Лептонная эра


С этого момента начинается стремительное расширение Вселенной, возникают время и пространство, идет безудержное раздувание «пузырей пространства», зародышей одной; или нескольких вселенных, которые могут отличаться друг от друга своими фундаментальными константами и законами.

По разным оценкам, период «раздувания», идущий по экспоненте, занимает чрезвычайно малый промежуток времени – до 10-33 с после «начала». Он называется инфляционным периодом, За 10-33 с размеры Вселенной увеличились в 1050 раз, от миллиардной доли размера протона до размеров спичечного коробка.

Каждый из таких «пузырей» расширялся со скоростью света, а в целом Вселенная раздувалась со скоростью, в миллионы раз большей скорости света. Принципы теории относительности, запрещающие движение быстрее света, при этом не нарушались, так как обмен информацией шел только между причинно связанными областями, а «пузыри» пространства таких связей не имели.


ин из таких «пузырей» стал зародышем нашей Метагалактики. К концу фазы инфляции Вселенная была пустой и холодной, но когда инфляция иссякла, Вселенная вдруг стала чрезвычайно «горячей». Всплеск тепла, осветивший космос, обусловлен огромными запасами энергии, заключенными в «ложном» вакууме. Такое состояние вакуума очень неустойчиво и стремится к распаду. Когда распад завершается, отталкивание исчезает, заканчивается и инфляция. Энергия, существовавшая в виде множества реальных частиц, высвободилась в виде излучения, мгновенно нагревшего Вселенную до 1027 К. С этого момента Вселенная развивалась согласно стандартной теории «горячего» Большого взрыва. Благодаря энергии возникли вещество и антивещество, затем Вселенная стала остывать и испытывать последовательные фазовые переходы, каждый из которых переводил ее в более сложное состояние.

12.2. Ранний этап эволюции Вселенной

Доступная наблюдению часть Вселенной состоит на 99% из водорода и гелия, но в первоначальном плазмоподобном сгустке не было ни водорода, ни гелия. Теория Большого взрыва утверждает, что от появления протовещества до образования ядер атомов водорода и гелия прошло немногим более трех минут. На этом временном промежутке стремительно преобразовывались вакуум и вещество, а этапы преобразования определялись процессами расширения и остывания сгустка.


Эра Великого объединения

К этому времени, названному эрой Великого объединения, Вселенная представляла собой плазму из элементарных частиц всех видов и их античастиц в состоянии термодинамического равновесия при температуре 1027 К. В этом сгустке были лептоны (электроны, мюоны, тау-лептоны, все виды нейтрино), кварки и их античастицы. Все они свободно превращались друг в друга. В сгустке помимо гравитационного взаимодействия существовало великое (большое) взаимодействие со своим переносчиком – бозоном Хиггса. Плотность Вселенной в это время была столь велика, что она была непрозрачна для электромагнитного излучения. Эра Великого объединения продолжается от 10-43 до 10-33 с.

Адронная эра

Далее, от 10-33 с до 10-6 с, наступила адронная эра. Она началась с разделения кварков и лептонов, когда температура понизилась и стала меньше 1027 К. При этом сильное взаимодействие отделилось от электрослабого. Бозон Хиггса распался на глюоны и безмассовый бозон – переносчик электрослабого взаимодействия. К моменту прекращения переходов кварков в лептоны число кварков несколько превышало число антикваков, а число электронов – число позитронов. Таким образом, современное существование Вселенной связано с нарушением симметрии на самых ранних этапах ее эволюции. Причины такой асимметрии точно неизвестны до сих пор. В общем плазмоподобном сгустке на каждый миллиард пар частиц и античастиц приходилась одна частица, которой не хватало пары для аннигиляции. Это и определило дальнейшее появление вещественной Вселенной с галактиками, звездами, планетами и разумными существами на некоторых из них.


При снижении температуры до 1015 К электрослабое взаимодействие разделилось на слабое и электромагнитное. При этом электрослабый бозон распался на фотон и три тяжелых векторных бозона. Таким образом, во Вселенной утвердились все четыре известные сегодня науке фундаментальные взаимодействия.

Понижение температуры до 1013 К прекратило свободное существование кварков. Они слились в адроны, важнейшими из которых стали протоны и нейтроны. При этом барионов опять-таки было больше, чем антибарионов.

Лептонная эра

Далее наступает лептонная эра, продолжающаяся от 10-6 до 1 с после начала. Температура при этом упала от 1012 до 1010 К. В это время основную роль играли лептоны, участвовавшие во взаимных превращениях протонов и нейтронов. К концу лептонной эры происходила аннигиляция электронов и позитронов, и опять электронов было немного больше, чем позитронов, поэтому остались только те электроны, которым не хватило пары. Оставшихся электронов оказалось ровно столько, что они смогли точно компенсировать суммарный электрический заряд протонов, появившихся раньше, в адронную эру. В конце лептонной эпохи вещество стало прозрачным для нейтрино, которые перестали взаимодействовать с веществом и с тех пор дожили до наших дней.


Фотонная эра

Вслед за лептонной следует фотонная эра (эра излучения), которая продолжалась от 1 с до 1 млн лет. Температура Вселенной снизилась от 109 до 3000 К. На протяжении первых трех минут происходили важнейшие для дальнейшей эволюции Вселенной процессы первичного нуклеосинтеза — соединения протонов и нейтронов (которых было примерно в 8 раз меньше, чем протонов) в атомные ядра. К концу этого процесса вещество Вселенной состояло на 75% из протонов (ядер водорода), около 25% составляли ядра гелия, сотые доли процента пришлись на дейтерий, литий и другие легкие элементы. Правда, не следует забывать, что барионное вещество составляло ничтожную часть Вселенной, ее основными компонентами были фотоны и нейтрино. К этому времени Вселенная стала прозрачной для фотонов, так как излучение отделилось от вещества и образовало то, что в нашу эпоху называется реликтовым излучением. В своей структуре реликтовое излучение сохранило «память» о структуре барионного вещества в момент разделения и представляет собою радиоволны в сантиметровом диапазоне, которые были открыты в 1964 г. Эти сигналы равномерно поступают со всех точек небосвода и не связаны с каким-нибудь отдельным радиоисточником. Их открытие стало серьезным подтверждением концепции «горячей» Вселенной и теории Большого взрыва.


Затем почти 500 тысяч лет не происходило никаких качественных изменений – шло медленное остывание и расширение Вселенной. Вселенная, оставаясь однородной, становилась все более разреженной. Когда она остыла до 3 тысяч градусов, ядра атомов водорода и гелия уже могли захватывать свободные электроны и превращаться при этом в электронейтральные атомы водорода и гелия.

В результате образовалась однородная Вселенная, состоящая из трех почти не взаимодействующих субстанций:

1) барионного вещества (водорода, гелия и их изотопов);

2) лептонов (нейтрино и антинейтрино);

3) излучения (фотонов).

К этому времени уже не было высоких температур и больших давлений. Казалось, в перспективе Вселенную ждет дальнейшее расширение и остывание, образование «лептонной пустыни» – что-то вроде тепловой смерти. Но этого не произошло, напротив, произошел скачок, создавший современную структурную Вселенную. По современным оценкам, переход от однородной к структурной Вселенной занял от 1 до 3 миллиардов лет.


12.3. Структурная самоорганизация Вселенной

Предполагается, что в расширяющейся Вселенной возникают и развиваются случайные уплотнения вещества. Силы тяготения внутри уплотнений проявляют себя заметнее, чем вне их. Поэтому несмотря на общее расширение Вселенной вещество притормаживается и его плотность начинает постепенно нарастать. Появление таких уплотнений и стало началом рождения крупномасштабных структур – галактик, а затем и отдельных звезд.

Рождениеи эволюциягалактик

Итак, первым условием образования галактик во Вселенной стало появление случайных скоплений вещества в однородной Вселенной. Впервые подобная мысль была высказана еще И. Ньютоном, который утверждал, что если бы вещество было равномерно рассеяно по бесконечному пространству, оно никогда бы не собралось в единую массу. Оно собиралось бы частями в разных местах бесконечного пространства. Эта идея Ньютона стала одним из краеугольных камней современной космогонии.


Вторым условием появления галактик стало наличие малых возмущений, флуктуации вещества, ведущих к отклонению от однородности и изотропности пространства. Именно флуктуации и стали теми «затравками», которые привели к появлению более крупных уплотнений вещества. Эти процессы можно представить по аналогии с процессами образования облаков в атмосфере Земли. Известно, что водяной пар конденсируется на крохотных частичках – ядрах конденсации. Ими могут быть частички сажи или поваренной соли. Конечно, между атмосферой Земли и ранней Вселенной разница очень велика. Но считается, что и, там, и там наличие затравочных флуктуации необходимо.

К сожалению, современной науке пока не известны причины появления таких флуктуации. Но считается, что наличие единственной силы – гравитации, действующей в однородной Вселенной, достаточно для нарушения исходной однородности. Анализ процессов гравитационной неустойчивости привел к понятию «джинсовой массы» и «джйнсова размера» (в честь Д. Джинса – знаменитого английского астронома, занимавшегося анализом данных проблем).

Джинсов размер это критический размер сгущения вещества, необходимый для появления затравочной флуктуации.


Джинсова масса масса этого сгущения.

Если размеры и масса сгущения меньше критических величин, то в конце концов сгущение начнет расширяться и постепенно рассосется, от него не останется и следа. Если же размеры и масса сгущения больше критических величин, то плотность сгущения будет расти.

В середине XX в. советский академик Е. Лифшиц выполнил расчеты, описывающие поведение таких сгущений. Он доказал, что в расширяющейся Вселенной участки среды с большей плотностью будут расширяться медленнее, чем Вселенная в целом, что они будут постепенно отставать в расширении от остальной Вселенной и в какой-то момент времени совсем перестанут расширяться.

Эти изолированные участки вещества очень велики по массе – 1015 – 1016 масс Солнца. Эти массы под действием гравитации начинают сжиматься, причем происходит это весьма своеобразно – анизотропно. Вначале исходные объекты имели форму куба, а затем сжались в пластинку – «блин».

Первоначально изолированные друг от друга плоские «блины» очень скоро вырастают в плотные слои. Слои пересекаются, и в процессе их взаимодействия образуется ячеисто-сетчатая структура, где стенками огромных пустот служат блины. Отдельный блин представляет собой сверхскопление галактик и имеет плоскую форму.


Так как «блинная» теория не свободна от недостатков, есть и другие космогонические гипотезы. Так, возможно, первичные сгущения имели массу 105 – 106 масс Солнца, и из них сразу возникли и шаровые скопления, и галактики, и скопления галактик. Эти первичные сгустки, сжимаясь, становились сферически симметричными. Кроме того, они сразу фрагментировались на звезды.

Существуют предположения, почему чаще встречаются спиральные галактики, чем галактики других типов. Возможно, спиральные галактики образуются в результате слияния протогалактик в скоплениях. Вначале образуется объект неправильной формы, затем за несколько сотен миллионов лет (немного, по космическим меркам) неровности сглаживаются, и образуется массивная эллиптическая галактика. Постепенно в результате вращения такой галактики может образовываться дискообразная структура, постепенно приобретающая вид спиральной галактики. Подтверждением этой точки зрения является наличие галактик переходного типа, занимающих промежуточное положение между спиральными и эллиптическими галактиками.


Также есть предположение, почему в скоплениях галактик присутствует одна гигантская галактика, а остальные – мелкие. Считается, что вначале гигантская галактика лишь немного превосходила по своим размерам соседние галактики. Но по мере того, как галактика двигалась по спиральной траектории к центру скопления, она заглатывала более мелкие системы. Такие мелкие галактики, обреченные на «съедение», называют галактиками-миссионерами.

Были выдвинуты гипотезы, объясняющие вращение галактик. Сегодня считается, что на ранних стадиях эволюции протогалактики были гораздо больше, чем сейчас. Кроме того, космологическое расширение не успело их разогнать далеко друг от друга, поэтому между ними возникали значительные гравитационные силы. Эти силы принимали вид приливных взаимодействий, которые и вызывали вращение галактик.

Наша Галактика вращается довольно сложным образом. Значительная часть галактической материи вращается дифференциально, как планеты вращаются вокруг Солнца, не обращая внимания на то, по каким орбитам движутся другие, достаточно далекие космические тела, и скорость вращения этих тел уменьшается с увеличением их расстояния от центра. Но есть часть диска нашей Галактики, который вращается твердотельно, как музыкальный диск, крутящийся на проигрывателе. В этой части галактического диска угловая скорость вращения одинакова для любой точки. Кстати, наше Солнце находится в таком участке Галактики, в котором скорости твердотельного и дифференциального вращения равны. Такое место называется коротационным кругом. В нем создаются особые, спокойные и стационарные условия для процессов звездообразования.

Самый большой интерес ученых вызывает вращение спиральных рукавов Галактики. Есть предположение, что, возможно, в центре Галактики находится сингулярная точка – черная дыра, в которой не только перерабатывается, но и рождается материя. Истечение этой рождающейся в центре Галактики материи и образует спиральные структуры.

Рождение и эволюция звезд

Рождение звезд в Галактике происходит постоянно. Этот процесс компенсирует так же непрерывно происходящую смерть звезд. Поэтому в Галактике есть звезды старые и молодые. Самые старые звезды сосредоточены в шаровых скоплениях, возраст их сравним с возрастом Галактики. Старые звезды формировались, когда протогалактическое облако распадалось на все более мелкие сгустки, в результате постепенного дробления которых возникли скопления звездных масс.

Современные звезды возникают из газопылевых облаков, размеры которых больше критической джинсовой длины. Газопылевые облака начинают сжиматься под действием гравитационных сил, и энергия сжатия превращается при этом в излучение, которое может свободно выходить из облака в космическое пространство. При дальнейшем сжатии температура внутренних областей облака повышается, и таким образом образуется протозвезда (горячее ядро), которую еще почти не видно, так как она находится внутри родительского облака. Период сжатия облака солнечной массы составляет около миллиона лет.

Затем протозвезда сжимается гораздо медленнее. В ней протекают конвекционные процессы, связанные с перемещением внутренних, более горячих слоев вещества снизу вверх и холодных наружных – сверху вниз. При этом температура протозвезды достигает нескольких тысяч градусов. Кроме того, конвекция сопровождается короткой вспышкой светимости.

При этом процесс сжатия протозвезды продолжается, стремясь к некоторому конечному значению. Светимость протозвезды при этом падает. Данный этап занимает десятки миллионов лет. Наконец, сжатие прекращается, в звезде начинаются термоядерные реакции, и она становится стабильной обычной звездой, в которой действие сил тяготения, стремящихся сжать ее в точку, уравновешивается внутренним давлением газа, истекающим из звезды. Такая звезда является саморегулирующейся системой. Так, если температура внутри нее повысится, то звезда раздувается. Если теплоотвод превысит тепловыделение, то звезда начнет сжиматься и разогреваться, ядерные реакции ускоряются, и баланс восстанавливается.

С момента начала термоядерной реакции, превращающей водород в гелий, звезда типа нашего Солнца переходит на так называемую главную последовательность, в соответствии с которой будут изменяться с течением времени характеристики звезды – ее светимость, температура, радиус, химический состав и масса. После выгорания водорода в центральной зоне у звезды образуется гелиевое ядро. Водородные термоядерные реакции продолжают протекать, но только в тонком слое вблизи поверхности этого ядра. Ядерные реакции перемещаются на периферию звезды. Выгоревшее ядро начинает сжиматься, а внешняя оболочка – расширяться. Оболочка разбухает до колоссальных размеров, внешняя температура становится низкой, и звезда переходит в стадию красного гиганта. С этого момента звезда выходит на завершающий этап своей жизни. С нашим Солнцем это произойдет примерно через 8 млрд лет. При этом его размеры увеличатся до орбиты Меркурия, а может быть, и до орбиты Земли, так что от планет земной группы ничего не останется (или останутся оплавленные камни).

Для красного гиганта характерна низкая внешняя температура, но очень высокая внутренняя. Одновременно в термоядерные процессы включаются все более тяжелые ядра, что приводит к синтезу химических элементов. При этом красный гигант непрерывно теряет вещество, которое выбрасывается в межзвездное пространство. Так, только за один год Солнце на стадии красного гиганта может потерять одну миллионную часть своего веса. Таким образом, всего за десять – сто тысяч лет от красного гиганта остается лишь центральное гелиевое ядро, и звезда становится белым карликом. То есть белый карлик как бы вызревает внутри красного гиганта, а затем сбрасывает остатки оболочки, из которой образуется планетарная туманность.

Такие звезды невелики по своим размерам – по диаметру они даже меньше Земли, хотя их масса сравнима с солнечной. Но плотность такой звезды в миллиарды раз больше плотности воды. Кубический сантиметр его вещества весит больше тонны. Тем не менее, это вещество является газом, хотя и чудовищной плотности. Это очень плотный ионизированный газ, состоящий из ядер атомов и отдельных электронов. В белых карликах термоядерные реакции практически не идут, они возможны лишь в атмосфере этих звезд, куда попадает водород из межзвездной среды. В основном, эти звезды светят за счет огромных запасов тепловой энергии. Время охлаждения белого карлика сотни миллионов лет. Постепенно белый карлик остывает, цвет его меняется от белого к желтому, а затем к красному. Наконец, он превращается в черный карлик – мертвую холодную маленькую звезду размером с земной шар, который невозможно увидеть из другой планетной системы.

Несколько иначе развиваются более массивные звезды. Они живут всего несколько десятков миллионов лет. В них очень быстро выгорает водород, и они превращаются в красные гиганты всего за 2,5 млн лет. При этом в их гелиевом ядре температура повышается до нескольких сотен миллионов градусов. Такая температура дает возможность протекания реакций углеродного цикла – слияние ядер гелия в углерод. Ядро углерода в свою очередь может присоединить еще одно ядро гелия и образовать ядро кислорода, неона и т.д. вплоть до кремния. Выгорающее ядро звезды сжимается, и температура в нем поднимается до 3 – 10 млрд градусов. В таких условиях реакции объединения продолжаются вплоть до образования ядер железа – самого устойчивого во всей последовательности химического элемента. Более тяжелые химические элементы – от железа до висмута – также образуются в недрах красных гигантов в результате медленного захвата нейтронов. При этом энергия не выделяется, как при термоядерных реакциях, а наоборот, поглощается. В результате сжатие звезды все убыстряется.

Образование же наиболее тяжелых ядер, замыкающих таблицу Менделеева, предположительно происходит в оболочках взрывающихся звезд, при их превращении в новые или сверхновые звезды, которыми становятся некоторые красные гиганты. В зашлакованной звезде нарушается равновесие, электронный газ более не способен противостоять давлению ядерного газа. Наступает коллапс – катастрофическое сжатие звезды, она «взрывается внутрь». Но если отталкивание частиц или другие причины все же останавливают коллапс, происходит мощный взрыв – вспышка сверхновой звезды, в окружающее пространство сбрасывается не только оболочка звезды, а до 90% ее массы, что приводит к образованию газовых туманностей. При этом светимость звезды увеличивается в миллиарды раз. Так, был зафиксирован взрыв сверхновой звезды в 1054 г. В китайских летописях было записано, что она была видна днем, как Венера, в течение 23 дней. В наше время астрономы выяснили, что эта сверхновая звезда оставила после себя Крабовидную туманность, являющуюся мощным источником радиоизлучения.

Взрыв сверхновой звезды связан с выделением чудовищного количества энергии. При этом рождаются космические лучи, намного повышающие естественный радиационный фон и нормальные дозы космического излучения. Так, астрофизики подсчитали, что примерно раз в 10 млн лет сверхновые звезды вспыхивают в непосредственной близости от Солнца, повышая естественный радиационный фон в 7 тысяч раз. Это чревато серьезнейшими мутациями живых организмов на Земле. Кроме того, при взрыве сверхновых звезд идет сброс всей внешней оболочки звезды вместе с накопившимися в ней «шлаками» – химическими элементами, появившимися в результате нуклеосинтеза. Поэтому межзвездная среда сравнительно быстро обретает все известные на сегодняшний день химические элементы тяжелее гелия. Звезды следующих поколений, в том числе и Солнце, с самого начала содержат в своем составе и в составе окружающего их газопылевого облака примесь тяжелых элементов.

Часть массы взорвавшейся сверхновой звезды может остаться в виде сверхплотного тела – нейтронной звезды или черной дыры.

Теоретически предсказанные нейтронные звезды, или так называемые пульсары, были открыты в 1967 г. Плотность нейтронных звезд выше, чем плотность белых карликов в миллиарды раз, и достигает 1014 – 1015 г/см3. При этом начинаются процессы нейтронизации – чудовищное давление внутри звезды «вгоняет» электроны в атомные ядра, и звезды постепенно превращается в гигантскую нейтронную каплю, так что чайная ложка вещества такой звезды весит миллиарды тонн. Температура ее около 1 млрд градусов, а масса заключена между 1,2 и 2,4 массами Солнца. При этом размеры такой звезды составляют всего лишь около 20 км в диаметре. Нейтронные звезды довольно быстро остывают. Меньше ста тысяч лет требуется, чтобы температура нейтронной звезды упала до сотни миллионов градусов.

Нейтронные звезды очень быстро вращаются. Кроме того, они обладают очень мощным магнитным полем, напряженность которого составляет сотни тысяч миллиардов гаусс. Пустота в литровой банке, содержащей внутри себя такое поле, весила бы около тысячи тонн. Столь сильное магнитное поле в сочетании с быстрым вращением нейтронной звёзды приводит к тому, что эти звезды испускают радиоволны в виде узких пучков направленного излучения, представляющего повторяющиеся импульсы. Поэтому нейтронные звезды и называют пульсарами. Стареющие нейтронные звезды в некоторых случаях могут стать рентгеновскими пульсарами, излучая не радиоволны, а рентгеновские лучи.

Если масса завершающей свой жизненный путь звезды больше 2–3 масс Солнца, то гравитационное сжатие приведет непосредственно к образованию черной дыры, свойства которой были описаны в общей теории относительности. Если такая звезда является частью системы двойной звезды, то газ с видимой звезды может перетекать к черной дыре, образуя вокруг нее закручивающийся диск. При этом колоссальная кинетическая энергия частиц, разгоняемых тяготением черной дыры, частично переходит в рентгеновское излучение, и по нему черная дыра может быть обнаружена. Возможно, именно черная дыра находится в рентгеновском источнике Лебедь Х-1.

Математический анализ показывает, что черная дыра может перемещаться в другую часть нашей Вселенной или даже внутрь иной вселенной. Поэтому воображаемый космический путешественник мог бы теоретически использовать черную дыру в качестве средства передвижения по вселенным. Такими точками перехода должны быть сингулярности, образующиеся в черной дыре. Правда, возможность такого перехода существует лишь гипотетически, так как любой объект при приближении к черной дыре будет раздавлен приливными гравитационными силами.

Также расчеты показывают, что черные дыры испаряются за счет испускания частиц и излучения, но не из самой черной дыры, а из того пространства, которое находится перед горизонтом черной дыры. При этом, чем меньше черная дыра по массе, тем выше ее температура и тем быстрее она испаряется. Размеры черных дыр могут быть разными: от массы галактики (1044 г) до песчинки массой 10-5 г. Так, черная дыра с массой в 10 масс Солнца испарится за 1069 лет. Поэтому маленьких черных дыр, которые могли образоваться в первые мгновения после Большого взрыва, уже нет, а вот дыры больших размеров вполне могли сохраниться даже в пределах Солнечной системы. Их пытаются найти с помощью гамма-телескопов.

В целом же, по-видимому, на долю черных дыр и нейтронных звезд в нашей Галактике приходится около 100 млн звезд. Экстремальные физические условия в них делают их уникальными естественными лабораториями, дающими обширный материал для исследования физики ядерных взаимодействий, элементарных частиц и теории гравитации.

Дальнейшее усложнение вещества во Вселенной

Хотя появление крупномасштабных структур во Вселенной привело к образованию множества разновидностей галактик и звезд, среди которых есть совершенно уникальные объекты, все же с точки зрения дальнейшей эволюции Вселенной особое значение имело появление звезд – красных гигантов. Именно в красных гигантах в результате процессов звездного нуклеосинтеза появилось большинство элементов таблицы Менделеева. При этом химические элементы попадали в межзвездное пространство не только при превращении красного гиганта в новую или сверхновую звезду. За время своего активного существования красный гигант отдает в межзвездную среду ежегодно не менее 10-4 – 10-5 масс Солнца. Поэтому, как было отмечено выше, звезды второго поколения с самого начала содержат в своем составе примесь тяжелых элементов.

Источник: textarchive.ru

3.1. Адронная эра.

При очень высоких температурах и плотности в самом начале существования Вселенной материя состояла из элементарных частиц. Вещество на самом раннем этапе состояло, прежде всего, из адронов, и поэтому ранняя эра эволюции Вселенной называется адронной, несмотря на то, что в то время существовали и лептоны.

Через миллионную долю секунды с момента рождения Вселенной, температура T упала на 10 биллионов Кельвинов(1013K). Средняя кинетическая энергия частиц kT и фотонов hν составляла около миллиарда эв (103 Мэв), что соответствует энергии покоя барионов. В первую миллионную долю секунды эволюции Вселенной происходила материализация всех барионов неограниченно, так же, как и аннигиляция. Но по прошествии этого времени материализация барионов прекратилась, так как при температуре ниже 1013K фотоны не обладали уже достаточной энергией для ее осуществления. Процесс аннигиляции барионов и антибарионов продолжался до тех пор, пока давление излучения не отделило вещество от антивещества. Нестабильные гипероны (самые тяжелые из барионов) в процессе самопроизвольного распада превратились в самые легкие из барионов (протоны и нейтроны). Так во Вселенной исчезла самая большая группа барионов — гипероны. Нейтроны могли дальше распадаться в протоны, которые далее не распадались, иначе бы нарушился закон сохранения барионного заряда. Распад гиперонов происходил на этапе с 10-6 до 10-4 секунды.

К моменту, когда возраст Вселенной достиг одной десятитысячной секунды (10-4с.), температура ее понизилась до 1012K, а энергия частиц и фотонов представляла лишь 100 Мэв. Ее не хватало уже для возникновения самых легких адронов — пионов. Пионы, существовавшие ранее, распадались, а новые не могли возникнуть. Это означает, что к тому моменту, когда возраст Вселенной достиг 10-4 с., в ней исчезли все мезоны. На этом и кончается адронная эра, потому что пионы являются не только самыми легкими мезонами, но и легчайшими адронами. Никогда после этого сильное взаимодействие (ядерная сила) не проявлялась во Вселенной в такой мере, как в адронную эру, длившуюся всего лишь одну десятитысячную долю секунды.

3.2. Лептонная эра.

Когда энергия частиц и фотонов понизилась в пределах от 100 Мэв до 1 Мэв, в веществе было много лептонов. Температура была достаточно высокой, чтобы обеспечить интенсивное возникновение электронов, позитронов и нейтрино. Барионы (протоны и нейтроны), пережившие адронную эру, стали по сравнению с лептонами и фотонами встречаться гораздо реже.

Лептонная эра начинается с распада последних адронов — пионов — в мюоны и мюонное нейтрино, а кончается через несколько секунд при температуре 1010K, когда энергия фотонов уменьшилась до 1 Мэв и материализация электронов и позитронов прекратилась. Во время этого этапа начинается независимое существование электронного и мюонного нейтрино, которые мы называем “реликтовыми”. Всё пространство Вселенной наполнилось огромным количеством реликтовых электронных и мюонных нейтрино. Возникает нейтринное море.

 

3.3. Фотонная эра.

На смену лептонной эры пришла эра излучения, как только температура Вселенной понизилась до 1010K , а энергия гамма фотонов достигла 1 Мэв, произошла только аннигиляция электронов и позитронов. Новые электронно-позитронные пары не могли возникать вследствие материализации, потому, что фотоны не обладали достаточной энергией. Но аннигиляция электронов и позитронов продолжалась дальше, пока давление излучения полностью не отделило вещество от антивещества. Со времени адронной и лептонной эры Вселенная была заполнена фотонами. К концу лептонной эры фотонов было в два миллиарда раз больше, чем протонов и электронов. Важнейшей составной Вселенной после лептонной эры становятся фотоны, причем не только по количеству, но и по энергии.

 Для того чтобы можно было сравнивать роль частиц и фотонов во Вселенной, была введена величина плотности энергии. Это количество энергии в 1 см3, точнее, среднее количество (исходя из предпосылки, что вещество во Вселенной распределено равномерно). Если сложить вместе энергию hν всех фотонов, присутствующих в 1 см3, то мы получим плотность энергии излучения Er. Сумма энергии покоя всех частиц в 1 см3 является средней энергией вещества Em во Вселенной.

 Вследствие расширения Вселенной понижалась плотность энергии фотонов и частиц. С увеличением расстояния во Вселенной в два раза, объём увеличился в восемь раз. Иными словами, плотность частиц и фотонов понизилась в восемь раз. Но фотоны в процессе расширения ведут себя иначе, чем частицы. В то время как энергия покоя во время расширения Вселенной не меняется, энергия фотонов при расширении уменьшается. Фотоны понижают свою частоту колебания, словно «устают» со временем. Вследствие этого плотность энергии фотонов (Er) падает быстрее, чем плотность энергии частиц (Em). Преобладание во Вселенной фотонной составной над составной частиц (имеется в виду плотность энергии) на протяжении эры излучения уменьшалось до тех пор, пока не исчезло полностью. К этому моменту обе составные пришли в равновесие, то есть (Er=Em). Кончается эра излучения и вместе с этим период «Большого взрыва». Так выглядела Вселенная в возрасте примерно 300 000 лет. Расстояния в тот период были в тысячу раз короче, чем в настоящее время.

3.4. Звездная эра.

После «Большого взрыва» наступила продолжительная эра вещества, эпоха преобладания частиц. Мы называем её звездной эрой. Она продолжается со времени завершения «Большого взрыва» (приблизительно 300 000 лет) до наших дней. По сравнению с периодом «Большого взрыва» её развитие представляется как будто замедленным. Это происходит по причине низкой плотности и температуры. Таким образом, эволюцию Вселенной можно сравнить с фейерверком, который окончился. Остались горящие искры, пепел и дым. Мы стоим на остывшем пепле, вглядываемся в стареющие звезды и вспоминаем красоту и блеск Вселенной. Взрыв суперновой или гигантский взрыв галактики — ничтожные явления в сравнении с большим взрывом.

4.1. Теория «Большого взрыва».

«Большой взрыв» продолжался сравнительно недолго, всего лишь одну тридцатитысячную нынешнего возраста Вселенной. Несмотря на краткость срока, это всё же была самая славная эра Вселенной. Никогда после этого эволюция Вселенной не была столь стремительна, как в самом её начале, во время «Большого взрыва». Все события во Вселенной в тот период касались свободных элементарных частиц, их превращений, рождения, распада, аннигиляции. Не следует забывать, что в столь короткое время (всего лишь несколько секунд) из богатого разнообразия видов элементарных частиц исчезли почти все: одни путем аннигиляции (превращение в гамма-фотоны), иные путем распада на самые легкие барионы (протоны) и на самые легкие заряженные лептоны (электроны).

В момент, который был назван «Большим взрывом», плотность Вселенной была равна 1000 000 г/м3, а температура равнялась 1032 степени градусов К. Этот момент был назван точкой сингулярности, то есть была точка, было начало, возникла масса, абсолютное пространство и все законы, которым сейчас подчиняется Вселенная.

Если исходить из фактов, то теория «Большого взрыва» кажется очень убедительной, но так как мы до сих пор не знаем, что же было до него, это напускает немного тумана на эту проблему. Но все-таки наука продвинулась гораздо дальше, чем это было раньше и как любая революционная теория, теория «Большого взрыва» дает хороший толчок развитию научной мысли.

4.2. Антропный принцип.

Антропный (человеческий) принцип первым сформулировал в 1960 году Иглист Г.И. , но он является как бы неофициальным его автором. А официальным автором был ученый по фамилии Картер.

Антропный принцип говорит о том, что в начале Вселенной был план мироздания, венцом этого плана является возникновение жизни, а венцом жизни — человек. Антропный принцип очень хорошо укладывается в религиозную концепцию программирования жизни.

Антропный принцип утверждает, что Вселенная такая, какая она есть потому, что есть наблюдатель или же он должен появиться на определенном этапе развития. В доказательство создатели этой теории приводят очень интересные факты. Это критичность фундаментальных констант и совпадение больших чисел.

Рассмотрим первый факт.

Фундаментальными константами называются:

скорость света — С;                постоянная Планка — h;

заряд электрона — e;               масса электрона — me;

масса протона — mp;              масса нейтрона — mn;

средняя плотность во Вселенной;   гравитационная постоянная;

электромагнитная постоянная.

Исходя из этих констант, обнаружили их взаимосвязь:

между массой протона, электрона и нейтрона:

mp — mn > me; me = 5,5×10 г/моль;    mp-mn = 13,4×10 г/моль.

а также критичность значений плотности во Вселенной:

q = 10 г/см

если q > 10,то Вселенная пульсирующая

если q < 10,то во Вселенной будет отсутствовать тяготение

Теперь рассмотрим совпадение больших чисел (фундаментальных констант):

rвселенной/re = 10;           τ/re = 10;        qe/qвселенной = 10;

τ- возраст образования Вселенной

 Возраст образования Вселенной был запрограммирован в момент «Большого взрыва» и определяется как 15-20 млрд. лет.

 Как мы видим из всего выше изложенного, сам факт связи фундаментальных констант неоспорим. Они полностью взаимосвязаны и их малейшее изменение приведет к полному хаосу. То, что такое явное совпадение и даже можно сказать закономерность существует, дает этой, безусловно, интересной теории шансы на жизнь. Хотя наука и не признает ее, но в связи с той неопределенностью и противоречием, которое существует в самой науке, эту теорию нельзя списывать со счетов.

На протяжении десяти миллиардов лет после «Большого взрыва» простейшее бесформенное вещество постепенно превращалось в атомы, молекулы, кристаллы, породы, планеты. Рождались звезды, системы, состоящие из огромного количества элементарных частиц с весьма простой организацией. На некоторых планетах могли возникнуть формы жизни.

Галактики стали предметом космогонических исследований с 20-х годов нашего века, когда была надежно установлена их действительная природа. И оказалось, что это не туманности, т.е. не облака газа и пыли, находящиеся неподалеку от нас, а огромные звездные миры, лежащие на очень больших расстояниях от нас. Открытия и исследования в области космологии прояснили в последние десятилетия многое из того, что касается предыстории галактик и звезд, физического состояния разряженного вещества, из которого они формировались в очень далекие времена. В основе всей современной космологии лежит одна фундаментальная идея — восходящая к Ньютону идея гравитационной неустойчивости. Вещество не может оставаться однородно рассеянным в пространстве, ибо взаимное притяжение всех частиц вещества стремится создать в нем сгущения тех или иных масштабов и масс. В ранней Вселенной гравитационная неустойчивость усиливала первоначально очень слабые нерегулярности в распределении и движении вещества и в определенную эпоху привела к возникновению сильных неоднородностей: «блинов» — протоскоплений. Границами этих слоев уплотнения служили ударные волны, на фронтах которых первоначально не вращательное, безвихревое движение вещества приобретало завихренность. Распад слоев на отдельные сгущения тоже происходил, по-видимому, из-за гравитационной неустойчивости, и это дало начало протогалактикам. Многие из них оказывались быстро вращающимися благодаря завихренному состоянию вещества, из которого они формировались. Фрагментация протогалактических облаков в результате их гравитационной неустойчивости вела к возникновению первых звезд, и облака превращались в звездные системы — галактики. Те из них, которые обладали быстрым вращением, приобретали из-за этого двухкомпонентную структуру — в них формировались гало более или менее сферической формы и диск, в котором возникали спиральные рукава, где и до сих пор продолжается рождение звезд. Протогалактики, у которых вращение было медленнее или вовсе отсутствовало, превращались в эллиптические или неправильные галактики. Параллельно с этим процессом происходило формирование крупномасштабной структуры Вселенной — возникали сверхскопления галактик, которые, соединяясь своими краями, образовывали подобие ячеек или пчелиных сот; их удалось распознать в последние годы.

6. Структура Вселенной.

С возникновением атомов водорода начинается звездная эра — эра частиц, точнее говоря, эра протонов и электронов.

Вселенная вступает в звездную эру в форме водородного газа с огромным количеством световых и ультрафиолетовых фотонов. Водородный газ расширялся в различных частях Вселенной с разной скоростью. Неодинаковой была также и его плотность. Он образовывал огромные сгустки, во много миллионов световых лет. Масса таких космических водородных сгустков была в сотни тысяч, а то и в миллионы раз больше, чем масса нашей теперешней Галактики. Расширение газа внутри сгустков шло медленнее, чем расширение разреженного водорода между самими сгущениями. Позднее из отдельных участков с помощью собственного притяжения образовались сверхгалактики и скопления галактик. Итак, крупнейшие структурные единицы Вселенной — сверхгалактики — являются результатом неравномерного распределения водорода, которое происходило на ранних этапах истории Вселенной.

Колоссальные водородные сгущения — зародыши сверхгалактик и скоплений галактик — медленно вращались. Внутри их образовывались вихри, похожие на водовороты. Их диаметр достигал примерно ста тысяч световых лет. Мы называем эти системы протогалактиками, т.е. зародышами галактик. Несмотря на свои невероятные размеры, вихри протогалактик были всего лишь ничтожной частью сверхгалактик и по размеру не превышали одну тысячную сверхгалактики. Сила гравитации образовывала из этих вихрей системы звезд, которые мы называем галактиками. Некоторые из галактик до сих пор напоминают нам гигантское завихрение.

Астрономические исследования показывают, что скорость вращения завихрения предопределила форму галактики, родившейся из этого вихря. Выражаясь научным языком, скорость осевого вращения определяет тип будущей галактики. Из медленно вращающихся вихрей возникли эллиптические галактики, в то время как из быстро вращающихся родились сплющенные спиральные галактики.

Плотность распределения звезд в пространстве растет с приближением к экваториальной плоскости спиральных галактик. Эта плоскость является плоскостью симметрии системы, и большинство звезд при своем вращении вокруг центра галактики остается вблизи нее; периоды обращения составляют 107 — 109 лет. При этом внутренние части вращаются как твердое тело, а на периферии угловая и линейная скорости обращения убывают с удалением от центра. Однако в некоторых случаях находящееся внутри ядра еще меньшее ядрышко («керн») вращается быстрее всего. Аналогично вращаются и неправильные галактики, являющиеся также плоскими звездными системами.

Звезды во Вселенной объединены в гигантские Звездные системы, называемые галактиками. Звездная система, в составе которой, как рядовая звезда находится наше Солнце, называется Галактикой.

Число звезд в галактике порядка 1012 (триллиона). Млечный путь, светлая серебристая полоса звезд опоясывает всё небо, составляя основную часть нашей Галактики. Млечный путь наиболее ярок в созвездии Стрельца, где находятся самые мощные облака звезд. Наименее ярок он в противоположной части неба. Из этого нетрудно вывести заключение, что солнечная система не находится в центре Галактики, который от нас виден в направлении созвездия Стрельца. Чем дальше от плоскости Млечного Пути, тем меньше там слабых звезд и тем менее далеко в этих направлениях тянется звездная система. В общем, наша Галактика занимает пространство, напоминающее линзу или чечевицу, если смотреть на нее сбоку. Размеры Галактики были намечены по расположению звезд, которые видны на больших расстояниях. Это цефиды и горячие гиганты. Диаметр Галактики примерно равен 3000 пк (Парсек (пк) – расстояние, с которым большая полуось земной орбиты, перпендикулярная лучу зрения, видна под углом в 1”.1 Парсек = 3,26 светового года = 206265 а.е. = 3*1013 км.) или 100000 световых лет (световой год – расстояние пройденное светом в течение года), но четкой границы у нее нет, потому что звездная плотность постепенно сходит на нет.

В центре галактики расположено ядро диаметром 1000-2000 пк – гигантское уплотненное скопление звезд. Оно находится от нас на расстоянии почти 10000 пк (30000 световых лет) в направлении созвездия Стрельца, но почти целиком скрыто плотной завесой облаков, что препятствует визуальным и обычным фотографическим наблюдениям этого интереснейшего объекта Галактики. В состав ядра входит много красных гигантов и короткопериодических цефид.

Звезды верхней части главной последовательности, а особенно сверхгиганты и классические цефиды, составляют молодые население. Оно располагается дальше от центра и образует сравнительно тонкий слой или диск. Среди звезд этого диска находится пылевая материя и облака газа. Субкарлики и гиганты образуют вокруг ядра и диска Галактики сферическую систему.

Масса нашей галактики оценивается сейчас разными способами, равна 2*1011 масс Солнца (масса Солнца равна 2*1030 кг.) причем 1/1000 ее заключена в межзвездном газе и пыли. Масса Галактики в Андромеде почти такова же, а масса Галактики в Треугольнике оценивается в 20 раз меньше. Поперечник нашей галактики составляет 100000 световых лет. Путем кропотливой работы астроном В.В. Кукарин в 1944 г. нашел указания на спиральную структуру галактики, причем оказалось, что мы живем между двумя спиральными ветвями, бедном звездами.

В некоторых местах на небе в телескоп, а кое-где даже невооруженным глазом можно различить тесные группы звезд, связанные взаимным тяготением, или звездные скопления.

Существует два вида звездных скоплений: рассеянные и шаровые.

Рассеянные скопления состоят обычно из десятков или сотен звезд главной последовательности и сверхгигантов со слабой концентрацией к центру.

Шаровые же скопления состоят обычно из десятков или сотен звезд главной последовательности и красных гигантов. Иногда они содержат короткопериодические цефеиды. Размер рассеянных скоплений – несколько парсек. Пример их скопления Глады и Плеяды в созвездии Тельца. Размер шаровых скоплений с сильной концентрацией звезд к центру – десяток парсек. Известно более 100 шаровых и сотни рассеянных скоплений, но в Галактике последних должно быть десятки тысяч.

Кроме звезд в состав Галактики входит еще рассеянная материя, чрезвычайно рассеянное вещество, состоящее из межзвездного газа и пыли. Оно образует туманности. Туманности бывают диффузными (клочковатой формы) и планетарными. Светлые они оттого, что их освещают близлежащие звезды. Пример: газопылевая туманность в созвездии Ориона и темная пылевая туманность Конская голова.

Расстояние до туманности в созвездии Ориона равно 500 пк, диаметр центральной части туманности – 6 пк, масса приблизительно в 100 раз больше массы Солнца.

Во Вселенной нет ничего единственного и неповторимого в том смысле, что в ней нет такого тела, такого явления, основные и общие свойства которого не были бы повторены в другом теле, другими явлениями.

Открытие многообразных процессов эволюции в различных системах и телах, составляющих Вселенную, позволило изучить закономерности космической эволюции на основе наблюдательных данных и теоретических расчетов.

В качестве одной из важнейших задач рассматривается определение возраста космических объектов и их систем. Поскольку в большинстве случаев трудно решить, что нужно считать и понимать под «моментом рождения» тела или системы, то, для установления возраста применяют два параметра:

— время, в течение которого система уже находится в наблюдаемом состоянии;

— полное время жизни данной системы от момента её появления.

Очевидно, что вторая характеристика может быть получена только на основе теоретических расчетов.

Обычно первую из высказанных величин называют возрастом, а вторую – временем жизни.

Факт взаимного удаления галактик, составляющих метагалактики свидетельствует о том, что некоторое время тому назад она находилась в качественно ином состоянии и была более плотной.

Наиболее вероятное значение постоянной Хаббла (коэффициента пропорциональности, связывающего скорости удаления внегалактических объектов и расстояние до них составляющее 60 км/сек – мегапарсек), приводит к значению времени расширения метагалактики до современного состояния 17 млрд. лет.

Из всех вышеперечисленных доказательств можно с уверенностью сделать вывод: Вселенная эволюционирует, бурные процессы происходили в прошлом, происходят сейчас и будут происходить в будущем.

Наши дни с полным основанием называют золотым веком астрофизики — замечательные и чаще всего неожиданные открытия в мире звезд следуют сейчас одно за другим. Солнечная система стала последнее время предметом прямых экспериментальных, а не только наблюдательных исследований. Полеты межпланетных космических станций, орбитальных лабораторий, экспедиции на Луну принесли множество новых конкретных знаний о Земле, околоземном пространстве, планетах, Солнце. Мы живем в эпоху поразительных научных открытий и великих свершений. Самые невероятные фантазии неожиданно быстро реализуются. С давних пор люди мечтали разгадать тайны Галактик, разбросанных в беспредельных просторах Вселенной. Приходится только поражаться, как быстро наука выдвигает различные гипотезы и тут же их опровергает. Однако астрономия не стоит на месте: появляются новые способы наблюдения, модернизируются старые. С изобретением радиотелескопов, например, астрономы могут «заглянуть» на расстояния, которые еще в 40-x. годах ХХ столетия казались недоступными. Однако надо себе ясно представить огромную величину этого пути и те колоссальные трудности, с которыми еще предстоит встретиться на пути к звездам.

Изучение Вселенной, даже только известной нам её части является грандиозной задачей. Чтобы получить те сведения, которыми располагают современные ученые, понадобились труды множества поколений.

Вселенная бесконечна во времени и пространстве. Каждая частичка Вселенной имеет свое начало и конец, как во времени, так и в пространстве, но вся Вселенная бесконечна и вечна так, как она является вечно самодвижущейся материей.

Вселенная — это всё существующее. От мельчайших пылинок и атомов до огромных скоплений вещества звездных миров и звездных систем. Поэтому не будет ошибкой сказать, что любая наука, так или иначе, изучает Вселенную, точнее, те или иные её стороны. Химия изучает мир молекул, физика – мир атомов и элементарных частиц, биология – явления живой природы. Но существует научная дисциплина, объектом исследования которой служит сама Вселенная или «Вселенная как целое». Это особая отрасль астрономии так называемая космология. Космология – учение о Вселенной в целом, включающее в себя теорию всех астрономических наблюдений.

 

8. Список литературы.

 

1.   Казютинский В.В. «Вселенная, Астрономия, Философия» – Москва: «Знание», 1972.

2.   Левитан С.П. «Астрономия» – Москва: «Просвещение», 1994.

3.   Комаров В.Н. «Увлекательная астрономия» – Москва: «Наука», 1968.

4.   Воронцов-Вельяминов Б.А. «Очерки о Вселенной» — Москва: «Наука», 1976.

5.   Воронцов-Вельяминов Б.А. «Вселенная» — Москва: «Государственное издательство технико-теоретической литературы», 1974.

6.   Новиков И.Д. «Эволюция Вселенной» – Москва: «Наука», 1983.

Источник: diplomba.ru

С этого момента начинается стремительное расширение Вселенной, возникают время и пространство, идет безудержное раздувание «пузырей пространства», зародышей одной; или нескольких вселенных, которые могут отличаться друг от друга своими фундаментальными константами и законами.

По разным оценкам, период «раздувания», идущий по экспоненте, занимает чрезвычайно малый промежуток времени – до 10-33 с после «начала». Он называется инфляционным периодом, За 10-33 с размеры Вселенной увеличились в 1050 раз, от миллиардной доли размера протона до размеров спичечного коробка.

Каждый из таких «пузырей» расширялся со скоростью света, а в целом Вселенная раздувалась со скоростью, в миллионы раз большей скорости света. Принципы теории относительности, запрещающие движение быстрее света, при этом не нарушались, так как обмен информацией шел только между причинно связанными областями, а «пузыри» пространства таких связей не имели. Один из таких «пузырей» стал зародышем нашей Метагалактики. К концу фазы инфляции Вселенная была пустой и холодной, но когда инфляция иссякла, Вселенная вдруг стала чрезвычайно «горячей». Всплеск тепла, осветивший космос, обусловлен огромными запасами энергии, заключенными в «ложном» вакууме. Такое состояние вакуума очень неустойчиво и стремится к распаду. Когда распад завершается, отталкивание исчезает, заканчивается и инфляция. Энергия, существовавшая в виде множества реальных частиц, высвободилась в виде излучения, мгновенно нагревшего Вселенную до 1027 К. С этого момента Вселенная развивалась согласно стандартной теории «горячего» Большого взрыва. Благодаря энергии возникли вещество и антивещество, затем Вселенная стала остывать и испытывать последовательные фазовые переходы, каждый из которых переводил ее в более сложное состояние.

12.2. Ранний этап эволюции Вселенной

Доступная наблюдению часть Вселенной состоит на 99% из водорода и гелия, но в первоначальном плазмоподобном сгустке не было ни водорода, ни гелия. Теория Большого взрыва утверждает, что от появления протовещества до образования ядер атомов водорода и гелия прошло немногим более трех минут. На этом временном промежутке стремительно преобразовывались вакуум и вещество, а этапы преобразования определялись процессами расширения и остывания сгустка.

Эра Великого объединения

К этому времени, названному эрой Великого объединения, Вселенная представляла собой плазму из элементарных частиц всех видов и их античастиц в состоянии термодинамического равновесия при температуре 1027 К. В этом сгустке были лептоны (электроны, мюоны, тау-лептоны, все виды нейтрино), кварки и их античастицы. Все они свободно превращались друг в друга. В сгустке помимо гравитационного взаимодействия существовало великое (большое) взаимодействие со своим переносчиком – бозоном Хиггса. Плотность Вселенной в это время была столь велика, что она была непрозрачна для электромагнитного излучения. Эра Великого объединения продолжается от 10-43 до 10-33 с.

Адронная эра

Далее, от 10-33 с до 10-6 с, наступила адронная эра. Она началась с разделения кварков и лептонов, когда температура понизилась и стала меньше 1027 К. При этом сильное взаимодействие отделилось от электрослабого. Бозон Хиггса распался на глюоны и безмассовый бозон – переносчик электрослабого взаимодействия. К моменту прекращения переходов кварков в лептоны число кварков несколько превышало число антикваков, а число электронов – число позитронов. Таким образом, современное существование Вселенной связано с нарушением симметрии на самых ранних этапах ее эволюции. Причины такой асимметрии точно неизвестны до сих пор. В общем плазмоподобном сгустке на каждый миллиард пар частиц и античастиц приходилась одна частица, которой не хватало пары для аннигиляции. Это и определило дальнейшее появление вещественной Вселенной с галактиками, звездами, планетами и разумными существами на некоторых из них.

При снижении температуры до 1015 К электрослабое взаимодействие разделилось на слабое и электромагнитное. При этом электрослабый бозон распался на фотон и три тяжелых векторных бозона. Таким образом, во Вселенной утвердились все четыре известные сегодня науке фундаментальные взаимодействия.

Понижение температуры до 1013 К прекратило свободное существование кварков. Они слились в адроны, важнейшими из которых стали протоны и нейтроны. При этом барионов опять-таки было больше, чем антибарионов.

Лептонная эра

Далее наступает лептонная эра, продолжающаяся от 10-6 до 1 с после начала. Температура при этом упала от 1012 до 1010 К. В это время основную роль играли лептоны, участвовавшие во взаимных превращениях протонов и нейтронов. К концу лептонной эры происходила аннигиляция электронов и позитронов, и опять электронов было немного больше, чем позитронов, поэтому остались только те электроны, которым не хватило пары. Оставшихся электронов оказалось ровно столько, что они смогли точно компенсировать суммарный электрический заряд протонов, появившихся раньше, в адронную эру. В конце лептонной эпохи вещество стало прозрачным для нейтрино, которые перестали взаимодействовать с веществом и с тех пор дожили до наших дней.

Фотонная эра

Вслед за лептонной следует фотонная эра (эра излучения), которая продолжалась от 1 с до 1 млн лет. Температура Вселенной снизилась от 109 до 3000 К. На протяжении первых трех минут происходили важнейшие для дальнейшей эволюции Вселенной процессы первичного нуклеосинтеза — соединения протонов и нейтронов (которых было примерно в 8 раз меньше, чем протонов) в атомные ядра. К концу этого процесса вещество Вселенной состояло на 75% из протонов (ядер водорода), около 25% составляли ядра гелия, сотые доли процента пришлись на дейтерий, литий и другие легкие элементы. Правда, не следует забывать, что барионное вещество составляло ничтожную часть Вселенной, ее основными компонентами были фотоны и нейтрино. К этому времени Вселенная стала прозрачной для фотонов, так как излучение отделилось от вещества и образовало то, что в нашу эпоху называется реликтовым излучением. В своей структуре реликтовое излучение сохранило «память» о структуре барионного вещества в момент разделения и представляет собою радиоволны в сантиметровом диапазоне, которые были открыты в 1964 г. Эти сигналы равномерно поступают со всех точек небосвода и не связаны с каким-нибудь отдельным радиоисточником. Их открытие стало серьезным подтверждением концепции «горячей» Вселенной и теории Большого взрыва.

Затем почти 500 тысяч лет не происходило никаких качественных изменений – шло медленное остывание и расширение Вселенной. Вселенная, оставаясь однородной, становилась все более разреженной. Когда она остыла до 3 тысяч градусов, ядра атомов водорода и гелия уже могли захватывать свободные электроны и превращаться при этом в электронейтральные атомы водорода и гелия.

В результате образовалась однородная Вселенная, состоящая из трех почти не взаимодействующих субстанций:

1) барионного вещества (водорода, гелия и их изотопов);

2) лептонов (нейтрино и антинейтрино);

3) излучения (фотонов).

К этому времени уже не было высоких температур и больших давлений. Казалось, в перспективе Вселенную ждет дальнейшее расширение и остывание, образование «лептонной пустыни» – что-то вроде тепловой смерти. Но этого не произошло, напротив, произошел скачок, создавший современную структурную Вселенную. По современным оценкам, переход от однородной к структурной Вселенной занял от 1 до 3 миллиардов лет.

12.3. Структурная самоорганизация Вселенной

Предполагается, что в расширяющейся Вселенной возникают и развиваются случайные уплотнения вещества. Силы тяготения внутри уплотнений проявляют себя заметнее, чем вне их. Поэтому несмотря на общее расширение Вселенной вещество притормаживается и его плотность начинает постепенно нарастать. Появление таких уплотнений и стало началом рождения крупномасштабных структур – галактик, а затем и отдельных звезд.

Рождениеи эволюциягалактик

Итак, первым условием образования галактик во Вселенной стало появление случайных скоплений вещества в однородной Вселенной. Впервые подобная мысль была высказана еще И. Ньютоном, который утверждал, что если бы вещество было равномерно рассеяно по бесконечному пространству, оно никогда бы не собралось в единую массу. Оно собиралось бы частями в разных местах бесконечного пространства. Эта идея Ньютона стала одним из краеугольных камней современной космогонии.

Вторым условием появления галактик стало наличие малых возмущений, флуктуации вещества, ведущих к отклонению от однородности и изотропности пространства. Именно флуктуации и стали теми «затравками», которые привели к появлению более крупных уплотнений вещества. Эти процессы можно представить по аналогии с процессами образования облаков в атмосфере Земли. Известно, что водяной пар конденсируется на крохотных частичках – ядрах конденсации. Ими могут быть частички сажи или поваренной соли. Конечно, между атмосферой Земли и ранней Вселенной разница очень велика. Но считается, что и, там, и там наличие затравочных флуктуации необходимо.

К сожалению, современной науке пока не известны причины появления таких флуктуации. Но считается, что наличие единственной силы – гравитации, действующей в однородной Вселенной, достаточно для нарушения исходной однородности. Анализ процессов гравитационной неустойчивости привел к понятию «джинсовой массы» и «джйнсова размера» (в честь Д. Джинса – знаменитого английского астронома, занимавшегося анализом данных проблем).

Джинсов размер это критический размер сгущения вещества, необходимый для появления затравочной флуктуации.

Джинсова масса масса этого сгущения.

Если размеры и масса сгущения меньше критических величин, то в конце концов сгущение начнет расширяться и постепенно рассосется, от него не останется и следа. Если же размеры и масса сгущения больше критических величин, то плотность сгущения будет расти.

В середине XX в. советский академик Е. Лифшиц выполнил расчеты, описывающие поведение таких сгущений. Он доказал, что в расширяющейся Вселенной участки среды с большей плотностью будут расширяться медленнее, чем Вселенная в целом, что они будут постепенно отставать в расширении от остальной Вселенной и в какой-то момент времени совсем перестанут расширяться.

Эти изолированные участки вещества очень велики по массе – 1015 – 1016 масс Солнца. Эти массы под действием гравитации начинают сжиматься, причем происходит это весьма своеобразно – анизотропно. Вначале исходные объекты имели форму куба, а затем сжались в пластинку – «блин».

Первоначально изолированные друг от друга плоские «блины» очень скоро вырастают в плотные слои. Слои пересекаются, и в процессе их взаимодействия образуется ячеисто-сетчатая структура, где стенками огромных пустот служат блины. Отдельный блин представляет собой сверхскопление галактик и имеет плоскую форму.

Так как «блинная» теория не свободна от недостатков, есть и другие космогонические гипотезы. Так, возможно, первичные сгущения имели массу 105 – 106 масс Солнца, и из них сразу возникли и шаровые скопления, и галактики, и скопления галактик. Эти первичные сгустки, сжимаясь, становились сферически симметричными. Кроме того, они сразу фрагментировались на звезды.

Существуют предположения, почему чаще встречаются спиральные галактики, чем галактики других типов. Возможно, спиральные галактики образуются в результате слияния протогалактик в скоплениях. Вначале образуется объект неправильной формы, затем за несколько сотен миллионов лет (немного, по космическим меркам) неровности сглаживаются, и образуется массивная эллиптическая галактика. Постепенно в результате вращения такой галактики может образовываться дискообразная структура, постепенно приобретающая вид спиральной галактики. Подтверждением этой точки зрения является наличие галактик переходного типа, занимающих промежуточное положение между спиральными и эллиптическими галактиками.

Также есть предположение, почему в скоплениях галактик присутствует одна гигантская галактика, а остальные – мелкие. Считается, что вначале гигантская галактика лишь немного превосходила по своим размерам соседние галактики. Но по мере того, как галактика двигалась по спиральной траектории к центру скопления, она заглатывала более мелкие системы. Такие мелкие галактики, обреченные на «съедение», называют галактиками-миссионерами.

Были выдвинуты гипотезы, объясняющие вращение галактик. Сегодня считается, что на ранних стадиях эволюции протогалактики были гораздо больше, чем сейчас. Кроме того, космологическое расширение не успело их разогнать далеко друг от друга, поэтому между ними возникали значительные гравитационные силы. Эти силы принимали вид приливных взаимодействий, которые и вызывали вращение галактик.

Наша Галактика вращается довольно сложным образом. Значительная часть галактической материи вращается дифференциально, как планеты вращаются вокруг Солнца, не обращая внимания на то, по каким орбитам движутся другие, достаточно далекие космические тела, и скорость вращения этих тел уменьшается с увеличением их расстояния от центра. Но есть часть диска нашей Галактики, который вращается твердотельно, как музыкальный диск, крутящийся на проигрывателе. В этой части галактического диска угловая скорость вращения одинакова для любой точки. Кстати, наше Солнце находится в таком участке Галактики, в котором скорости твердотельного и дифференциального вращения равны. Такое место называется коротационным кругом. В нем создаются особые, спокойные и стационарные условия для процессов звездообразования.

Самый большой интерес ученых вызывает вращение спиральных рукавов Галактики. Есть предположение, что, возможно, в центре Галактики находится сингулярная точка – черная дыра, в которой не только перерабатывается, но и рождается материя. Истечение этой рождающейся в центре Галактики материи и образует спиральные структуры.

Рождение и эволюция звезд

Рождение звезд в Галактике происходит постоянно. Этот процесс компенсирует так же непрерывно происходящую смерть звезд. Поэтому в Галактике есть звезды старые и молодые. Самые старые звезды сосредоточены в шаровых скоплениях, возраст их сравним с возрастом Галактики. Старые звезды формировались, когда протогалактическое облако распадалось на все более мелкие сгустки, в результате постепенного дробления которых возникли скопления звездных масс.

Современные звезды возникают из газопылевых облаков, размеры которых больше критической джинсовой длины. Газопылевые облака начинают сжиматься под действием гравитационных сил, и энергия сжатия превращается при этом в излучение, которое может свободно выходить из облака в космическое пространство. При дальнейшем сжатии температура внутренних областей облака повышается, и таким образом образуется протозвезда (горячее ядро), которую еще почти не видно, так как она находится внутри родительского облака. Период сжатия облака солнечной массы составляет около миллиона лет.

Затем протозвезда сжимается гораздо медленнее. В ней протекают конвекционные процессы, связанные с перемещением внутренних, более горячих слоев вещества снизу вверх и холодных наружных – сверху вниз. При этом температура протозвезды достигает нескольких тысяч градусов. Кроме того, конвекция сопровождается короткой вспышкой светимости.

При этом процесс сжатия протозвезды продолжается, стремясь к некоторому конечному значению. Светимость протозвезды при этом падает. Данный этап занимает десятки миллионов лет. Наконец, сжатие прекращается, в звезде начинаются термоядерные реакции, и она становится стабильной обычной звездой, в которой действие сил тяготения, стремящихся сжать ее в точку, уравновешивается внутренним давлением газа, истекающим из звезды. Такая звезда является саморегулирующейся системой. Так, если температура внутри нее повысится, то звезда раздувается. Если теплоотвод превысит тепловыделение, то звезда начнет сжиматься и разогреваться, ядерные реакции ускоряются, и баланс восстанавливается.

С момента начала термоядерной реакции, превращающей водород в гелий, звезда типа нашего Солнца переходит на так называемую главную последовательность, в соответствии с которой будут изменяться с течением времени характеристики звезды – ее светимость, температура, радиус, химический состав и масса. После выгорания водорода в центральной зоне у звезды образуется гелиевое ядро. Водородные термоядерные реакции продолжают протекать, но только в тонком слое вблизи поверхности этого ядра. Ядерные реакции перемещаются на периферию звезды. Выгоревшее ядро начинает сжиматься, а внешняя оболочка – расширяться. Оболочка разбухает до колоссальных размеров, внешняя температура становится низкой, и звезда переходит в стадию красного гиганта. С этого момента звезда выходит на завершающий этап своей жизни. С нашим Солнцем это произойдет примерно через 8 млрд лет. При этом его размеры увеличатся до орбиты Меркурия, а может быть, и до орбиты Земли, так что от планет земной группы ничего не останется (или останутся оплавленные камни).

Для красного гиганта характерна низкая внешняя температура, но очень высокая внутренняя. Одновременно в термоядерные процессы включаются все более тяжелые ядра, что приводит к синтезу химических элементов. При этом красный гигант непрерывно теряет вещество, которое выбрасывается в межзвездное пространство. Так, только за один год Солнце на стадии красного гиганта может потерять одну миллионную часть своего веса. Таким образом, всего за десять – сто тысяч лет от красного гиганта остается лишь центральное гелиевое ядро, и звезда становится белым карликом. То есть белый карлик как бы вызревает внутри красного гиганта, а затем сбрасывает остатки оболочки, из которой образуется планетарная туманность.

Такие звезды невелики по своим размерам – по диаметру они даже меньше Земли, хотя их масса сравнима с солнечной. Но плотность такой звезды в миллиарды раз больше плотности воды. Кубический сантиметр его вещества весит больше тонны. Тем не менее, это вещество является газом, хотя и чудовищной плотности. Это очень плотный ионизированный газ, состоящий из ядер атомов и отдельных электронов. В белых карликах термоядерные реакции практически не идут, они возможны лишь в атмосфере этих звезд, куда попадает водород из межзвездной среды. В основном, эти звезды светят за счет огромных запасов тепловой энергии. Время охлаждения белого карлика сотни миллионов лет. Постепенно белый карлик остывает, цвет его меняется от белого к желтому, а затем к красному. Наконец, он превращается в черный карлик – мертвую холодную маленькую звезду размером с земной шар, который невозможно увидеть из другой планетной системы.

Несколько иначе развиваются более массивные звезды. Они живут всего несколько десятков миллионов лет. В них очень быстро выгорает водород, и они превращаются в красные гиганты всего за 2,5 млн лет. При этом в их гелиевом ядре температура повышается до нескольких сотен миллионов градусов. Такая температура дает возможность протекания реакций углеродного цикла – слияние ядер гелия в углерод. Ядро углерода в свою очередь может присоединить еще одно ядро гелия и образовать ядро кислорода, неона и т.д. вплоть до кремния. Выгорающее ядро звезды сжимается, и температура в нем поднимается до 3 – 10 млрд градусов. В таких условиях реакции объединения продолжаются вплоть до образования ядер железа – самого устойчивого во всей последовательности химического элемента. Более тяжелые химические элементы – от железа до висмута – также образуются в недрах красных гигантов в результате медленного захвата нейтронов. При этом энергия не выделяется, как при термоядерных реакциях, а наоборот, поглощается. В результате сжатие звезды все убыстряется.

Образование же наиболее тяжелых ядер, замыкающих таблицу Менделеева, предположительно происходит в оболочках взрывающихся звезд, при их превращении в новые или сверхновые звезды, которыми становятся некоторые красные гиганты. В зашлакованной звезде нарушается равновесие, электронный газ более не способен противостоять давлению ядерного газа. Наступает коллапс – катастрофическое сжатие звезды, она «взрывается внутрь». Но если отталкивание частиц или другие причины все же останавливают коллапс, происходит мощный взрыв – вспышка сверхновой звезды, в окружающее пространство сбрасывается не только оболочка звезды, а до 90% ее массы, что приводит к образованию газовых туманностей. При этом светимость звезды увеличивается в миллиарды раз. Так, был зафиксирован взрыв сверхновой звезды в 1054 г. В китайских летописях было записано, что она была видна днем, как Венера, в течение 23 дней. В наше время астрономы выяснили, что эта сверхновая звезда оставила после себя Крабовидную туманность, являющуюся мощным источником радиоизлучения.

Взрыв сверхновой звезды связан с выделением чудовищного количества энергии. При этом рождаются космические лучи, намного повышающие естественный радиационный фон и нормальные дозы космического излучения. Так, астрофизики подсчитали, что примерно раз в 10 млн лет сверхновые звезды вспыхивают в непосредственной близости от Солнца, повышая естественный радиационный фон в 7 тысяч раз. Это чревато серьезнейшими мутациями живых организмов на Земле. Кроме того, при взрыве сверхновых звезд идет сброс всей внешней оболочки звезды вместе с накопившимися в ней «шлаками» – химическими элементами, появившимися в результате нуклеосинтеза. Поэтому межзвездная среда сравнительно быстро обретает все известные на сегодняшний день химические элементы тяжелее гелия. Звезды следующих поколений, в том числе и Солнце, с самого начала содержат в своем составе и в составе окружающего их газопылевого облака примесь тяжелых элементов.

Часть массы взорвавшейся сверхновой звезды может остаться в виде сверхплотного тела – нейтронной звезды или черной дыры.

Теоретически предсказанные нейтронные звезды, или так называемые пульсары, были открыты в 1967 г. Плотность нейтронных звезд выше, чем плотность белых карликов в миллиарды раз, и достигает 1014 – 1015 г/см3. При этом начинаются процессы нейтронизации – чудовищное давление внутри звезды «вгоняет» электроны в атомные ядра, и звезды постепенно превращается в гигантскую нейтронную каплю, так что чайная ложка вещества такой звезды весит миллиарды тонн. Температура ее около 1 млрд градусов, а масса заключена между 1,2 и 2,4 массами Солнца. При этом размеры такой звезды составляют всего лишь около 20 км в диаметре. Нейтронные звезды довольно быстро остывают. Меньше ста тысяч лет требуется, чтобы температура нейтронной звезды упала до сотни миллионов градусов.

Нейтронные звезды очень быстро вращаются. Кроме того, они обладают очень мощным магнитным полем, напряженность которого составляет сотни тысяч миллиардов гаусс. Пустота в литровой банке, содержащей внутри себя такое поле, весила бы около тысячи тонн. Столь сильное магнитное поле в сочетании с быстрым вращением нейтронной звёзды приводит к тому, что эти звезды испускают радиоволны в виде узких пучков направленного излучения, представляющего повторяющиеся импульсы. Поэтому нейтронные звезды и называют пульсарами. Стареющие нейтронные звезды в некоторых случаях могут стать рентгеновскими пульсарами, излучая не радиоволны, а рентгеновские лучи.

Если масса завершающей свой жизненный путь звезды больше 2–3 масс Солнца, то гравитационное сжатие приведет непосредственно к образованию черной дыры, свойства которой были описаны в общей теории относительности. Если такая звезда является частью системы двойной звезды, то газ с видимой звезды может перетекать к черной дыре, образуя вокруг нее закручивающийся диск. При этом колоссальная кинетическая энергия частиц, разгоняемых тяготением черной дыры, частично переходит в рентгеновское излучение, и по нему черная дыра может быть обнаружена. Возможно, именно черная дыра находится в рентгеновском источнике Лебедь Х-1.

Математический анализ показывает, что черная дыра может перемещаться в другую часть нашей Вселенной или даже внутрь иной вселенной. Поэтому воображаемый космический путешественник мог бы теоретически использовать черную дыру в качестве средства передвижения по вселенным. Такими точками перехода должны быть сингулярности, образующиеся в черной дыре. Правда, возможность такого перехода существует лишь гипотетически, так как любой объект при приближении к черной дыре будет раздавлен приливными гравитационными силами.

Также расчеты показывают, что черные дыры испаряются за счет испускания частиц и излучения, но не из самой черной дыры, а из того пространства, которое находится перед горизонтом черной дыры. При этом, чем меньше черная дыра по массе, тем выше ее температура и тем быстрее она испаряется. Размеры черных дыр могут быть разными: от массы галактики (1044 г) до песчинки массой 10-5 г. Так, черная дыра с массой в 10 масс Солнца испарится за 1069 лет. Поэтому маленьких черных дыр, которые могли образоваться в первые мгновения после Большого взрыва, уже нет, а вот дыры больших размеров вполне могли сохраниться даже в пределах Солнечной системы. Их пытаются найти с помощью гамма-телескопов.

В целом же, по-видимому, на долю черных дыр и нейтронных звезд в нашей Галактике приходится около 100 млн звезд. Экстремальные физические условия в них делают их уникальными естественными лабораториями, дающими обширный материал для исследования физики ядерных взаимодействий, элементарных частиц и теории гравитации.

Дальнейшее усложнение вещества во Вселенной

Хотя появление крупномасштабных структур во Вселенной привело к образованию множества разновидностей галактик и звезд, среди которых есть совершенно уникальные объекты, все же с точки зрения дальнейшей эволюции Вселенной особое значение имело появление звезд – красных гигантов. Именно в красных гигантах в результате процессов звездного нуклеосинтеза появилось большинство элементов таблицы Менделеева. При этом химические элементы попадали в межзвездное пространство не только при превращении красного гиганта в новую или сверхновую звезду. За время своего активного существования красный гигант отдает в межзвездную среду ежегодно не менее 10-4 – 10-5 масс Солнца. Поэтому, как было отмечено выше, звезды второго поколения с самого начала содержат в своем составе примесь тяжелых элементов.

Источник: textarchive.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.