Масса иона гелия


Астрофизики из Германии и США обнаружили в космосе спектральную подпись ионизированных молекул гидрида гелия, которые на заре существования Вселенной положили начало космической химии. Это вещество было экспериментально открыто еще 1925 году, но его наличие в космическом пространстве до сих пор с достоверностью не подтверждалось наблюдениями. Теперь такое подтверждение удалось получить благодаря использованию высокочувствительной аппаратуры ИК-обсерватории SOFIA, установленной на самолете. Эти молекулы были обнаружены именно там, где они ожидались согласно теоретическим предсказаниям — в молодой планетарной туманности NGC 7027.

Для начала вкратце напомню современные представления о возникновении самых легких химических элементов, которое завершилось приблизительно через три минуты после Большого взрыва. В последние годы астрофизики и космологи пришли к единой точке зрения относительно того, что происходило в нашей Вселенной, когда ее возраст превысил одну микросекунду.


гда случилась так называемая Великая Аннигиляция все еще свободных кварковых частиц, уничтожившая все антикварки, но пощадившая мизерный избыток кварков. Когда возраст Вселенной достиг 10 микросекунд, кварки потеряли независимость и слились в тройки и пары. Первый процесс породил барионы — протоны и нейтроны, которые в будущем стали кирпичиками для построения атомных ядер. Попарное слияние привело к появлению крайне нестабильных частиц из группы мезонов — в основном, пионов.

На каждый барион в те времена приходилось около миллиарда высокоэнергетичных фотонов, чья температура составляла порядка 4 триллионов градусов. В результате на десятой микросекунде Вселенная заполнилась сверхгорячей плазмой плотностью порядка 100 миллионов тонн на кубический сантиметр. Основной вклад в ее энергию вносили не барионы и фотоны, а высокоэнергетичные лептоны — электроны и позитроны. Эти частицы существовали в таком же ничтожном дисбалансе, как кварки и антикварки, однако все же не аннигировали полностью, поскольку из-за высокой температуры гамма-кванты порождали все новые и новые электронно-позитронные пары. Эту фазу ранней истории Вселенной называют лептонной эрой (а предшествующую — кварковой). Следует отметить, что диаметр ныне доступной для наблюдений части Вселенной в те времена был в пределах сотни астрономических единиц — то есть много меньше поперечника современной Солнечной системы.


Лептонная эра продолжалась до тех пор, пока гамма-квантам хватало энергии для порождения электронов и позитронов. Поскольку из-за расширения Вселенной температура фотонного газа постоянно снижалась, на отметке 1 секунда образование лептонов пошло на убыль. Оно еще недолго продолжалось за счет горячего хвоста фотонного спектра, но вскоре прекратилось полностью. К моменту, когда Вселенной исполнилось 10 секунд, лептонная эра ушла в прошлое.

Подобно кварковой эре, она оставила после себя очень горячую плазму, но с другими характеристиками. Ее плотность составляла 5 кг/см3, однако на долю протонов, нейтронов и электронов приходилась лишь одна десятая грамма, а остальной вклад принадлежал фотонам. Началась новая космическая эра, радиационная, когда плотность массы (или, что то же самое, энергии — вспомним формулу Эйнштейна (E=mc^2)) электромагнитного излучения превысила плотность вещества.

Лептонная эра породила неодинаковые количества протонов и нейтронов. Поскольку нейтроны чуть тяжелее протонов, они появлялись реже. Поэтому к началу радиационной эры протоны преобладали над нейтронами в отношении 6:1. Протоны стабильны, а время жизни свободного нейтрона в среднем составляет четверть часа. Когда возраст Вселенной достиг до 3 минут, 13% нейтронов распалось, и на каждый нейтрон стало приходиться по 7 протонов. Стоит отметить, что количество фотонов в расчете на один протон установилось на уровне 1,6 миллиарда и с тех пор практически не изменилось.


В истории Вселенной трехминутная отметка чрезвычайно важна. Именно на этой стадии впервые появилась возможность формирования составных ядер — конкретно, ядер дейтерия (протон плюс нейтрон). Энергия связи такого ядра равна 2,2 МэВ, что соответствует температуре в 25 миллиардов градусов. Температура первичной плазмы дошла до этого уровня, когда Вселенной было всего четверть секунды. Можно предположить, что дейтерий начал образовываться уже тогда, однако этого не случилось. Электромагнитное излучение Вселенной еще долго содержало достаточно горячих фотонов, которые разбивали новорожденные ядра дейтерия. Массовое разрушение дейтерия затормозилось, когда доля фотонов с энергией более 2,2 МэВ сократилась до одной миллиардной (вспомним, что общее число фотонов в полтора миллиарда раз превышало число подлежащих объединению барионов!). Это случилось, когда возраст Вселенной достиг одной минуты, а еще через две минуты процесс синтеза дейтерия пошел в полную силу. Новорожденные ядра этого изотопа водорода принялись присоединять по одному протону и одному нейтрону (в любом порядке) — так появились альфа-частицы, ядра гелия. Процесс занял всего несколько минут и задействовал практически все нейтроны. Лишь небольшая их часть пошла на не переработанный в гелиевом синтезе дейтерий и гелий-3 и совсем ничтожная — на ядра лития-6 и лития-7 и на нестабильный и быстро распадавшийся тритий (модельные вычисления показывают, что на одно ядро дейтерия и гелия-3 пришлось приблизительно сто тысяч ядер водорода, на ядро лития-7 — десять миллиардов, а на ядро лития-6 — сто триллионов).


скольку исходное соотношение протонов и нейтронов составляло 7:1, каждой новой альфа-частице сопутствовали 12 свободных протонов. Так космическое пространство заполнили ядра водорода (75% общей массы) и гелия-4 (25%). В наше время эти показатели равны 74% и 24% — оставшиеся 2% приходятся на более тяжелые элементы, порожденные процессами звездного нуклеосинтеза.

Первичный нуклеосинтез за очень малое время радикально преобразовал состав космической плазмы. А вот потом в течение приблизительно 400 тысяч лет она эволюционировала много спокойней. Конечно, остывал радиационный фон, причем его температура снижалась обратно пропорционально четвертой степени возрастающего линейного размера Вселенной. Плотность и обычной, и темной материи сокращалась медленней, обратно пропорционально кубу космологического расширения. Плотность фотонной энергии падала быстрее. поскольку растяжение пространства не только рассеивало кванты по все большему и большему объему, но и увеличивало длины их волн, снижая частоты.

Когда возраст Вселенной чуть превысил 50 тысяч лет, плотность лучевой энергии (к ней относят и энергию нейтрино) сравнялась с плотностью энергии частиц, а затем начала от нее отставать.


т-то и настал конец радиационной эре. К слову, как раз в это время космическое пространство впервые засияло голубым светом — до этого реликтовые фотоны были ультрафиолетовыми, а еще раньше, когда возраст Вселенной составлял от полутора минут до 600 лет — рентгеновскими. В возрасте 5 миллионов лет температура Вселенной упала до 600 градусов Кельвина, практически все реликтовые фотоны перешли в инфракрасную зону, и в космическом пространстве настала беспросветная тьма. Она стала рассеиваться где-то через 100–200 миллионов лет после Большого взрыва (после появления самых первых звезд).

Но что же все-таки происходило через 400 тысяч лет после Большого взрыва? Задолго до этого электроны стали объединяться с ядрами существовавших тогда элементов. Первое по времени (и очень раннее) такое превращение произошло с литием, однако при этом образовались ионы Li+, но не нейтральные атомы. Затем настала очередь гелия. Сначала альфа-частицы присоединяли к себе по одному электрону и превращались в ионизированные атомы гелия, а затем и по второму, образуя нейтральные атомы. Этот процесс практически завершился при красном смещении z = 2000, когда возраст Вселенной составил приблизительно 200 тысяч лет (D. Galli, F. Palla, The dawn of chemistry, 2012). Позднее аналогичная вещь произошла и с протонами, которые после присоединения электронов превратились в атомы водорода.


от процесс начался при z = 1300, через 370 тысяч лет после Большого взрыва. Он в основном завершился при красном смещении порядка 1000, когда сокращающаяся доля голых протонов составила 10% (при z = 800 она уже не превышала 1%), а температура фотонного газа упала ниже 3000 кельвинов. Остывшие фотоны уже не могли рассеиваться на нейтральных атомах и отправились в беспрепятственное путешествие по космосу. Эти реликтовые кванты, остывшие в наше время до 2,725 кельвинов, мы называем фоновым микроволновым излучением.

На этом временном отрезке существования Вселенной и началась космохимия. В диапазоне значений красного смещения от 2000 до 800 в космической плазме помимо атомов гелия-4, оставалось еще достаточно протонов. Они и составили первичное сырье для реакции радиационной ассоциации (radiative association, см., например, D. R. Bates, E. Herbs, 1988. Radiative Association), в ходе которой при столкновении протона с атомом гелия появлялся ион гидрида гелия и испускался фотон:

[mathrm{H}^+ + mathrm{He}tomathrm{HeH}^++hnu.]

За ней последовали аналогичные реакции с участием атомов водорода и протонов (mathrm{H} + mathrm{H}^+tomathrm{H}^+_2+hnu ) и (mathrm{H}^+_2 + mathrm{H}tomathrm{H}_2+mathrm{H}^+ ), которые привели к появлению молекулярного водорода. И это было лишь началом, вскоре число реакций пошло на десятки. Так что ион гидрида гелия оказался первым сложным (всего лишь двухатомным, но все же!) веществом, появившимся в нашей Вселенной. Более того, эти ионы начали синтезироваться (хотя и в совершенно ничтожных концентрациях) уже при z = 7000, когда после Большого взрыва прошло лишь 30 тысяч лет.


Поскольку ионы HeH+ присоединяли электроны, их возникновение шло рука об руку с последующей нейтрализацией (как говорят астрономы, рекомбинацией). Однако нейтральные молекулы гидрида гелия HeH в основном состоянии нестабильны и потому недолговечны. В результате концентрация ионов HeH+ сначала возрастала, а потом начала падать. Она достигла максимума, когда Вселенная подросла до полумиллиарда лет (S. Bovino et al., 2011. Ion chemistry in the early universe. Revisiting the role of HeH+ with new quantum calculations). Впрочем, и в это время их расчетная доля по отношению к атомам водорода составляла всего 10−13–10−14.

Никто не знает, сохранились ли в космосе первичные молекулы ионизированного гидрида гелия — во всяком случае, обнаружить их пока не удалось. Однако в конце 1970-х несколько исследователей пришли к выводу, что есть надежда найти такие ионы (естественно, не древние, а новодел) в ныне существующей космической плазме. В частности, было показано, что в плотных планетарных туманностях они должны синтезироваться в количествах, которые возможно обнаружить спектроскопическими методами (J. H. Black, 1978. Molecules in planetary nebulae). Именно это теперь и сделали заведующий отделением субмиллиметровых технологий боннского Института радиоастрономии имени Макса Планка Рольф Гюстен (Rolf Güsten) и его коллеги.


Планетарные туманности — это горячие плазменные оболочки, окружающие новорожденные белые карлики. Они образуются при сбросе внешних слоев красных гигантов и сверхгигантов на последнем этапе их эволюции. Планетарные туманности живут не более нескольких десятков тысяч лет, а потом остывают, тускнеют и рассеиваются в пространстве. На месте туманности остается совсем молодой и потому очень горячий белый карлик.

В качестве объекта для поиска ионов гидрида гелия авторы обсуждаемой статьи в Nature выбрали планетарную туманность NGC 7027 (рис. 1), расположенную в созвездии Лебедя в трех тысячах световых лет от Солнца. Она очень молода (мы ее видим в возрасте примерно 600 лет) и отличается высокой плотностью плазмы и большой скоростью ее разлета. Белый карлик в ее центре не особенно массивен (0,7 солнечной массы, что очень далеко от предела Чандрасекара), однако его светимость при температуре поверхности в 190 тысяч градусов в 7000 раз превышает солнечную.

Поиск увенчался успехом. Ученые рассчитывали обнаружить излучение, которое возникает при переходах ионов гидрида гелия из состояния с единичным полным угловым моментом в состояние, где этот момент равен нулю (см. Molecular Line Spectra). При таких переходах излучаются фотоны дальней инфракрасной зоны с частотой 2,010 терагерц и длиной волны 149,1 микрометров. Именно их удалось зарегистрировать.


Правда, для этого понадобились спецредства. Излучение с такой частотой поглощается водяным паром в нижних слоях атмосферы и потому ненаблюдаемо наземными средствами. Ученые проводили измерения на спектрометре GREAT (German Receiver for Astronomy at Terahertz Frequencies), установленном на борту широкофюзеляжного авиалайнера Boeing 747SP, специально модифицированного для многочасовых полетов. Он используется как самолет-носитель Стратосферной Обсерватории инфракрасной астрономии (Stratospheric Observatory for Infrared Astronomy, SOFIA) — совместного детища НАСА и Германского центра авиации и космонавтики (рис. 2). Летающая обсерватория оснащена 2,5 метровым телескопом и прочим научным оборудованием. Наблюдения планетарной туманности NGC 7027 производились в мае 2016 года.

Исcледователи из команды Рольфа Гюстена не только зарегистрировали излучение ожидаемой частоты и тем выявили долгожданную спектральную подпись ионов гидрида гелия. Они также подтвердили сделанный четверть века назад вывод, что в планетарных туманностях эти ионы возникают в ходе реакции

[mathrm{He}^+ + mathrm{H}tomathrm{HeH}^++hnu.]


Легко видеть, что этот вариант синтеза ионов HeH+ отличается от существовавшего в юном возрасте Вселенной — природа весьма изобретательна.

Чтобы избежать необходимости писать заключение, просто переведу последний абзац обсуждаемой статьи.

«Хотя ион HeH+ не слишком важен для сегодняшних земных дел, химия в нашей Вселенной началась именно с него. Отсутствие надежных свидетельств его присутствия в межзвездном пространстве было нелегкой дилеммой для астрономии. Однозначное детектирование этого иона, о котором сообщено в настоящей статье, наконец-то счастливо завершило растянувшиеся на десятилетия усилия по его поиску. Это стало возможным благодаря прогрессу технологии терагерцевых измерений, использованных в инструменте GREAT, и своевременно полученному доступу к уникальной обсерватории SOFIA, способной совершать высотные полеты над поглощающими инфракрасные волны слоями земной атмосферы». Сформулировано предельно ясно. Чего же боле, что я могу еще сказать?

Источник: Rolf Güsten, Helmut Wiesemeyer, David Neufeld, Karl M. Menten, Urs U. Graf, Karl Jacobs, Bernd Klein, Oliver Ricken, Christophe Risacher & Jürgen Stutzki. Astrophysical detection of the helium hydride ion HeH+ // Nature. 2019. V. 568. P. 357–359. DOI: 10.1038/s41586-019-1090-x.

Алексей Левин

Источник: elementy.ru

История гелия

18 августа 1868 года французский учёный Пьер Жансен, находясь во время полного солнечного затмения в индийском городе Гунтур, впервые исследовал хромосферу Солнца. Жансену удалось настроить спектроскоп таким образом, чтобы спектр короны Солнца можно было наблюдать не только при затмении, но и в обычные дни. На следующий же день спектроскопия солнечных протуберанцев наряду с линиями водорода — синей, зелено-голубой и красной — выявила очень яркую жёлтую линию, первоначально принятую Жансеном и другими наблюдавшими её астрономами за линию D натрия. Жансен немедленно написал об этом во Французскую Академию наук. Впоследствии было установлено, что ярко-жёлтая линия в солнечном спектре не совпадает с линией натрия и не принадлежит ни одному из ранее известных химических элементов.

Спустя два месяца 20 октября английский астроном Норман Локьер, не зная о разработках французского коллеги, также провёл исследования солнечного спектра. Обнаружив неизвестную жёлтую линию с длиной волны 588 нм (более точно 587,56 нм), он обозначил её D3, так как она была очень близко расположена к Фраунгоферовым линиям D1 (589,59 нм) и D2 (588,99 нм) натрия. Спустя два года Локьер, совместно с английским химиком Эдвардом Франкландом, в сотрудничестве с которым он работал, предложил дать новому элементу название «гелий» (от др.-греч. ἥλιος — «солнце»).

Интересно, что письма Жансена и Локьера пришли во Французскую Академию наук в один день — 24 октября 1868 года, однако письмо Локьера, написанное им четырьмя днями ранее, пришло на несколько часов раньше. На следующий день оба письма были зачитаны на заседании Академии. В честь нового метода исследования протуберанцев Французская академия решила отчеканить медаль. На одной стороне медали были выбиты портреты Жансена и Локьера над скрещенными ветвями лавра, а на другой — изображение мифического бога Солнца Аполлона, правящего в колеснице четверкой коней, скачущей во весь опор.

В 1881 году итальянец Луиджи Пальмиери опубликовал сообщение об открытии им гелия в вулканических газах (фумаролах). Он исследовал светло-желтое маслянистое вещество, оседавшее из газовых струй на краях кратера Везувия. Пальмиери прокаливал этот вулканический продукт в пламени бунзеновской горелки и наблюдал спектр выделявшихся при этом газов. Ученые круги встретили это сообщение с недоверием, так как свой опыт Пальмиери описал неясно. Спустя многие годы в составе фумарол действительно были найдены небольшие количества гелия и аргона.

Только через 27 лет после своего первоначального открытия гелий был обнаружен на Земле — в 1895 году шотландский химик Уильям Рамзай, исследуя образец газа, полученного при разложении минерала клевеита, обнаружил в его спектре ту же ярко-жёлтую линию, найденную ранее в солнечном спектре. Образец был направлен для дополнительного исследования известному английскому ученому-спектроскописту Уильяму Круксу, который подтвердил, что наблюдаемая в спектре образца жёлтая линия совпадает с линией D3 гелия. 23 марта 1895 года Рамзай отправил сообщение об открытии им гелия на Земле в Лондонское королевское общество, а также во Французскую академию через известного химика Марселена Бертло.

Шведские химики П. Клеве и Н. Ленгле смогли выделить из клевеита достаточно газа, чтобы установить атомный вес нового элемента.

В 1896 году Генрих Кайзер, Зигберт Фридлендер, а еще через два года Эдвард Бэли окончательно доказали присутствие гелия в атмосфере.

Еще до Рамзая гелий выделил также американский химик Фрэнсис Хиллебранд, однако он ошибочно полагал, что получил азот и в письме Рамзаю признал за ним приоритет открытия.

Исследуя различные вещества и минералы, Рамзай обнаружил, что гелий в них сопутствует урану и торию. Но только значительно позже, в 1906 году, Резерфорд и Ройдс установили, что альфа-частицы радиоактивных элементов представляют собой ядра гелия. Эти исследования положили начало современной теории строения атома.

Только в 1908 году нидерландскому физику Хейке Камерлинг-Оннесу удалось получить жидкий гелий дросселированием (см. Эффект Джоуля — Томсона), после того как газ был предварительно охлажден в кипевшем под вакуумом жидком водороде. Попытки получить твёрдый гелий еще долго оставались безуспешными даже при температуре в 0,71 K, которых достиг ученик Камерлинг-Оннеса — немецкий физик Виллем Хендрик Кеезом. Лишь в 1926 году, применив давление выше 35 атм и охладив сжатый гелий в кипящем под разрежением жидком гелии, ему удалось выделить кристаллы.

В 1932 году Кеезом исследовал характер изменения теплоёмкости жидкого гелия с температурой. Он обнаружил, что около 2,19 K медленный и плавный подъём теплоёмкости сменяется резким падением и кривая теплоёмкости приобретает форму греческой буквы λ (лямбда). Отсюда температуре, при которой происходит скачок теплоёмкости, присвоено условное название «λ-точка». Более точное значение температуры в этой точке, установленное позднее — 2,172 K. В λ-точке происходят глубокие и скачкообразные изменения фундаментальных свойств жидкого гелия — одна фаза жидкого гелия сменяется в этой точке на другую, причем без выделения скрытой теплоты; имеет место фазовый переход II рода. Выше температуры λ-точки существует так называемый гелий-I, а ниже её — гелий-II.

В 1938 году советский физик Пётр Леонидович Капица открыл явление сверхтекучести жидкого гелия-II, которое заключается в резком снижении коэффициента вязкости, вследствие чего гелий течёт практически без трения. Вот что он писал в одном из своих докладов про открытие этого явления:

… такое количество тепла, которое фактически переносилось, лежит за пределами физических возможностей, что тело ни по каким физическим законам не может переносить больше тепла, чем его тепловая энергия, помноженная на скорость звука. С помощью обычного механизма теплопроводности тепло не могло переноситься в таком масштабе, как это наблюдалось. Надо было искать другое объяснение.
И вместо того, чтобы объяснить перенос тепла теплопроводностью, то есть передачей энергии от одного атома к другому, можно было объяснить его более тривиально — конвекцией, переносом тепла в самой материи. Не происходит ли дело так, что нагретый гелий движется вверх, а холодный опускается вниз, благодаря разности скоростей возникают конвекционные токи, и таким образом происходит перенос тепла. Но для этого надо было предположить, что гелий при своем движении течет без всякого сопротивления. У нас уже был случай, когда электричество двигалось без всякого сопротивления по проводнику. И я решил, что гелий так же движется без всякого сопротивления, что он является не сверхтеплопроводным веществом, а сверхтекучим. …
… Если вязкость воды равняется 10−2 П, то это в миллиард раз более текучая жидкость, чем вода …

Происхождение названия гелия

От греч. ἥλιος — «Солнце» (см. Гелиос). Любопытен тот факт, что в названии элемента было использовано характерное для металлов окончание «-ий» (по лат. «-um» — «Helium»), так как Локьер предполагал, что открытый им элемент является металлом. По аналогии с другими благородными газами логично было бы дать ему имя «гелион» («Helion»). В современной науке название «гелион» закрепилось за ядром лёгкого изотопа гелия — гелия-3.

Распространённость гелия

Во Вселенной

Гелий занимает второе место по распространённости во Вселенной после водорода — около 23 % по массе. Однако на Земле гелий редок. Практически весь гелий Вселенной образовался в первые несколько минут после Большого Взрыва, во время первичного нуклеосинтеза. В современной Вселенной почти весь новый гелий образуется в результате термоядерного синтеза из водорода в недрах звёзд (см. протон-протонный цикл, углеродно-азотный цикл). На Земле он образуется в результате альфа-распада тяжёлых элементов (альфа-частицы, излучаемые при альфа-распаде — это ядра гелия-4). Часть гелия, возникшего при альфа-распаде и просачивающегося сквозь породы земной коры, захватывается природным газом, концентрация гелия в котором может достигать 7 % от объёма и выше.

Земная кора

В рамках восьмой группы гелий по содержанию в земной коре занимает второе место (после аргона).

Содержание гелия в атмосфере (образуется в результате распада Ac, Th, U) — 5,27·10−4 % по объёму, 7,24·10−5 % по массе. Запасы гелия в атмосфере, литосфере и гидросфере оцениваются в 5·1014 м³. Гелионосные природные газы содержат как правило до 2 % гелия по объёму. Исключительно редко встречаются скопления газов, гелиеносность которых достигает 8 — 16 %.

Среднее содержание гелия в земном веществе — 0,003 мг/кг или 0,003 г/т. Наибольшая концентрация гелия наблюдается в минералах, содержащих уран, торий и самарий: клевеите, фергюсоните, самарските, гадолините, монаците (монацитовые пески в Индии и Бразилии), торианите. Содержание гелия в этих минералах составляет 0,8 — 3,5 л/кг, а в торианите оно достигает 10,5 л/кг. Этот гелий является радиогенным и содержит лишь изотоп 4He, он образуется из альфа-частиц, излучаемых при альфа-распаде урана, тория и их дочерних радионуклидов.

Определение гелия

Качественно гелий определяют с помощью анализа спектров испускания (характеристические линии 587,56 нм и 388,86 нм), количественно — масс-спектрометрическими и хроматографическими методами анализа, а также методами, основанными на измерении физических свойств (плотности, теплопроводности и др.).

Физические свойства гелия

Гелий — практически инертный химический элемент.

Простое вещество гелий — нетоксично, не имеет цвета, запаха и вкуса. При нормальных условиях представляет собой одноатомный газ. Его точка кипения (T = 4,215 K для 4He) наименьшая среди всех простых веществ; твёрдый гелий получен лишь при давлениях выше 25 атмосфер — при атмосферном давлении он не переходит в твёрдую фазу даже при крайне близких к абсолютному нулю температурах. Экстремальные условия также необходимы для создания немногочисленных химических соединений гелия, все они нестабильны при нормальных условиях.

Химические свойства гелия

Гелий — наименее химически активный элемент восьмой группы таблицы Менделеева (инертные газы) . Многие соединения гелия существуют только в газовой фазе в виде так называемых эксимерных молекул, у которых устойчивы возбуждённые электронные состояния и неустойчиво основное состояние. Гелий образует двухатомные молекулы He2+, фторид HeF, хлорид HeCl (эксимерные молекулы образуются при действии электрического разряда или ультрафиолетового излучения на смесь гелия с фтором или хлором).

Энергия связи молекулярного иона гелия He2+ составляет 58 ккал/моль, равновесное межъядерное расстояние 1,09 Å.

Известно химическое соединение гелия LiHe (возможно, имелось в виду соединение LiHe7).

Свойства в газовой фазе гелия

При нормальных условиях гелий ведёт себя практически как идеальный газ. При всех условиях гелий является моноатомным веществом. При нормальных условиях, плотность составляет 0,17847 кг/м³, обладает тепло­проводностью 0,1437 Вт(м·К) — бо́льшей, чем у всех других газов за исключением водорода, а его удельная теплоёмкость чрезвычайно высока (ср = 5,23 кДж(кг·К), для сравнения — 14,23 кДж(кг·К) для Н2).

При пропускании тока через заполненную гелием трубку наблюдаются разряды различных цветов, зависящих главным образом от давления газа в трубке. Обычно видимый свет спектра гелия имеет жёлтую окраску. По мере уменьшения давления происходит смена цветов — розового, оранжевого, жёлтого, ярко-жёлтого, жёлто-зелёного и зелёного. Это связано с присутствием в спектре гелия нескольких серий линий, расположенных в диапазоне между инфракрасной и ультрафиолетовой частями спектра, важнейшие линии гелия в видимой части спектра лежат между 706,52 нм и 447,14 нм. Уменьшение давления приводит к увеличению длины свободного пробега электрона, то есть к возрастанию его энергии при столкновении с атомами гелия. Это приводит к переводу атомов в возбуждённое состояние с бо́льшей энергией, в результате чего и происходит смещение спектральных линий от инфракрасного к ультрафиолетовому краю.

Хорошо изученный спектр гелия имеет два резко различных набора серий линий — единичных (1S0) и триплетных (3S1), поэтому в конце 19 века Локьер, Рунге и Пашен предположили, что гелий состоит из смеси двух газов; один из них имел в спектре жёлтую линию 587,56 нм, другой — зелёную 501,6 нм. Этот второй газ они предложили назвать астерием (Asterium) от греч. звёздный. Однако Рамзай и Траверс показали, что спектр гелия зависит от условий: при давлении газа 7—8 мм рт.ст. наиболее ярка жёлтая линия; при уменьшении давления увеличивается интенсивность зелёной линии. Спектры атома гелия были объяснены Гейзенбергом в 1926 г. (см. Обменное взаимодействие). Спектр зависит от взаимного направления спинов электронов в атоме — атом с противоположно направленными спинами (дающий зелёную линию в оптических спектрах) получил название парагелия, с сонаправленными спинами (с жёлтой линией в спектре) назван ортогелием. Линия парагелия — одиночки, линии ортогелия — весьма узкие триплеты. Атом гелия в нормальных условиях находится в одиночном (синглетном) состоянии. Чтобы атом гелия перевести в триплетное состояние, нужно затратить работу в 19,77 эВ. Переход атома гелия из триплетного состояния в синглетное сам по себе осуществляется чрезвычайно редко. Такое состояние, из которого переход в более глубокое сам по себе маловероятен, носит название метастабильного. Вывести атом из метастабильного состояния в стабильное можно, подвергая атом внешнему воздействию, например, электронным ударом или при столкновении с другим атомом с передачей последнему непосредственно энергии возбуждения. В атоме парагелия (синглетного состояния гелия) спины электронов направлены противоположно, и суммарный спиновый момент равен нулю. В триплетном состоянии (ортогелий) спины электронов сонаправлены, суммарный спиновый момент равен единице. Принцип Паули запрещает двум электронам находиться в состоянии с одинаковыми квантовыми числами, поэтому электроны в низшем энергетическом состоянии ортогелия, имея одинаковые спины, вынуждены иметь различные главные квантовые числа: один электрон находится на 1s-орбитали, а второй — на более удалённой от ядра 2s-орбитали (состояние оболочки 1s2s). У парагелия оба электрона находятся в 1s-состоянии (состояние оболочки 1s2).

Спонтанный интеркомбинационный (то есть сопровождающийся изменением суммарного спина) переход с излучением фотона между орто- и парагелием чрезвычайно сильно подавлен, однако возможны безызлучательные переходы при взаимодействии с налетающим электроном или другим атомом.

В бесстолкновительной среде (например, в межзвёздном газе) спонтанный переход из нижнего состояния ортогелия 23S1 в основное состояние парагелия 10S1 возможен путём излучения одновременно двух фотонов или в результате однофотонного магнитно-дипольного перехода (M1). В этих условиях расчётное время жизни атома ортогелия за счёт двухфотонного распада 23S1 → 10S1 + 2γ составляет 2,49·108 с, или 7,9 года. Первые теоретические оценки показывали, что время жизни за счёт магнитно-дипольного перехода на порядки больше, то есть что доминирует двухфотонный распад. Лишь через три десятилетия, после неожиданного открытия запрещённых триплетно-синглетных переходов некоторых гелиеподобных ионов в спектрах солнечной короны было обнаружено, что однофотонный магнитно-дипольный распад 23S1-состояния значительно более вероятен; время жизни при распаде по этому каналу составляет «всего» 8·103 с.

Следует отметить, что время жизни первого возбуждённого состояния атома парагелия 20S1 также крайне велико по атомным масштабам. Правила отбора для этого состояния запрещают однофотонный переход 20S1 → 10S1 + γ, а для двухфотонного распада время жизни составляет 19,5 мс.

Гелий менее растворим в воде, чем любой другой известный газ. В 1 л воды при 20 °C растворяется около 8,8 мл (9,78 при 0 °C, 10,10 при 80 °C), в этаноле — 2,8 мл/л (15 °C), 3,2 мл/л (25 °C). Скорость его диффузии сквозь твёрдые материалы в три раза выше, чем у воздуха, и приблизительно на 65 % выше, чем у водорода.

Коэффициент преломления гелия ближе к единице, чем у любого другого газа. Этот газ имеет отрицательный коэффициент Джоуля — Томсона при нормальной температуре среды, то есть он нагревается, когда ему дают возможность свободно увеличиваться в объёме. Только ниже температуры инверсии Джоуля — Томсона (приблизительно 40 К при нормальном давлении) он остывает во время свободного расширения. После охлаждения ниже этой температуры гелий может быть превращён в жидкость при расширительном охлаждении. Такое охлаждение производится при помощи детандера.

Свойства конденсированных фаз гелия

В 1908 году Х.Камерлинг-Оннес впервые смог получить жидкий гелий. Твёрдый гелий удалось получить лишь под давлением 25 атмосфер при температуре около 1 К (В. Кеезом, 1926). Кеезом также открыл наличие фазового перехода гелия-4 (4He) при температуре 2,17K; назвал фазы гелий-I и гелий-II (ниже 2,17 K). В 1938 году П. Л. Капица обнаружил, что у гелия-II отсутствует вязкость (явление сверхтекучести). В гелии-3 сверхтекучесть возникает лишь при температурах ниже 0,0026 К. Сверхтекучий гелий относится к классу так называемых квантовых жидкостей, макроскопическое поведение которых может быть описано только с помощью квантовой механики. В 2004 году появилось сообщение об открытии сверхтекучести твёрдого гелия (т. н. эффект суперсолид) при исследовании его в торсионном осцилляторе. Однако многие исследователи сходятся во мнении, что обнаруженный в 2004 году эффект не имеет ничего общего со сверхтекучестью кристалла. В настоящее время продолжаются многочисленные экспериментальные и теоретические исследования, целью которых является понимание истинной природы данного явления.

Изотопы

Природный гелий состоит из двух стабильных изотопов: 4He (изотопная распространённость — 99,99986 wacko и гораздо более редкого 3He (0,00014 %; содержание гелия-3 в разных природных источниках может варьироваться в довольно широких пределах). Известны ещё шесть искусственных радиоактивных изотопов гелия.

Получение гелия

В промышленности гелий получают из гелийсодержащих природных газов (в настоящее время эксплуатируются главным образом месторождения, содержащие > 0,1 % гелия). От других газов гелий отделяют методом глубокого охлаждения, используя то, что он сжижается труднее всех остальных газов. Охлаждение производят дросселированием в несколько стадий очищая его от CO2 и углеводородов. В результате получается смесь гелия, неона и водорода. Эту смесь, т. н. сырой гелий, (He — 70-90 % об.) очищают от водорода (4-5 с помощью CuO при 650—800 К. Окончательная очистка достигается охлаждением оставшейся смеси кипящим под вакуумом N2 и адсорбцией примесей на активном угле в адсорберах, также охлаждаемых жидким N2. Производят гелий технической чистоты (99,80 % по объёму гелий) и высокой чистоты (99,985 %).

В России газообразный гелий получают из природного и нефтяного газов. В настоящее время гелий извлекается на гелиевом заводе ООО «Газпром добыча Оренбург» в Оренбурге из газа с низким содержанием гелия (до 0,055 % об.), поэтому российский гелий имеет высокую себестоимость. Актуальной проблемой является освоение и комплексная переработка природных газов крупных месторождений Восточной Сибири с высоким содержанием гелия (0,15-1 % об.), что позволит намного снизить его себестоимость.

По производству гелия лидируют США (140 млн м³ в год), затем — Алжир (16 млн м³). Россия занимает третье место в мире — 6 млн м³ в год. Мировые запасы гелия составляют 45,6 млрд м³.

В 2003 г. производство гелия в мире составило 110 млн м³, в том числе в США — 87 млн м³, Алжире — 16 млн м³, России — более 6 млн м³, Польше — около 1 млн м³.

Транспортировка гелия

Для транспортировки газообразного гелия используются стальные баллоны (ГОСТ 949-73) коричневого цвета, помещаемые в специализированные контейнеры. Для перевозки можно использовать все виды транспорта при соблюдении соответствующих правил перевозки газов.

Для перевозки жидкого гелия применяются специальные транспортные сосуды типа СТГ-10, СТГ-25 и т. п. светло-серого цвета объёмом 10, 25, 40, 250 и 500 литров, соответственно. При выполнении определённых правил транспортировки может использоваться железнодорожный, автомобильный и другие виды транспорта. Сосуды с жидким гелием обязательно должны храниться в вертикальном положении.

Применение гелия

Уникальные свойства гелия широко используются в промышленности и народном хозяйстве:

  • в металлургии в качестве защитного инертного газа для выплавки чистых металлов
  • в пищевой промышленности зарегистрирован в качестве пищевой добавки E939, в качестве пропеллента и упаковочного газа
  • используется в качестве хладагента для получения сверхнизких температур (в частности, для перевода металлов в сверхпроводящее состояние)
  • для наполнения воздухоплавающих судов (дирижабли и аэростаты) — при незначительной по сравнению с водородом потере в подъемной силе гелий в силу негорючести абсолютно безопасен
  • в дыхательных смесях для глубоководного погружения (см. Баллон для дайвинга)
  • для наполнения воздушных шариков и оболочек метеорологических зондов
  • для заполнения газоразрядных трубок
  • в качестве теплоносителя в некоторых типах ядерных реакторов
  • в качестве носителя в газовой хроматографии
  • для поиска утечек в трубопроводах и котлах (см. Гелиевый течеискатель)
  • как компонент рабочего тела в гелий-неоновых лазерах
  • нуклид 3He активно используется в технике нейтронного рассеяния в качестве поляризатора и наполнителя для позиционно-чувствительных нейтронных детекторов
  • нуклид 3He является перспективным топливом для термоядерной энергетики

В геологии

Гелий — удобный индикатор для геологов. При помощи гелиевой съёмки можно определять на поверхности Земли расположение глубинных разломов. Гелий, как продукт распада радиоактивных элементов, насыщающих верхний слой земной коры, просачивается по трещинам, поднимается в атмосферу. Около таких трещин и особенно в местах их пересечения концентрация гелия более высокая. Это явление было впервые установлено советским геофизиком И. Н. Яницким во время поисков урановых руд. Эта закономерность используется для исследования глубинного строения Земли и поиска руд цветных и редких металлов.

В астрономии

В честь гелия назван астероид (895) Гелио, открытый в 1918 году.

Биологическая роль гелия

На данный момент биологическая роль не выяснена.

Физиологическое действие гелия

  • Хотя инертные газы обладают наркозным действием, это воздействие у гелия и неона при атмосферном давлении не проявляется, в то время как при повышении давления раньше возникают симптомы «нервного синдрома высокого давления» (НСВД).
  • Вдыхание гелия вызывает кратковременное повышение тембра голоса (обратное эффекту вдыхания ксенона).

Стоимость гелия

  • В 2009 г. цены частных компаний на газообразный гелий находились в пределах 2,5—3 $/м³.
  • В 2010 г. цена в Европе на сжиженный гелий была около 11 евро за литр. В 2012 году — 23 евро за литр

Источник: chem9.ucoz.ru

История открытия

Гелий был найден в газовой атмосфере, окружающей Солнце, французским астрономом Пьером Жансеном, который в 1868 году во время затмения обнаружил яркую желтую линию в спектре солнечной хромосферы. Первоначально предполагалось, что эта линия представляла элемент натрий. В том же году английский астроном Джозеф Норман Локьер наблюдал желтую линию в солнечном спектре, которая не соответствовала известным линиям натрия D1 и D2, и поэтому он назвал ее линией D3. Локьер пришел к выводу, что она была вызвана веществом на Солнце, неизвестном на Земле. Он и химик Эдуард Франкленд в названии элемента использовали греческое название Солнца «гелиос».

В 1895 году британский химик сэр Уильям Рамзай доказал существование гелия на Земле. Он получил образец ураноносного минерала клевеита, и после исследования газов, образовавшихся при его нагреве, он обнаружил, что ярко-желтая линия в спектре совпадает с линией D3, наблюдаемой в спектре Солнца. Таким образом, новый элемент был окончательно установлен. В 1903 году Рамзи и Фредерик Содду определили, что гелий является продуктом спонтанного распада радиоактивных веществ.

Распространение в природе

Масса гелия составляет около 23% всей массы Вселенной, и элемент является вторым по распространенности в космосе. Он сосредоточен в звездах, где образуется из водорода в результате термоядерного синтеза. Хотя в земной атмосфере гелий находится в концентрации 1 часть на 200 тыс. (5 промилле) и в небольших количествах содержится в радиоактивных минералах, метеоритном железе, а также в минеральных источниках, большие объемы элемента встречаются в Соединенных Штатах (особенно в Техасе, Нью-Мексико, Канзасе, Оклахоме, Аризоне и Юте) в качестве компонента (до 7,6%) природного газа. Небольшие его запасы были обнаружены в Австралии, Алжире, Польше, Катаре и России. В земной коре концентрация гелия равна лишь около 8 частей на миллиард.

Изотопы

Ядро каждого атома гелия содержит два протона, но, как и у других элементов, у него есть изотопы. Они содержат от одного до шести нейтронов, поэтому их массовые числа находятся в диапазоне от трех до восьми. Стабильными из них являются элементы, у которых масса гелия определяется атомными числами 3 (3He) и 4 (4He). Все остальные радиоактивны и очень быстро распадаются на другие вещества. Земной гелий не является изначальной составляющей планеты, он образовался в результате радиоактивного распада. Альфа-частицы, испускаемые ядрами тяжелых радиоактивных веществ, представляют собой ядра изотопа 4He. Гелий не накапливается в больших количествах в атмосфере, потому что гравитации Земли недостаточно, чтобы предотвратить его постепенную утечку в космос. Следы 3He на Земле объясняются отрицательным бета-распадом редкого элемента водорода-3 (трития). 4He является наиболее распространенным из стабильных изотопов: соотношение числа атомов 4He к 3He составляет около 700 тыс. к 1 в атмосфере и около 7 млн к 1 в некоторых гелийсодержащих минералах.

Физические свойства гелия

Температура кипения и плавления у этого элемента самые низкие. По этой причине гелий существует в виде газа, за исключением экстремальных условий. Газообразный He в воде растворяется меньше, чем какой-либо другой газ, а скорость диффузии через твердые тела в три раза больше, чем у воздуха. Его показатель преломления ближе всего приближается к 1.

Теплопроводность гелия уступает лишь теплопроводности водорода, а его удельная теплоемкость необычайно высокая. При обычных температурах при расширении он нагревается, а ниже 40 K – охлаждается. Поэтому при Т<40 K гелий можно превратить в жидкость путем расширения.

Элемент является диэлектриком, если не находится в ионизированном состоянии. Как и у других благородных газов, у гелия есть метастабильные энергетические уровни, которые позволяют ему оставаться ионизированным в электрическом разряде, когда напряжение остается ниже потенциала ионизации.

Гелий-4 уникален тем, что обладает двумя жидкими формами. Обычная называется гелий I и существует при температурах от точки кипения 4,21 К (-268,9 °C) до около 2,18 К (-271 °C). Ниже 2,18 K теплопроводность 4He становится в 1000 раз больше, чем у меди. Эта форма называется гелий II, чтобы отличить ее от обычной. Она обладает сверхтекучестью: вязкость настолько низкая, что не может быть измерена. Гелий II растекается в тонкую пленку на поверхности любого вещества, которого касается, и эта пленка течет без трения даже против силы тяжести.

Менее обильный гелий-3 образует три различные жидкие фазы, две из которых сверхтекучи. Сверхтекучесть в 4He была обнаружена советским физиком Петром Леонидовичем Капицей в середине 1930-х годов, и такое же явление в 3He было впервые замечено Дугласом Д. Ошеровым, Дэвидом М. Ли, и Робертом С. Ричардсоном из США в 1972 году.

Жидкая смесь двух изотопов гелия-3 и -4 при температурах ниже 0,8 К (-272.4 °C) разделяется на два слоя – практически чистого 3He и смеси 4He с 6% гелия-3. Растворение 3He в 4He сопровождается охлаждающим эффектом, который используется в конструкции криостатов, в которых температура гелия опускается ниже 0,01 К (-273,14 °C) и поддерживается такой в течение нескольких дней.

Соединения

В нормальных условиях гелий химически инертен. В экстремальных можно создать соединения элемента, которые при нормальных показателях температуры и давления не являются стабильными. Например, гелий может образовывать соединения с йодом, вольфрамом, фтором, фосфором и серой, когда он подвергается действию электрического тлеющего разряда при бомбардировке электронами или в состоянии плазмы. Таким образом, были созданы HeNe, HgHe10, WHe2 и молекулярные ионы Не2+, Не2++, HeH+ и HeD+. Эта техника также позволила получить нейтральные молекулы Не2 и HgHe.

Плазма

Во Вселенной преимущественно распространен ионизированный гелий, свойства которого существенно отличаются от молекулярного. Электроны и протоны его не связаны, и он обладает очень высокой электропроводностью даже в частично ионизированном состоянии. На заряженные частицы сильное воздействие оказывают магнитные и электрические поля. Например, в солнечном ветре ионы гелия вместе с ионизированным водородом взаимодействуют с магнитосферой Земли, вызывая северные сияния.

Открытие месторождений в США

После бурения скважины в 1903 году в Декстере, штат Канзас, был получен негорючий газ. Первоначально не было известно, что в нем содержится гелий. Какой газ был найден, определил геолог штата Эразмус Хаворт, который собрал его образцы и в университете Канзаса с помощью химиков Кэди Гамильтона и Дэвида Макфарланда обнаружил, что тот содержит 72% азота, 15% метана, 1% водорода и 12% не было идентифицировано. Проведя последующие анализы, ученые обнаружили, что 1,84% пробы составляет гелий. Так узнали о том, что данный химический элемент присутствует в огромных количествах в недрах Великих равнин, откуда его можно извлечь из природного газа.

Промышленное производство

Это сделало Соединенные Штаты лидером мирового производства гелия. По предложению сэра Ричарда Трельфалла, ВМС США профинансировали три небольших экспериментальных завода для получения этого вещества во время Первой мировой войны с целью обеспечить заградительные аэростаты легким негорючим подъемным газом. По данной программе были произведены в общей сложности 5700 м3 92-процентного He, хотя до этого были получены лишь менее 100 л газа. Часть этого объема была использована в первом в мире гелиевом дирижабле ВМФ США С-7, который совершил свой первый рейс из Хэмптон-Роудс (штат Вирджиния) в Боллинг-Филд (Вашингтон, округ Колумбия) 7 декабря 1921 года.

Хотя процесс низкотемпературного сжижения газа в то время не был достаточно разработан, чтобы оказаться существенным во время Первой мировой войны, производство продолжалось. Гелий в основном использовался в качестве подъемного газа в летательных аппаратах. Спрос на него вырос во время Второй мировой войны, когда его стали применять при экранированной дуговой сварке. Элемент также имел важное значение в проекте создания атомной бомбы «Манхэттен».

Национальный запас США

В 1925 году правительство Соединенных Штатов создало Национальный запас гелия в Амарилло, штат Техас, с целью обеспечения военных дирижаблей во время войны и коммерческих воздушных кораблей в мирное время. Использование газа после Второй мировой сократилось, но запас был увеличен в 1950-х годах для обеспечения, среди прочего, его поставок в качестве теплоносителя, применяемого в производстве кислородно-водородного ракетного топлива в период космической гонки и холодной войны. Использование гелия в США в 1965 году в восемь раз превысило пиковое потребление военного времени.

После принятия закона о гелии 1960 года Горное бюро подрядило 5 частных предприятий для извлечения элемента из природного газа. Для этой программы был построен 425-км газопровод, соединивший эти заводы с правительственным частично истощенным газовым месторождением неподалеку от Амарилло в Техасе. Гелий-азотная смесь закачивалась в подземное хранилище и оставалась там, пока в ней не возникала необходимость.

К 1995 году был собран запас объемом миллиард кубометров, а задолженность Национального резерва составила 1,4 млрд долларов, что побудило Конгресс США в 1996 г. поэтапно отказаться от него. После принятия в 1996 г. закона о приватизации гелия Министерство природных ресурсов приступило к ликвидации хранилища в 2005 году.

Чистота и объемы производства

Гелий, произведенный до 1945 года, имел чистоту около 98%, остальные 2% приходились на азот, что было достаточным для дирижаблей. В 1945 г. было произведено небольшое количество 99,9-процентного газа для использования в дуговой сварке. К 1949 г. чистота получаемого элемента достигла 99,995%.

На протяжении многих лет Соединенные Штаты производили более 90% мирового объема коммерческого гелия. Начиная с 2004 года, ежегодно его вырабатывалось 140 млн м3, 85% из которых приходится на США, 10% производилось в Алжире, а остальное – в России и Польше. Основными источниками гелия в мире являются газовые месторождения Техаса, Оклахомы и Канзаса.

Процесс получения

Гелий (чистотой 98,2%) выделяют из природного газа путем сжижения других компонентов при низких температурах и при высоких давлениях. Адсорбция других газов охлажденным активированным углем позволяет добиться чистоты 99,995%. Небольшой объем гелия производится при сжижении воздуха в больших масштабах. Из 900 т воздуха можно получить около 3,17 куб. м газа.

Сферы применения

Благородный газ нашел применение в разных областях.

  • Гелий, свойства которого позволяют получать сверхнизкие температуры, используется как охлаждающий агент в Большом адронном коллайдере, сверхпроводящих магнитах аппаратов МРТ и спектрометров ядерного магнитного резонанса, спутниковой аппаратуры, а также для сжижения кислорода и водорода в ракетах «Аполлон».
  • В качестве инертного газа для сварки алюминия и др. металлов, при производстве оптоволокна и полупроводников.
  • Для создания давления в топливных баках ракетных двигателей, особенно тех, которые работают на жидком водороде, т. к. только гелий газообразный сохраняет свое агрегатное состояние, когда водород остается жидким);
  • He-Ne газовые лазеры используются для сканирования штрих-кодов на кассах в супермаркетах.
  • Гелий-ионный микроскоп позволяет получить лучшие изображения, чем электронный.
  • Благодаря высокой проницаемости благородный газ используется для проверки утечек, например, в системах кондиционирования воздуха автомобилей, а также для быстрого наполнения подушек безопасности при столкновении.
  • Низкая плотность позволяет наполнять декоративные шары с гелием. Инертный газ заменил взрывоопасный водород в дирижаблях и воздушных шарах. Например, в метеорологии, шары с гелием используются для подъема измерительных приборов.
  • В криогенной технике служит теплоносителем, поскольку температура этого химического элемента в жидком состоянии минимально возможная.
  • Гелий, свойства которого обеспечивают ему низкую реактивность и растворимость в воде (и крови), в смеси с кислородом нашел применение в дыхательных составах для подводного плавания с аквалангом и проведения кессонных работ.
  • Метеориты и горные породы анализируются на содержание данного элемента для определения их возраста.

Гелий: свойства элемента

Основные физические свойства He следующие:

  • Атомный номер: 2.
  • Относительная масса атома гелия: 4,0026.
  • Точка плавления: нет.
  • Точка кипения: -268,9 °C.
  • Плотность (1 атм, 0 °C): 0,1785 г/п.
  • Состояния окисления: 0.

Источник: FB.ru

Общая характеристика гелия

Гелий встречается на Земле в основном в атмосфере, однако некоторые его количества выделяются в определенных местах из недр Земли вместе с природными газами. Воды многих минеральных источников тоже выделяют гелий.

Хотя содержание гелия в воздухе невелико, во Вселенной он занимает второе место по распространенности (после водорода). Спектральный анализ показывает присутствие этого элемента во всех звездах.

Гелий представляет собой бесцветный, трудносжижаемый газ (температура кипения -268,9oС), затвердевающий только под избыточным давлением (схема строения атома представлена на рис. 1). Обладает сильной способностью проникать через стекло и металлическую фольгу. Плохо растворяется в воде, лучше – в бензоле, этаноле, толуоле.

Атомная и молекулярная масса гелия

Поскольку в свободном состоянии гелий существует в виде одноатомных молекул He, значения его атомной и молекулярной масс совпадают. Они равны 4,003.

Изотопы гелия

Гелий – наиболее распространенный после водорода элемент космоса – состоит из двух стабильных изотопов: 4He и 3He. Их массовые числа равны 4 и 3. Ядро атома гелия 4He содержит два протона и два нейтрона, а атома 3He – такое же число протонов и один нейтрон.

Спектральный анализ показывает присутствие его в атмосфере Солнца, звезд, в метеоритах. Накапливание ядер 4He во Вселенной обусловлено термоядерной реакцией, служащей источником солнечной и звездной энергии.

Ионы гелия

В обычных условиях гелий химически инертен, но при сильном возбуждении атомов он может образовывать молекулярные ионы He2+[ss2ss*1]. В обычных условиях эти ионы неустойчивы; захватывая недостающий электрон, они распадаются на два нейтральных атома.

Молекула и атом гелия

В свободном состоянии гелий существует в виде одноатомных молекул He.

Источник: ru.solverbook.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.