают их недостаточно прочными для космического лифта (за подробностями стоит обратиться к его докладу.)

Учёный рассчитал, что предел прочности троса должен составлять 62 гигапаскаля. Для сравнения: 1 ГПа — это 10 тонн на 1 см2. Предел прочности отдельной нанотрубки, по некоторым данным, составляет 100 гигапаскалей. Но если сплести из них трос, то за счёт дефектов он существенно снизится. Если это действительно так, то выходит, что современный уровень развития материаловедения не позволяет построить космический лифт.

Проекты космического лифта

Существует множество проектов космического лифта, и все они мало отличаются от того, что предлагал Арцупанов, но теперь учёные исходят из того, что материалы из нанотрубок станут доступны. Вот, например, рецепт космического лифта по-индийски. Заместитель начальника индийского космического центра VSSC Сентхил Кумар на одном из научных конгрессов рассказал о проекте лифта, в основании которого будет высотное здание. К нему прикрепят трос из композитного волокна на основе углеродных нанотрубок. На втором конце будет расположен противовес, уходящий за пределы геостационарной орбиты. Кабину лифта разделят на две части: отсек для грузов и помещение для людей. Индийцы уже даже рассчитали скорость подъёмника — 200 км в час. Достигнет своей цели кабина за восемь дней. Правда, господин Кумар не пояснил, как его соотечественники предлагают решать проблему радиации, молний, ветров, метеоров и космического мусора.

Смелее всех фантазии оказались, пожалуй, у канадцев. Из всех предложенных проектов у них получился самый необычный вариант. Они решили, что можно сделать лифт в виде огромной надувной башни. Башню канадцы предлагают собирать из модулей. Модуль в данном случае означает три скреплённые между собой трубы двухметрового диаметра, надутые гелием или другим лёгким газом. Между трубами предполагается вертикальный «проход», по которому будет двигаться кабина. Чтобы не быть голословными, канадцы спроектировали модель лифта.

Пока им удалось построить башню высотой 15 километров, но как «дотянуть» её до низкой околоземной орбиты, остаётся открытым вопросом. Проблему углеродных нанотрубок учёные вообще обошли стороной и предложили плести трос из уже имеющихся материалов. Статью об этом можно прочитать в журнале Acta Astronautica.

Но больше всех идея космического лифта интересует американцев. Например, Лос-Аламосская национальная лаборатория (та самая, где была сделана первая атомная бомба) активно занимается этим вопросом. Её сотрудники предложили свой вариант космического лифта, правда, принципиально он ничем не отличается от большинства других. На экваторе предлагается расположить океанскую платформу. Трос сделают в виде ленты из углеродных нанотрубок. Подавать энергию к лифтовой кабине планируется с помощью мощных лазеров, которые с Земли будут «подсвечивать» панели, преобразующие энергию обратно в электрический ток.

В качестве троса американцы тоже предполагают использовать углеродные нанотрубки: «С открытием углеродных нанотрубок и их поразительных свойств время космического лифта не за горами. Можно провести аналогию с Трансконтинентальной железной дорогой. Её строительство началось сразу же, как только был разведан последний маршрут через горы Калифорнии. И я надеюсь, что космический лифт начнёт свою работу, как только будет создана лента из нанотрубок длиной в сто тысяч километров», — сказал учёный лаборатории Брайан Лобшер (Bryan Laubscher).

Пояса Ван Аллена

Ещё одна из предполагаемых проблем — это радиация. Как известно, у Земли, как и у других крупных планет, есть радиационный пояс. Самая опасная часть лучевых поясов приходится на высоту от 1 до 20 тысяч километров над Землей; соответственно, поднимаясь со скоростью 200 км в час, космический лифт проведёт в опасной зоне примерно три с половиной дня.

Если содержимое кабины теоретически возможно защитить от облучения, так как протоны высоких энергий обладают не очень высокой проникающей способностью, то сам трос и внешняя сторона устройства всё же облучатся. Опять же на утолщение конструкции кабины для защиты от радиации уйдёт дополнительный материал, что скажется на её весе и соответственно толщине троса. Это, конечно же, отразится и на стоимости лифта. Радиация представляет немалую опасность для пассажиров, однако некоторые грузы вполне могут обойтись и без защиты.

Кориолис против

Эффект Кориолиса тоже может помешать строительству космического лифта. При подъёме сила Кориолиса будет тянуть его вместе с тросом в направлении, обратном направлению вращения Земли. Это изменит положение лифта и заставит его колебаться, подобно маятнику. Раскачивание троса скажется на скорости. Данный эффект проявляется тем сильнее, чем выше поднимается лифт. Как вариант решения этой проблемы инженер-механик Арун Мисра из Университета Макгилла предлагает снизить скорость подъёма лифта. Во-первых, пока не совсем ясно, действительно ли это поможет, а во-вторых, это увеличит срок путешествия до пятнадцати дней. Также непонятно, как учёные предполагают преодолеть деформацию и растяжение троса, которые будут происходить за счёт данного физического явления.

Решения

Конечно, ищутся и пути преодоления препятствий. Более других активность проявляет НАСА. Во-первых, сотрудники исследовательских центров американского агентства пишут теоретические работы. В целом их разработки почти не отличаются от того, что уже описано выше. Некоторые из них есть в открытом доступе, так что при желании их можно прочитать: The Space Elevator NIAC Phase II Final Report, The Space Elevator.

Во-вторых, существует интересный проект, Space Elevator Games, который сотрудники НАСА придумали для развития этой области. Space Elevator Games — это ежегодное соревнование, участникам которого предлагается сделать уменьшённую модель космического лифта. Лучшая работа оценивается сотрудниками НАСА и вознаграждается денежным призом.

За историю существования проекта особо примечательных результатов было не так много. Тем не менее встречались и интересные. Например, продуктивными оказались соревнования 2009 года. Требования были такими. Роботам, поднимающимся по тросу, разрешено использовать энергию, посылаемую лучом с поверхности земли, ведь в настоящем космическом лифте возможна только такая модель энергопитания, так как ни одного аккумулятора не хватит на весь подъём кабины. Поэтому всем участникам пришлось использовать солнечные батареи, питаемые наземным лазером. Также неотъемлемой частью стал и электромотор с роликами, обхватывающими трос. Приз за работу составил 900 тысяч долларов, если скорость робота будет не ниже 2 метров в секунду, и 1,1 миллиона, если его скорость будет 5 м/с. Требования высокие, тем более что до 2009 года лучшим результатом было преодоление 100 метров со скоростью 1,8 м/с. Но, несмотря на сложную задачу, победители всё же нашлись. Ими стала команда LaserMotive промышленной фирмы из Сиэттла. Они сделали робота, который за три минуты и 48 секунд со скоростью 3,95 метра в секунду преодолел нужное расстояние. Так команда из Сиэттла получила свои 900 тысяч долларов, немного не дотянув до главного приза — 1,1 миллиона.

Перспективы

В околонаучной литературе любят писать, что космический лифт построят через пять лет после того, как последний человек перестанет смеяться над этим проектом. В реальности, наверное, стоит отталкиваться от продвижений в области материаловедения. Сегодня сплести канат из углеродных нанотрубок невозможно. Невозможно сказать, получится ли это через пять или через двести лет. В целом активность вокруг космического лифта, действительно, вызывает улыбку. Но ведь и сама идея полёта в космос тоже когда-то казалась весьма сомнительной.

Источник: old.computerra.ru

Есть и физические ограничения: так, снаряд должен набрать космическую скорость только за время движения в стволе. Эта скорость должна быть выше орбитальной, чтобы компенсировать торможение в атмосфере. На скорости несколько километров в секунду внешняя поверхность снаряда нагревается за счет трения о воздух и формирования ударной волны. То есть снаряд должен противостоять не только колоссальным динамическим нагрузкам, но и температуре. Впрочем, справляться с аэродинамическим нагревом уже научились при запуске баллистических ракет и космических аппаратов, а вот обойти перегрузки пока не представляется возможным.

Теоретически артиллерийскую систему орбитального запуска лучше всего размещать на море, в виде погружаемого ствола, тогда ее можно было бы перемещать и направлять в любую точку небосвода, не привязываясь к сухопутному лафету. С другой стороны, строительство в горах помогло бы избавиться от части тормозящего воздействия атмосферы. Космическая пушка могла бы выводить на орбиту в промышленных масштабах какие-нибудь простые грузы, вроде стройматериалов или сырья для производства, но пока потребности в таких запусках нет даже в отдаленной перспективе, поэтому и пушки никто не строит.

Электромагнитная пушка рассматривается как возможное средство запуска в безвоздушной среде — с орбитальных станций или Луны. Перегрузок не избежать и там, но они будут ниже.

Орбитальный лифт.

Концепцию космического лифта в виде тонкой башни, висящей в небе за счет центробежной силы, изложил еще Константин Циолковский в своем очерке «Грезы о Земле и небе и эффекты всемирного тяготения» в 1895 году. Советский инженер Юрий Арцутанов в 1960 году развил эту идею, предложив опустить с космической станции кабель на Землю. Станция должна вращаться в плоскости экватора на геостационарной орбите на высоте около 36 тыс. км. Еще дальше от Земли должен вращаться противовес, который будет уравновешивать всю систему за счет центробежной силы. В роли противовеса можно было бы использовать астероид или еще более массивную станцию, которая подошла бы для запуска межпланетных аппаратов и кораблей.

Источник: pikabu.ru

Беспроблемная концепция космического лифта

Возьмите обычную веревку и быстро раскрутите вокруг себя — вот вкратце вся концепция космического лифта. Привязанный к Земле достаточно длинный и прочный трос, уходящий на околоземную орбиту, будет висеть вертикально как бы сам собой, за счет центробежной силы. Остается смонтировать на нем подъемную платформу — и можно отправляться в космос. К сожалению, на деле с реализацией простой идеи все обстоит далеко не так просто.

Пожалуй, самый знаменитый и активно развивающийся проект космического лифта пытается реализовать американский стартап LiftPort. Уже из названия его видно, что главной своей целью разработчики ставят даже не просто «космический», но «лунный» лифт, позволяющий наладить бесперебойное сообщение по линии Земля — Луна.

По расчетам специалистов компании, основная инфраструктура космического лифта должна быть привязана к плавучей морской платформе, которая обеспечит системе необходимую динамичность. Поднимающийся с нее трос будет достигать высоты порядка 100 тыс. км. Можно обойтись тросом и покороче, высотой «всего» около 35,5 тыс. км — главное, чтобы он достигал геостационарной орбиты, что позволит ему оставаться в вертикальном положении.

Таких нагрузок не выдержит даже самая прочная сталь, и чтобы трос космического лифта не разорвался под собственным весом, сделать его предлагается из углеродных нанотрубок, отличающихся и малым весом, и поразительной прочностью. Однако до сих пор производство нанотрубок длиной хотя бы несколько сантиметров остается неразрешенной технологической проблемой. Что уж говорить о километрах.

И даже если задача будет решена, графен и может не помочь.

Предполагаемая конструкция космического лифта

Основание. Подвижное позволит уклоняться от грозящих опоре троса природных катаклизмов. Стационарное удобнее в плане обеспечения лифта дешевой энергией.

Трос. Должен выдерживать как минимум свой собственный вес, вес сопутствующей инфраструктуры и центробежную силу. По расчетам, толщина его должна быстро нарастать с высотой, выходя на стационар.

Противовес. Это может быть масштабная «конечная станция» или привязанный к тросу астероид. Но если трос будет уходить за геостационарную орбиту, он будет удерживаться под собственной массой, а с конца его можно будет отпускать в полет дальние космические зонды.

Проблема первая — материал для космического лифта

Действительно, углеродные нанотрубки являются на сегодня едва ли не самым механически прочным материалом из всех известных человечеству. Сила бесчисленных sp2-связей между атомами углерода в одномерной, свернутой цилиндром кристаллической решетке невероятно высока. Но и этого недостаточно: по словам известного эксперта и футуролога Говарда Кита Хенсона (Howard Keith Henson), даже в самых оптимистичных расчетах прочность такого троса составит лишь около двух третей необходимой величины.

Хенсон считает, что сложность с нанотрубками состоит не столько в технологии, сколько в самой их структуре. Необходимо научиться производить не только длинные нанотрубки, но и идеальные, с «чистотой» не хуже чем у драгоценных камней. Иначе те самые sp2-связи, которые в графене связывают шесть атомов углерода, будут терять устойчивую конфигурацию и в местах дефектов станут охватывать 5 или 7 атомов, резко снижая прочность.

Инженер сравнивает это с зацепками на женских чулках: одно-единственное нарушение способно привести к «расползанию» всей структуры. И если до сих пор даже производство крупных, порядка сантиметровых размеров, бездефектных кристаллов остается нерешенной задачей, то будет ли она решена применительно к многокилометровым нанотрубкам? Если и будет — то не в обозримом времени, полагает Кит Хенсон. Трос космического лифта должен выдерживать до 100 МН/(кг/м), и, если даже углеродные нанотрубки достигнут такого уровня, они не должны содержать ни единого дефекта, иначе трос расползется еще до того, как мы попытаемся отправиться на нем в космос.

По некоторым оценкам, трос космического лифта должен иметь прочность более 130 ГПа. Для сравнения, кевлар достигает уровня 4 ГПа, прочнейшие виды стали — всего 5 ГПа. Теоретически, углеродные нанотрубки могут иметь прочность нужной величины (вплоть до 300 ГПа), однако на практике достигнуто лишь около 50 ГПа (и 99 ГПа в одном из экспериментов). При этом технологии изготовления длинных нанотрубок — а тем более плетения из них тросов — остаются в самом зачаточном состоянии.

Даже один из самых больших энтузиастов космических лифтов, физик Дэвид Аппель (David Appell), ведущий несколько связанных с этой темой проектов, как-то признался: «Можно ли быть уверенным, что когда-нибудь удастся создать из нанотрубок структуру размерами 100 тыс. км? К сожалению, ответить на этот вопрос пока не может никто».

Проблема вторая: колебания

Допустим, мы совершили прорыв и создали углеродные нанотрубки нужной длины, добились бездефектной структуры, сплели из них лифтовый трос и даже подняли его на нужную высоту. Что дальше? А дальше — рутинная жизнь с ее миллионом опасных деталей. Ведь такая конструкция неминуемо будет испытывать самые разнообразные воздействия, многие из которых грозят развалить все многотрудное сооружение.

Такие расчеты произвел чешский астрофизик Любое Перек (Lubos Perek), показав, что сочетание нескольких факторов — игры гравитационных сил со стороны Земли и Луны, давления частиц солнечного ветра и т.п. — может оказывать непредсказуемое воздействие на трос космического лифта. Перек выяснил, что игра этих сил способна заставить раскачиваться, вибрировать и закручиваться всю его громадную конструкцию.

Решением может стать размещение на критических участках троса специальных двигателей, которые, управляясь интеллектуальной компьютерной системой, будут компенсировать непредсказуемые воздействия среды. Но «чистота концепции» будет уже нарушена, а с ней под вопрос встанут и многие преимущества космического лифта. Двигатели нуждаются в топливе, регулярном уходе, ремонте и даже замене. Они не только затруднят движение по тросу, но и, видимо, заметно повысят стоимость эксплуатации лифта.

Но и это еще цветочки, ведь, как и всякая натянутая струна, трос космического лифта будет иметь собственную резонансную частоту внутренних колебаний. Помните историю, которую традиционно рассказывают на уроке о резонансе все школьные учителя физики, — как отряд солдат, маршируя по мосту, случайно «попал» в его резонансную частоту — и разрушил весь мост? Примерно то же угрожает и космическому лифту.

Чтобы предусмотреть и эту угрозу, на ряде участков троса потребуется установить узлы, демпфирующие опасные колебания.

А это снова дополнительное усложнение конструкции, новые инженерные проблемы и финансовые затраты… И если бы этим все ограничилось: на самом деле проблем у троса будет куда больше.

Чтобы сократить размеры троса, избавиться от его чрезмерного утолщения и опасностей нижних слоев атмосферы, основание лифта можно разместить на высотной — до 100 км — башне. В августе 2015 года канадская компания Thoth Technology Inc. даже запатентовала подобный проект

Башня ThothX Tower, которую планируют соорудить канадцы, должна достичь высоты пока умеренной — «всего-навсего» 20 км — и сможет питаться за счет энергии ветра, возникающего из-за разницы давлений у ее основания и на вершине. По расчетам инженеров, ее можно использовать и в качестве стартовой площадки для ракет позволяя существенно удешевить традиционные космические запуски. Проблема с башней лишь одна: проект неосуществим технологически.

Проблема третья: пассажиры космического лифта

Особенные трудности может создать… само перемещение груженого космического лифта по тросу. Как и все, что движется на вращающейся Земле под углом к оси ее вращения, груз будет испытывать влияние силы Кориолиса. Поднимаясь вверх, лифт будет отклоняться в противоположном вращению Земли направлении. Это воздействие также уже просчитано физиками.

По словам проведшего такую работу канадского ученого Аруна Мисры (Arun Misra), это влияние заставит лифт раскачиваться, как перевернутый неустойчивый маятник. В результате «пункт назначения» на орбите, в который будут прибывать люди и грузы, может оказаться не совсем там, куда они направлялись. Для вывода аппаратов на орбиту это совершенно неприемлемо.

Более того, вибрации, распространяющиеся вдоль троса, приведут к неравномерному движению «кабины», которая на одних участках будет замедляться, а на других-ускоряться, «подгоняемая» волнами. Разумеется, можно предложить ряд механизмов для компенсации и этого эффекта. Например, помочь может крайне медленный и осторожный, контролируемый подъем, который, по расчетам Аруна Мисры, займет несколько недель.

Другой вариант заключается в крайне точной координации движения одновременно многих кабин, которые будут взаимно компенсировать воздействия друг друга на трос. Но это снова усложнение и удорожание всей инфраструктуры. Кажется, идея космического лифта уже не выглядит такой привлекательной? Но подождите: мы еще не закончили.

Проблема четвертая: космический мусор

Не так давно орбита Международной космической станции была в какой уже раз скорректирована, чтобы уклониться от столкновения с очередным обломком космического мусора. С циклопической конструкцией лифта такое не пройдет: переместить ее будет практически невозможно. А между тем, проходя сквозь низкую околоземную орбиту и достигая геостационарной, он будет «подставляться под удар» и десятков работающих спутников, и тысяч обломков уже вышедших из строя аппаратов, ступеней ракет и разгонных блоков. Не забудем и про опасность встречи с метеоритами!

Избежать этого вообще вряд ли получится, и любой космический лифт должен быть изначально рассчитан на регулярные и опасные столкновения. Как этого добиться, также пока неясно: обломки космического мусора могут быть не так уж и велики, однако движутся они на огромных скоростях, при которых, говоря словами поэта, «песчинка обретает силу пули». Уже знакомый нам Говард Кит Хенсон подсчитал, что энергия таких ударов легко достигает уровня, который грозит попросту испарить несколько метров троса.

Не так уж и сложно оснащать все космические аппараты, орбиты которых грозят пересечься с тросом лифта, системами активного уклонения. Но как быть с уже работающими спутниками? А с космическим мусором? По имеющимся оценкам, его количество на орбите исчисляется несколькими тысячами тонн. И прежде чем мы начнем развертывание мегатроса для нашего суперлифта, в космосе придется прибрать.
В качестве одного из вариантов защиты предлагается установка на критических участках лифта мощных лазерных систем, работающих на манер «противовоздушной защиты» и уничтожающих мусор, грозящий столкновением. Но это — правильно! — означает новое усложнение и удорожание нашего замечательного проекта.

Проблемы пятая и шестая: износ космического лифта и радиация

Если вам показалось мало четырех ключевых проблем космического лифта, упомянем еще пару. Они не столь значительны, но также требуют внимания — и к решению обязательны.

Износ и коррозия. Под действием жестких факторов в атмосфере и агрессивной космической среде и трос лифта, и его детали будут неизбежно портиться. Необходимо предусмотреть варианты восстановления материалов, регулярного ремонта всей конструкции и ухода за ней.

Радиация. Путь космического лифта будет проходить не только в атмосфере, но и далеко за ее пределами. Не минет он и радиационных поясов Земли (в западной литературе их называют поясами Ван Аллена) — областей, где в огромном числе удерживаются захваченные магнитосферой планеты заряженные и высокоэнергетические частицы, в основном протоны и электроны. Внутренний радиационный пояс расположен на высоте порядка 4 тыс. км, внешний — 17 тыс. км, и любое путешествие людей через эти области чревато очень серьезной опасностью. Поэтому для пассажиров космического лифта обязательно должны быть предусмотрены меры радиационной защиты.

Но и это не все. Даже если мы установим в кабине лифта мощные экраны, блокирующие поток высокоэнергетических частиц, нас ждет другой спектр проблем, отнюдь не технологических.

Проблема седьмая: общество

Допустим, международная кооперация и лучшие умы человечества решат все озвученные сложности и космический лифт гордо вознесется над Землей, попирая суровую гравитацию. Колоссальное сооружение, разумеется, станет одним из ключевых символов прогресса, успеха и процветания западной, научноориентированной цивилизации. А значит, превратится в привлекательный объект для всех ее противников.

Разрушение космического лифта в результате террористических атак могло бы стать событием, которое и по масштабам, и по эффекту воздействия затмит все произошедшее 11 сентября 2001 года в Нью-Йорке и после этого. Гибель этой громадины будет серьезным ударом и в финансовом, и в самом прямом смысле: представьте себе неконтролируемое падение троса длиной в десятки тысяч километров и многотонной массы со всеми смонтированными на нем элементами… Неудивительно, что лифт должен быть стопроцентно защищен от всех возможных атак с суши и воздуха.

Кстати, именно эти соображения стали одной из важных причин, по которым наземную инфраструктуру космического лифта предлагается возвести на морской платформе, оборонять которую от самодеятельных террористов намного легче. Но и тут нас ожидают малопредсказуемые последствия — уже со стороны экологических активистов.

Их тревогу можно понять: как отмечают многие защитники планеты, большой масштаб грузовых перевозок вдоль лифтового троса чреват появлением у Земли намертво привязанной к ней дополнительной массы. Элементарные расчеты показывают, что при колоссальной длине троса это способно повлиять даже на скорость вращения планеты вокруг своей оси, замедляя его. Последствия такого влияния могут быть действительно непредсказуемы. И даже если мы замедлим Землю на несколько наносекунд, можно ждать самых яростных протестов «зеленых» — например, под лозунгами вроде «Сохраним угловой момент планеты!».

Без проблем: на Луне

Кажется, проблемы космического лифта неисчислимы и практически нерешаемы. Но что если перевернуть концепцию проекта в буквальном смысле с ног наголову?.. С таким предложением некоторое время назад выступил американский инженер и разработчик космической техники Джером Пирсон (Jerome Pearson). «Похоже, на Земле такой проект имеет мало смысла, — пишет он, — но Луна -это совершенно другое дело».

Конечно, под действием земного притяжения Луна не вращается вокруг своей оси, оставаясь повернутой к нам лишь одной своей стороной. Но в этом Джером Пирсон видит даже плюс, предлагая «закрепить» трос космического лифта, начинающегося на поверхности спутника, не за счет центробежной силы, а за счет гравитации Земли. Достаточно лишь утяжелить его дальний конец соответствующей массой: по расчетам Пирсона, при весе порядка 100 тыс. тонн такая конструкция позволит ежегодно доставлять на Луну в три-четыре раза больше грузов.

Кажется, идея не лишена смысла. Теоретически, «лунный лифт» не требует даже сверхпрочных материалов, не говоря уж о замечательной — почти идеальной — защищенности от террористических атак. Идею поддерживает и Кит Хенсон, который подсчитал, что для подъема 1000 тонн грузов системе потребуется работа средних размеров электростанции — всего на 15 МВт — и при этом она сможет доставлять их на расстояние до 190 тыс. км, на переходную орбиту к Земле.

Если человечество всерьез начнет разработку лунных ресурсов, возможно, проект весьма пригодится. Ну а пока на Земле космический лифт вряд ли возможен по технологическим причинам, с Луны же нам просто нечего возить в таких количествах. Похоже, лифт задерживается.

Источник: innotechnews.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.