Квантовая запутанность эксперимент


Сегодняшняя ]]>публикация]]> отрывков из монографии биофизика Бориса Георгиевича Режабека о ноосфере, возможно, требует некоторого пояснения]]>.]]>

Смотрите, вот некто в комментарии даже охарактеризовал теорию о ноосфере как „буржуазную теорию «тяф-тяф» ”. Справедлива ли такая реакция, есть ли хоть какие-то реальные доказательства, переводящие эту теорию в ранг физической реальности?

На наш взгляд, есть, причём аргумент в пользу ноосферы серьёзный. Это – существование информационного поля, „разлитого” вокруг нас. Именно разлитого, как разливается вода – символ информации.

А где есть материя и информация – там непременно присутствует и мера: набор правил, законов (физики, химии – природы вообще), систем кодирования и т.п.

Осталось выяснить, обладает ли такая система, где доказано наличие материи, информации и меры, интеллектом. Не будем вдаваться в определения последнего, а просто зададим себе вопрос: природа – она обладает интеллектом или нет? Если не обладает, тогда бездушный материальный мир, нас окружающий, уже должен был бы превратиться в полный хаос, согласно началам термодинамики.


Но на практике мы наблюдаем обратный процесс: не деградацию, а развитие! Как минимум, создание и сохранение условий для развития человека, ведь достаточно крайне малой дерегуляции околоземных и околосолнечных параметров и процессов, чтобы на Земле изменилась, например, температура или уровень радиации так, чтобы человек как биологический вид прекратил своё существование.

Мы вообще редко задумываемся над этим фактом – существовании и стабильном поддержании той невероятно узкой области физических параметров, при которых мы можем жить! Только представьте себе, что температура на нашей планете повысится на незначительные для космоса каких-нибудь 50°! Или понизится… Для сравнения: температура поверхности Солнца — 5 778 К, ядра – 15.000.000°! Что такое для космоса плюс-минус 50 градусов в сравнении с миллионами?!! Действительно, есть над чем подумать…

Получается, что кто-то занимается регулировкой допустимых для нашей жалкой сегодняшней либеральной жизни параметров космоса. Т.е. наличествует внешняя для человечества воля. И разум, т.е. существует внешний интеллект.

Следовательно, это уже не просто природа, а Природа именно с заглавной буквы, как носитель части объемлющего интеллекта.


Но где же доказательства наличия упомянутого выше информационного поля? – может спросить вдумчивый читатель. Оно есть: интуиция.

С фактами проявления интуиции сталкивается каждый из нас, в большей или меньшей мере. И речь не только об интуитивных прозрениях или озарениях, вроде истории создания Периодической таблицы элементов. Здесь ещё можно предположить, что Менделееву во сне она привиделась как результат его предыдущих поисков и размышлений – вот мозг и подсказал во сне решение.

Подобное предположение, безусловно, имеет право на существование. Но вот как объяснить интуицию матери, вдруг почувствовавшей, что с её ребёнком, находящимся где-то далеко, случилась беда? Такие факты неоспоримо многочисленны, а значит существование внешнего для нас информационного поля – факт физического мира. Точка.

Кстати, восточное учение о карме, передающейся из поколения в поколение и воздействующей на них – это ведь просто одно из проявлений существования такого поля – поля информации обо всём, что когда-либо сделал человек: в мыслях, намерениях, поступках. Отсюда и русская поговорка: не желай зла ближнему! Ибо зло так или иначе вернётся к тебе.

Ниже, с учётом сказанного, публикация о вирусах, раскрывающая их совершенно неожиданную сторону: социальность. Да-да, именно на наших глазах зарождается новое направление в науке: социовирусология. Фантастика? Да, если отвергать ноосферу как факт нашего бытия. Если же следовать фактам, логике и здравому смыслу, если стремиться расширить горизонты познания, то рождение социовирусологии – вполне логичное отражение принципа эзотериков: что вверху, то и внизу.


С учётом существования ноосферы как обладающего интеллектом актора управления, в т.ч., земными и социальными процессами, можно вполне логично предположить: нынешняя псевдопандемия, а особенно – результаты усилий правителей, которых они могут достичь в создающемся на наших глазах рабовладельческом планетарном обществе с уничтожением значиетельной части населения – не является ли это реакцией Ноосферы на безнравственное существование современного человечества?

Опять-таки, не будем сходу отбрасывать такую гипотезу. Ведь не зря Ключевский утверждал, что закономерность исторических явлений обратно пропорциональна их духовности..

Вирусы обладают коллективным разумом? Они общаются и имеют ясную цель, чего же они добиваются?

Вирус нельзя убить. Он не живет, поэтому его можно только сломать, разрушить. Вирус не существо, а скорее вещество.

Два месяца продолжается пандемия нового коронавируса. Каждый уже считает себя экспертом в этой теме. А вам известно, что вирус нельзя убить? Он не живет, поэтому его можно только сломать, разрушить. Вирус не существо, а скорее вещество. Но при этом вирусы умеют общаться, кооперироваться и маскироваться. Эти и другие удивительные научные факты собрали наши друзья из проекта Reminder.

Социальная жизнь вирусов


Ученые открыли это всего три года назад. Как часто бывает, случайно. Цель исследования заключалась в том, чтобы проверить, могут ли бактерии сенной палочки предупреждать друг друга об атаке бактериофагов — особого класса вирусов, избирательно поражающих бактерии. После добавления бактериофагов в пробирки с сенной палочкой исследователи зафиксировали сигналы на неизвестном молекулярном языке. Но «переговоры» на нем вели совсем не бактерии, а вирусы.

Оказалось, что после проникновения в бактерии вирусы заставляли их синтезировать и рассылать по соседним клеткам специальные пептиды. Эти короткие белковые молекулы сигнализировали остальным вирусам об очередном удачном захвате. Когда число сигнальных пептидов (а значит, и захваченных клеток) достигло критического уровня, все вирусы, как по команде, прекратили активное деление и притаились.

Если бы не этот обманный маневр, бактерии могли бы организовать коллективный отпор или полностью погибнуть, лишив вирусы возможности паразитировать на них дальше. Вирусы явно решили усыпить бдительность своих жертв и дать им время для восстановления. Пептид, который помог им это сделать, назвали «арбитриум» («решение»).

Дальнейшие исследования показали, что вирусы способны принимать и более сложные решения. Они могут жертвовать собой во время атаки на иммунную защиту клетки, чтобы обеспечить успех второй или третьей волны наступления. Они способны скоординированно передвигаться от клетки к клетке в транспортных пузырьках (везикулах), обмениваться генным материалом, помогать друг другу маскироваться от иммунитета, кооперироваться с другими штаммами, чтобы пользоваться их эволюционными преимуществами.


Велика вероятность, что даже эти удивительные примеры — лишь вершина айсберга, считает Ланьинь Цзэн, биофизик из Техасского университета. Изучить скрытую социальную жизнь вирусов должна новая наука — социовирусология. Речь не идет о том, что вирусы обладают сознанием, оговаривается один из ее создателей микробиолог Сэм Диас-Муньос. Но социальные связи, язык коммуникации, коллективные решения, координация действий, взаимопомощь и планирование — это признаки разумной жизни.

Разумны ли вирусы?

Может ли обладать разумом или сознанием то, что даже не является живым организмом? Есть математическая модель, которая допускает такую возможность. Это теория интегрированной информации, разработанная итальянским нейробиологом Джулио Тонони. Он рассматривает сознание как соотношение количества и качества информации, которое определяется специальной единицей измерения — φ (фи). Идея в том, что между совершенно бессознательной материей (0 φ) и сознательным человеческим мозгом (максимум φ) протянулся восходящий ряд переходных состояний.

Минимальный уровень φ есть у любого объекта, способного принимать, обрабатывать и генерировать информацию. В том числе у таких безусловно неживых, как термометр или светодиод. Раз они умеют преобразовывать температуру и свет в данные, значит, «информационность» для них такое же фундаментальное свойство, как масса и заряд для элементарной частицы. В этом смысле вирус явно превосходит многие неживые объекты, поскольку сам является носителем (генетической) информации.


Сознание — более высокий уровень переработки информации. Тонони называет это интеграцией. Интегрированная информация — нечто, качественно превосходящее простую сумму собранных данных: не набор отдельных характеристик предмета типа желтого цвета, округлой формы и теплоты, а составленный из них образ горящей лампы.

Принято считать, что на такую интеграцию способны только биологические организмы. Чтобы проверить, могут ли адаптироваться и набираться опыта неживые объекты, Тонони вместе с группой нейробиологов разработал компьютерную модель, напоминающую аркадную игру для ретроконсоли.

Роль подопытных выполняли 300 «аниматов» — 12-битные юниты с базовым искусственным интеллектом, симуляцией органов чувств и двигательного аппарата. Каждому задали произвольно сгенерированные инструкции работы частей тела и запустили всех в виртуальный лабиринт. Раз за разом исследователи отбирали и копировали аниматов, которые демонстрировали лучшую координацию.

Следующее поколение наследовало от «родителей» тот же код. Его размер не менялся, но в него вносились случайные цифровые «мутации», которые могли укрепить, ослабить или дополнить связи между «мозгом» и «конечностями». В результате такого естественного отбора через 60 тысяч поколений эффективность прохождения лабиринта у аниматов возросла с 6 до 95%.


У аниматов одно преимущество перед вирусами: они умеют самостоятельно передвигаться. Вирусам приходится перемещаться от носителя к носителю на пассажирских местах в слюне и других физиологических выделениях. Но шансов повысить уровень φ у них больше. Хотя бы потому, что вирусные поколения сменяются быстрее. Оказавшись в живой клетке, вирус заставляет ее штамповать до 10 тысяч своих генетических копий в час. Правда, есть еще одно условие: чтобы интегрировать информацию до уровня сознания, нужна сложная система.

Насколько сложной системой можно назвать вирус? Посмотрим на примере нового коронавируса SARS-CoV-2 — виновника нынешней пандемии. По форме он похож на рогатую морскую мину. Снаружи – сферическая оболочка из липидов. Это жиры и жироподобные вещества, которые должны защищать его от механических, физических и химических повреждений; именно они разрушаются от мыла или санитайзера.

На оболочке — давшая ему название корона, то есть шиповидные отростки из S-белков, с помощью которых вирус проникает в клетку. Под оболочкой — молекула РНК: короткая цепочка с 29 903 нуклеотидами. (Для сравнения: в нашей ДНК их больше трех миллиардов.) Довольно простая конструкция. Но вирусу и не нужно быть сложным. Главное — стать ключевым компонентом сложной системы.


Научный блогер Филип Бушар сравнивает вирусы с сомалийскими пиратами, захватывающими на крошечной лодке огромный танкер. Но по сути вирус ближе к легковесной компьютерной программе, сжатой архиватором. Вирусу не требуется весь алгоритм управления захваченной клеткой. Достаточно короткого кода, который заставляет работать на него всю операционную систему клетки. Для этой задачи его код идеально оптимизирован в процессе эволюции.

Можно предположить, что внутри клетки вирус «оживает» ровно настолько, насколько позволяют ресурсы системы. В простой системе — он способен делиться и контролировать обменные процессы. В сложной (как наш организм) — может задействовать дополнительные опции, например, достичь такого уровня обработки информации, который по модели Тонони граничит с разумной жизнью.

Чего хотят вирусы?

Но зачем вообще вирусам это надо: жертвовать собой, помогать друг другу, совершенствовать процесс коммуникации? Какова их цель, если они не живые существа?

Как ни странно, ответ имеет прямое отношение к нам. По большому счету вирус — это ген. Первостепенная задача любого гена — максимально копировать себя, чтобы распространиться в пространстве и времени. Но в этом смысле вирус мало чем отличается от наших генов, которые тоже озабочены прежде всего сохранением и тиражированием записанной в них информации. На самом деле сходство даже больше. Мы сами немного вирусы. Примерно на 8%. Столько вирусных генов в составе нашего генома. Откуда они там взялись?


Есть вирусы, для которых внедрение в ДНК клетки-носителя является необходимой частью «жизненного цикла». Это ретровирусы, к которым относится, например, ВИЧ. Генетическая информация у ретровируса зашифрована в молекуле РНК. Внутри клетки вирус запускает процесс создания ДНК-копии этой молекулы, а затем встраивает ее в наш геном, превращая его в конвейер по сборке своих РНК на основе этого шаблона.

Но бывает так, что клетка подавляет синтез вирусных РНК. И вирус, встроившись в ее ДНК, теряет способность делиться. В таком случае вирусный геном может стать генетическим балластом, передающимся новым клеткам. Возраст самых старых ретровирусов, чьи «ископаемые останки» сохранились в нашем геноме, — от 10 до 50 млн лет.

За годы эволюции мы накопили около 98 тысяч ретровирусных элементов, которыми когда-то заражались наши предки. Сейчас они составляют 30–50 семейств, которые подразделяются почти на 200 групп и подгрупп. По подсчетам генетиков, последний ретровирус, сумевший стать частью нашей ДНК, инфицировал человеческую популяцию около 150 тысяч лет назад. Тогда наши предки пережили пандемию.

Что реликтовые вирусы делают сейчас? Одни никак себя не проявляют. Или нам так кажется. Другие работают: защищают человеческий эмбрион от инфекций; стимулируют синтез антител в ответ на появление в организме чужеродных молекул. Но в общем миссия вирусов гораздо значительнее.

Как вирусы общаются с нами

С появлением новых научных данных о влиянии микробиома на наше здоровье мы стали осознавать, что бактерии не только вредны, но и полезны, а во многих случаях жизненно необходимы. Следующим шагом, пишет в «Истории инфекций» Джошуа Ледерберг, должен стать отказ от привычки демонизировать вирусы. Они действительно часто несут нам болезнь и смерть, но цель их существования — не уничтожение жизни, а эволюция.


Как в примере с бактериофагами, гибель всех клеток организма-носителя обычно означает для вируса поражение. Гиперагрессивные штаммы, которые слишком быстро убивают или лишают подвижности своих хозяев, теряют возможность свободно распространяться и становятся тупиковыми ветвями эволюции.

Вместо них шанс размножить свои гены получают более «дружелюбные» штаммы. «По мере развития в новой среде вирусы, как правило, перестают вызывать тяжелые осложнения. Это хорошо и для организма носителя, и для самого вируса», — говорит нью-йоркский эпидемиолог Джонатан Эпстейн.

Новый коронавирус так агрессивен, потому что он лишь недавно преодолел межвидовой барьер. По словам иммунобиолога Акико Ивасаки из Йельского университета, «когда вирусы впервые попадают в человеческий организм, они не понимают, что происходит». Они — как аниматы первого поколения в виртуальном лабиринте.

Но и мы не лучше. При столкновении с неизвестным вирусом наша иммунная система тоже может выйти из-под контроля и ответить на угрозу «цитокиновым штормом» — неоправданно мощным воспалением, разрушающим собственные ткани организма. (Именно в такой гиперреакции иммунитета причина многих смертей во время пандемии испанского гриппа 1918 года.) Чтобы жить в любви и согласии с четырьмя человеческими коронавирусами, вызывающими у нас безобидную «простуду» (OC43, HKU1, NL63 и HCoV-229E), нам пришлось адаптироваться к ним, а им — к нам.

Мы оказываем друг на друга эволюционное влияние не просто как факторы среды. Наши клетки непосредственно участвуют в сборке и модификации вирусных РНК. А вирусы напрямую контактируют с генами своих носителей, внедряя свой генетический код в их клетки. Вирус — это один из способов общения наших генов с миром. Иногда этот диалог дает неожиданные результаты.

Появление плаценты — структуры, соединяющей плод с материнским организмом, — стало ключевым моментом в эволюции млекопитающих. Трудно представить, что необходимый для ее формирования белок синтицин кодируется геном, представляющим собой не что иное, как «одомашненный» ретровирус. В древности синтицин использовался вирусом для уничтожения клеток живых организмов.

История нашей жизни с вирусами рисуется бесконечной войной или гонкой вооружений, пишет антрополог Шарлотта Биве. Этот эпос строится по одной схеме: зарождение инфекции, ее распространение через глобальную сеть контактов и в итоге ее сдерживание или искоренение. Все его сюжеты связаны со смертями, страданиями и страхами. Но есть и другая история.

Например, история о том, как у нас появился нейронный ген Arc. Он необходим для синаптической пластичности — способности нервных клеток формировать и закреплять новые нервные связи. Мышь, у которой отключен этот ген, не способна к обучению и формированию долговременной памяти: отыскав сыр в лабиринте, она уже на следующий день забудет к нему дорогу.

Чтобы изучить происхождение этого гена, ученые выделили белки, которые он производит. Оказалось, что их молекулы самопроизвольно собираются в структуры, напоминающие вирусные капсиды ВИЧ: белковые оболочки, защищающие РНК вируса. Затем выделяются из нейрона в транспортных мембранных пузырьках, сливаются с другим нейроном и выпускают свое содержимое. Воспоминания передаются как вирусная инфекция.

350–400 млн лет назад в организм млекопитающего попал ретровирус, контакт с которым привел к формированию Arc. А теперь этот вирусоподобный ген помогает нашим нейронам осуществлять высшие мыслительные функции. Может, вирусы и не обретают сознание благодаря контакту с нашими клетками. Но в обратную сторону это работает. По крайней мере, сработало один раз.

Сергей Панков

Источник: www.kramola.info

Необычный космический эксперимент подтвердил, что, как и утверждает квантовая механика, реальность — это то, что выбрал сам человек. Физикам давно было известно, что квант света (фотон) будет вести себя как волна и как частица в зависимости от того, как именно ученые измеряют ее. Теперь же, успешно отразив фотон от орбитального спутника, команда исследователей подтвердила, что наблюдатель может решить этот вопрос даже тогда, когда световой квант уже прошел через «точку принятия решений». По словам ученых, подобные эксперименты с отложенным выбором в будущем позволят исследовать границы между квантовой теорией и теорией относительности.

Подобный эксперимент уже проводился в лабораторных условиях, однако на этот раз исследователи доказали, что природа фотона остается неопределенной даже если частице приходится преодолевать тысячи километров. Филипп Гранджи, физик из Института оптики в Палесо, Франция, который в прошлом как раз принимал участие в лабораторном эксперименте, утверждает, что подобные опыты отлично подходят для «осуществления квантовой физики в космосе».

Квантовый дуализм: может ли настоящее определять прошлое?

Так в чем же суть опыта? Напомним, что фотон может проявлять свойства или частицы, или волны, в зависимости от того, какой метод измерения предпочитают ученые. В конце 1970-х годов знаменитый теоретик Джон Арчибальд Уилер понял, что экспериментаторы могут отложить свой выбор до тех пор, пока фотон почти полностью не пройдет сквозь устройство, настроенное на то, чтобы подчеркнуть то или иное свойство частицы. Это показывает, что поведение фотона в данном случае не предопределено. Чтобы проверить свою гипотезу, Уилер предложил по одиночке пропускать фотоны через так называемый , подчеркивающий волновую природу света. Благодаря зеркальному «расщепителю лучей», устройство разделяет квантовую волну входящего светового потока на две части и направляет их по двум разным путям. После этого второй расщепитель рекомбинирует волны, что вызывает состояние и активирует два детектора. То, какой детектор поймает сигнал первым, зависит от разницы длин двух световых потоков — ожидаемое поведение для интерферирующих волн.

Квантовая запутанность эксперимент Вот что представляет собой простейший Интерферометр Маха — Цендера

Но что, если второй разделитель попросту удалить из системы? В таком случае свет перестает проявлять свойства волны: первый разделитель просто отправит фотон по тому или иному направлению, как обычную частицу. А поскольку эти пути пересекаются там, где раньше был второй разделитель, детекторы сработают с одинаковой вероятностью, вне зависимости от длины пройденного фотоном пути. Уилер же предлагает удалить вторую часть устройства уже после того, как первая расщепит световой поток. Это звучит странно, поскольку создает парадокс: решение, принятое в настоящем времени (убрать или не убрать второй разделитель) определяет событие прошлого (расщепляется ли фотон как волна или же проходит по одной траектории как частица). Современная квантовая теория избегает комментариев по этому поводу, предполагая, что до самого факта измерения фотон остается как частицей, так и волной.

Новый эксперимент: путешествие в космос и обратно

Новая команда исследователей во главе с Франческо Ведовато и Паоло Виллорези из Университета Падуи в Италии провела свою версию эксперимента с использованием 1,5-метрового телескопа в Лазерной обсерватории «Матера» на юге Италии. Идея была в том, чтобы отправить фотоны в космос, после чего те отразятся от спутника. Дело в том, что, как отмечает Виллорези, на таких огромных расстояниях физики не могут провести свет двумя идеально параллельными путями — расширяющиеся в пространстве лучи будут неизбежно сливаться и перекрывать друг друга. Вместо этого они пропускают фотон через интерферометр Маха-Цендера на Земле, настроенный на траектории выхода разной длины. Разница между импульсами составляет 3,5 наносекунды, а сами вылетающие частицы телескоп выпускает в небо.

Как только импульсы отразятся от спутника и вернутся на нашу планету, физики снова пропускают его через интерферометр. Устройство при этом может отметить или временной сдвиг (что означает, что импульсы перекрыли друг друга и фотон повел себя как волна), или его отсутствие (то есть фотоны ведут себя как частицы). Когда импульсы в первый раз покидают устройство, они обладают различной поляризацией. Чтобы отметить сдвиг во времени, физики сначала должны провести очень быструю электронную реполяризацию, а чтобы доказать его отсутствие, достаточно просто не проводить никаких манипуляций.

В результате все прошло так же, как и в лабораторных условиях. Когда на фотоны воздействовали ученые, кванты света вели себя как волны; когда их оставляли в покое — как частицы. Таким образом, физики сами решали природу света уже после (!) того, как тот отразится от спутника и будет на полпути обратно, о чем и рассказали на страницах журнала .

Значение и критика эксперимента

Сам по себе эксперимент пусть и не является идеально точным и строгим отображением идеи Уилера, все же заслуживает внимания. Это отличный пример работы принципов «квантовой оптики» и в будущем подобные открытия могут оказать огромное влияние на технологии связи. За примером далеко ходить не надо: уже в мае 2017 года китайские физики использовали спутник для создания квантовой связи (т. н. «квантовой запутанности») между двумя фотонами, отправленными в разные города, значительно отстоящие друг от друга.

Строго говоря, эксперимент все же не нарушает причинно-следственные связи. Следует выразиться точнее: он проливает определенный свет на границу, разделяющую квантовую теорию и теорию относительности. Фактически, физикам удалось доказать, что измерения в настоящем может значительно повлиять на прошлое — вернее, на то, как человек воспринимает это самое прошлое. По словам Жан-Франсуа Роха, физика в Высшей школе стандартизации в Париже, который в 2007 году провел аналогичный, но более точный тест, в данном случае речь идет о малоизученной области физики, в которой две фундаментальные теории вступают во взаимодействие и порождают нечто совершенно новое.

Источник: www.PopMech.ru

Шотландские ученые получили первое в мире изображение запутанных фотонов в момент неопределенности их физических состояний. Исследование опубликовано в Science Advances.

Квантовая запутанность — феномен, при котором квантовые состояния нескольких частиц оказываются взаимосвязанными вне зависимости от расстояния между ними. Это явление применяется в квантовой телепортации, криптографии и компьютерных технологиях. Эйнштейн с коллегами показали, что если квантовая механика полностью бы отражала реальность, то знания о состоянии одной части запутанной системы автоматически определяет состояние другой части. Получается, что информация в таком случае передается быстрее скорости света, что невозможно по законам классической физики.

В квантовой механике частицы одновременно являются и волнами без определенного положения в пространстве. Только когда появляется наблюдатель, системе приходится принять одно определенное квантовое состояние. Запутанные же частицы влияют на выбор состояния друг друга, даже если между ними больше тысячи километров. 

Поль-Антуан Моро (Paul-Antoine Moreau) с коллегами из Университета Глазго разделили пары запутанных фотонов, один направили сквозь жидкий кристалл, который играл роль пространственного модулятора света и изменял фазу фотонов, а другой — сразу на детектор. Камера зафиксировала изображения всех фотонов в момент, когда они претерпевали одни и те же превращения, хотя и были разделены в пространстве. То есть в момент квантовой запутанности.

Сверхчувствительная камера была способна фиксировать единичные фотоны и делать снимки только в тот момент, когда на детекторы попадала пара запутанных фотонов. Помимо четырех отдельных изображений пар, которые проходили через четыре разных фильтра, авторы работы получили одну фотографию со всеми четырьмя вариантами изменения фазы.

Результаты эксперимента подтолкнут развитие технологий получения изображений квантовых явлений, что в свою очередь, приблизит ученых к пониманию этих процессов и их дальнейшему применению.

Хотя запутанность уже используется в квантовых технологиях, изображение этого эффекта ученые получили впервые. Однако увидеть невооруженным глазом квантово-запутанные частицы уже было можно, когда физики предложили схему такого эксперимента. 

Алина Кротова

Источник: nplus1.ru

Мир вокруг велик и разнообразен – разнообразен настолько, что на одних масштабах проявляются законы, совершенно немыслимые для других. Законы политики и битломания никак не следуют из устройства атома – для их описания требуются свои «формулы» и свои принципы. Трудно представить, чтобы яблоко – макроскопический объект, поведение которого обычно следует законам ньютоновской механики, – взяло и исчезло, слилось с другим яблоком, превратившись в ананас. А между тем именно такие парадоксальные феномены проявляются на уровне элементарных частиц. Узнав, что это яблоко красное, вряд ли мы сделаем зеленым другое, находящееся где-нибудь на орбите. А между тем именно так действует явление квантовой запутанности, и именно это продемонстрировали китайские физики, с работы которых мы начали наш разговор. Попробуем разобраться, что же это такое и чем может помочь человечеству.

 

Бор, Эйнштейн и другие

 

Мир вокруг локален – иначе говоря, для того чтобы какой-то далекий объект изменился, он должен провзаимодействовать с другим объектом. При этом никакое взаимодействие не может распространяться со скоростью быстрее световой: это и делает физическую реальность локальной. Яблоко не может шлепнуть Ньютона по голове, не добравшись до нее физически. Вспышка на Солнце не может мгновенно сказаться на работе спутников: заряженным частицам придется преодолеть расстояние до Земли и провзаимодействовать с электроникой и частицами атмосферы. Но вот в квантовом мире локальность нарушается. 

 

Квантовая запутанность эксперимент

 

Самым знаменитым из парадоксов мира элементарных частиц можно назвать принцип неопределенности Гейзенберга, согласно которому невозможно точно определить величину обеих «парных» характеристик квантовой системы. Положение в пространстве (координата) или скорость и направление движения (импульс), ток или напряжение, величина электрической или магнитной компоненты поля – все это «взаимодополняющие» параметры, и чем точнее мы измерим один из них, тем менее определенным станет второй.

 

Когда-то именно принцип неопределенности вызвал непонимание Эйнштейна и его знаменитое скептическое возражение «Бог не играет в кости». Однако, похоже, играет: все известные эксперименты, косвенные и прямые наблюдения и расчеты указывают, что принцип неопределенности является следствием фундаментальной недетерменированности нашего мира. И снова мы приходим к несочетанию масштабов и уровней реальности: там, где существуем мы, все вполне определенно: если разжать пальцы и отпустить яблоко, оно упадет, притянутое гравитацией Земли. Но на уровне более глубинном причин и следствий попросту нет, а существует лишь пляска вероятностей.

 

Квантовая запутанность эксперимент

 

Парадоксальность квантово запутанного состояния частиц в том и состоит, что «удар по голове» может произойти ровно одновременно с отрывом яблока от ветки. Запутанность нелокальна, и изменение объекта в одном месте мгновенно – и без всякого очевидного взаимодействия – меняет другой объект совершенно в другом. Теоретически мы можем отнести одну из запутанных частиц хоть на другой конец Вселенной, но все равно стоит нам «коснуться» ее партнера, оставшегося на Земле, и вторая частица откликнется моментально. Самому Эйнштейну поверить в это было непросто, и спор его с Нильсом Бором и коллегами из «лагеря» квантовой механики стал одним из самых увлекательных сюжетов в современной истории науки. «Реальность определенна, – как бы говорили Эйнштейн и его сторонники, – несовершенны лишь наши модели, уравнения и инструменты». «Модели могут быть какими угодно, но сама реальность в основе нашего мира никогда не определена до конца», – возражали адепты квантовой механики. 

 

Квантовая запутанность эксперимент

 

Выступая против ее парадоксов, в 1935 г. Эйнштейн вместе с Борисом Подольским и Натаном Розеном сформулировал свой парадокс. «Ну хорошо, – рассуждали они, – допустим, узнать одновременно координату и импульс частицы невозможно. Но что, если у нас есть две частицы общего происхождения, состояния которых идентичны? Тогда мы можем измерить импульс одной, что даст нам косвенным образом сведения об импульсе другой, и координату другой, что даст знание координаты первой». Такие частицы были чисто умозрительной конструкцией, мысленным экспериментом – возможно, поэтому достойный ответ Нильсу Бору (а точнее, его последователям) удалось найти только 30 лет спустя.

 

Пожалуй, первый призрак квантово-механических парадоксов наблюдал еще Генрих Герц, заметивший, что если электроды разрядника осветить ультрафиолетом, то прохождение искры заметно облегчается. Эксперименты Столетова, Томсона и других великих физиков позволили понять, что происходит это благодаря тому, что под действием излучения вещество испускает электроны. Однако происходит это совершенно не так, как подсказывает логика; например, энергия высвободившихся электронов не будет выше, если мы увеличим интенсивность излучения, зато возрастет, если мы уменьшим его частоту. Увеличивая же эту частоту, мы придем к границе, за которой никакого фотоэффекта вещество не проявляет – этот уровень у разных веществ разный. 

 

Объяснить эти феномены удалось Эйнштейну, за что он и был удостоен Нобелевской премии. Связаны они с квантованием энергии – с тем, что она может передаваться лишь определенными «микропорциями», квантами. Каждый фотон излучения несет определенную энергию, и если ее достаточно, то электрон поглотившего его атома вылетит на свободу. Энергия фотонов обратно пропорциональна длине волны, и при достижении границы фотоэффекта ее уже недостаточно даже для сообщения электрону минимально нужной для выхода энергии. Сегодня это явление встречается нам повсеместно – в виде солнечных батарей, фотоэлементы которых работают именно на основе этого эффекта.

 

Эксперименты, интерпретации, мистика

 

В середине 1960-х Джон Белл заинтересовался проблемой нелокальности в квантовой механике. Ему удалось предложить математическую основу для вполне осуществимого эксперимента, который должен заканчиваться одним из альтернативных результатов. Первый итог «срабатывал», если принцип локальности действительно нарушается, второй – если все-таки он действует всегда и нам придется искать какую-то другую теорию для описания мира частиц. Уже в начале 1970-х такие эксперименты были поставлены Стюартом Фридманом и Джоном Клаузером, а затем – Аленом Аспэном. Упрощенно говоря, задача состояла в создании пар спутанных фотонов и измерении их спинов, одного за другим. Статистические наблюдения показали, что спины оказываются не свободными, а скоррелированными друг с другом. Такие опыты проводятся с тех пор почти непрерывно, все более точные и совершенные – и результат один и тот же. 

 

Квантовая запутанность эксперимент

 

Стоит добавить, что механизм, объясняющий квантовую запутанность, неясен до сих пор, существует лишь явление – и различные интерпретации дают свои объяснения. Так, в многомировой интерпретации квантовой механики запутанные частицы – это лишь проекции возможных состояний одной-единственной частицы в других параллельных вселенных. В транзакционной интерпретации эти частицы связывают стоячие волны времени. Для «квантовых мистиков» феномен запутанности – еще один повод рассматривать парадоксальный базис мира как способ объяснения всему непонятному, от самих элементарных частиц до человеческого сознания. Мистиков можно понять: если вдуматься, то от последствий кружится голова. 

 

Простой опыт Клаузера–Фридмана указывает на то, что локальность физического мира в масштабе элементарных частиц может нарушаться, и сама основа реальности оказывается – к ужасу Эйнштейна – расплывчатой и неопределенной. Это не значит, что взаимодействие или информация могут передаваться мгновенно, за счет запутанности. Разнесение запутанных частиц в пространстве идет с обычной скоростью, результаты измерения случайны, и пока мы не измерим одну частицу, вторая не будет содержать никакой информации о будущем результате. С точки зрения получателя второй частицы, результат совершенно случаен. Почему же все это нас интересует?

 

Квантовая запутанность эксперимент

 

Кажется, при разговоре о принципе неопределенности мы уронили яблоко? Поднимите его и бросьте об стену – разумеется, оно разобьется, ведь в макромире не работает еще один квантово-механический парадокс – туннелирование. При туннелировании частица способна преодолевать энергетический барьер более высокий, чем ее собственная энергия. Аналогия с яблоком и стеной, конечно, очень приблизительная, зато наглядная: туннельный эффект позволяет фотонам проникать внутрь отражающей среды, а электронам – «не замечать» тонкой пленки оксида алюминия, которая покрывает провода и вообще-то является диэлектриком.

 

Наша бытовая логика и законы классической физики к квантовым парадоксам не слишком-то приложимы, но они все равно работают и широко применяются в технике. Физики как будто (временно) решили: пусть мы пока не знаем до конца, как это работает, но пользу из этого можно извлечь уже сегодня. Туннельный эффект лежит в основе работы некоторых современных микрочипов – в виде туннельных диодов и транзисторов, туннельных переходов и т. д. И, конечно, нельзя забывать о сканирующих туннельных микроскопах, в которых туннелирование частиц обеспечивает наблюдение за отдельными молекулами и атомами – и даже манипуляцию ими.

 

Коммуникация, телепортация и спутник

 

В самом деле, давайте представим, что мы «квантово запутали» два яблока: если первое яблоко окажется красным, то второе обязательно зеленым, и наоборот. Мы можем отправить одно из Петербурга в Москву, сохранив их спутанное состояние, но это, казалось бы, все. Только когда в Петербурге яблоко будет измерено как красное, второе станет зеленым в Москве. До момента измерения возможности предсказать состояние яблока нет, потому что (все те же парадоксы!) самого определенного состояния они не имеют. Какой же в этом запутывании толк?.. А толк нашелся уже в 2000‑х, когда Эндрю Джордан и Александр Коротков, опираясь на идеи советских физиков, нашли способ как бы «не до конца» измерять, а значит, и фиксировать состояния частиц. 

 

Квантовая запутанность эксперимент

 

Используя «слабые квантовые измерения», можно как бы взглянуть на яблоко вполглаза, мельком, стараясь угадать его цвет. Можно проделывать такое снова и снова, фактически не посмотрев на яблоко как следует, но вполне уверенно определиться с тем, что оно, например, красное, а значит, спутанное с ним яблоко в Москве будет зеленым. Это позволяет использовать спутанные частицы снова и снова, а предложенные около 10 лет назад методы позволяют хранить их, запустив бегать по кругу неопределенно долгое время. Остается унести одну из частиц подальше – и получить исключительно полезную систему. 

 

Откровенно говоря, создается ощущение, что пользы в запутанных частицах куда больше, чем принято думать, просто наша скудная фантазия, скованная все тем же макроскопическим масштабом реальности, не позволяет придумать им настоящие применения. Впрочем, и уже существующие предложения вполне фантастичны. Так, на основе спутанных частиц можно организовать канал для квантовой телепортации, полного «считывания» квантового состояния одного объекта и «записи» его в другой, как если бы первый просто перенесся на соответствующее расстояние. Более реалистичны перспективы квантовой криптографии, алгоритмы которой обещают почти «невзламываемые» каналы связи: любое вмешательство в их работу скажется на состоянии запутанных частиц и будет тут же замечено владельцем. Тут-то на сцену и выходит китайский эксперимент QESS (Quantum Experiments at Space Scale – «Квантовые эксперименты в космическом масштабе»).

 

Компьютеры и спутники

 

Проблема в том, что на Земле трудно создать надежную связь для разнесенных на большое расстояние запутанных частиц. Даже в самом совершенном оптоволокне, по которому идет передача фотонов, сигнал постепенно затухает, а требования к нему здесь особенно высокие. Китайские ученые даже подсчитали, что если создавать запутанные фотоны и рассылать их в две стороны с плечами длиной около 600 км – по половине расстояния от центра квантовой науки в Дэлинхе до центров в Шэньчжэне и Лицзяне, – то можно рассчитывать поймать по спутанной паре примерно за 30 тыс. лет. Иное дело космос, в глубоком вакууме которого фотоны пролетают такое расстояние, не встречая каких-либо преград. И тут на сцену выходит экспериментальный спутник Mozi («Мо-Цзы»). 

 

Квантовая запутанность эксперимент

 

На космическом орбитальном аппарате установили источник (лазер и нелинейный кристалл), каждую секунду выдававший несколько миллионов пар запутанных фотонов. С дистанции от 500 до 1700 км одни эти фотоны направлялись в наземную обсерваторию в Дэлинхе на Тибете, а вторые – в Шэньчжэне и Лицзяне на юге Китая. Как и можно было ожидать, основные потери частиц происходили в нижних слоях атмосферы, однако это лишь около 10 км пути каждого пучка фотонов. В результате же канал запутанных частиц покрыл расстояние от Тибета до юга страны – около 1200 км, а в ноябре этого года была открыта новая линия, которая соединяет провинцию Аньхой на востоке с центральной провинцией Хубэй. Пока что каналу не хватает надежности, но это уже дело техники. 

 

В ближайшее время китайцы планируют запуск более совершенных спутников для организации таких каналов и обещают, что уже скоро мы увидим действующую квантовую связь между Пекином и Брюсселем, фактически с одного конца континента до другого. Очередной «невозможный» парадокс квантовой механики обещает очередной скачок в технологиях. 

Источник: naked-science.ru

Совсем недавно Лента.ру сообщила, что ученые из Женевы провели самый масштабный и точный на сегодняшний день опыт по измерению скорости взаимодействия спутанных (entangled) фотонов. Эта статья вызвала бурную реакцию читателей. Для того, чтобы пояснить представленные в статье факты было решено написать подробный комментарий на эту тему.

Квантовая запутанность

Для начала напомним несколько основных аспектов теории.

Основным объектом, которым оперирует квантовая механика, является волновая функция. Она характеризует вероятность нахождения квантового объекта в том или ином состоянии. Одним из основных отличий квантовой механики от обычной является то, что наблюдатель, проводя измерения, всегда воздействует на изучаемый объект. С точки зрения квантовой механики до измерения объект находится одновременно во всех состояниях сразу. При измерении состояния происходит схлопывание (коллапс) волновой функции, и объект переходит в некоторое конкретное состояние – теряет неопределенность.

Хорошим примером служит так называемый кот Шредингера. Представим, что у нас имеется кот, которого поместили в темный ящик. Помимо кота туда же установлено устройство, которое с вероятностью 50 процентов через минуту выпускает в ящик отравленный газ. Через минуту кота можно смело считать квантовым объектом. Он одновременно находится в двух состояниях – жив и мертв с вероятностью 50 процентов в каждом. Когда ящик откроют, то есть проведут измерение, неопределенность разрушится, и станет точно известно, что случилось с котом.

Явление запутывания означает, что характеристики частиц, входящих в состав квантовой системы, находятся в зависимости друг от друга. Чтобы понять, как работает запутывание, снова обратимся к котам и ящикам. Возьмем два идентичных ящика и в один из них поместим кота. Ящики отправим друзьям авиапочтой: один в Калининград, другой – во Владивосток. При этом получатели не знают, есть ли в их посылке кот. Ящики в данном случае являются квантовыми объектами. Можно считать, что оба ящика содержат по коту с вероятностью 50 процентов. Однако, когда один из ящиков, например, в Калининграде откроют, и волновая функция одного из объектов схлопнется к конкретному значению, то это автоматически приведет к схлопыванию второй функции. Если кота обнаружили в Калининграде, то его точно нет во Владивостоке и наоборот.

Возражения Эйнштейна

В 1935 году Альберт Эйнштейн вместе с Борисом Подольским и Натаном Розеном публикуют статью «Может ли описание мира квантовой механикой считаться завершенным?» (Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?), в которой излагают последовательную критику этой науки. В статье были сформулированы критерии, по которым следовало судить о произвольной физической теории. Под «завершенностью» авторы понимали такое состояние теории, что всякий объект из реального мира находит в ней свое отражение (при этом существование реального мира, не зависящего от наблюдателя, постулируется). Прибегнув к некоторому умозрительному эксперименту, ученые доказывали, что квантовая механика не может считаться «полной».

В основе эксперимента лежало явление квантовой запутанности, а в основе аргументации – принцип локальности, который утверждает, что событие, произошедшее в некоторой точке системы, не может одновременно сказаться на всей системе.

Возникающие противоречия Эйнштейн объяснял несовершенством аппарата квантовой механики. Он считал, что эта наука является аппроксимацией более совершенной теории, которая уже не содержит таких «несуразностей», как запутанность, которую он называл «пугающим действием на расстоянии».

Легко видеть, что аргументация не была в достаточной мере математизирована: в ней на равных использовалось явление запутанности, хорошо описываемое математически, и понятие более совершенной теории. А если нет математического аппарата, то невозможно опытным путем проверить выполняется тезис или нет.

Возражения возражениям

Сначала физики пытались подвести математический аппарат под философский аргумент Эйнштейна про более совершенную теорию. Результатом этих попыток стала теория так называемых локальных скрытых переменных. Эти таинственные переменные сообщают частицам как себя вести при измерении. Тут уместно будет снова вернуться ненадолго к котам и ящикам. Роль скрытых переменных в случае с посылками в Калининград и Владивосток играли мы, поскольку нам было известно, в каком ящике кот есть. Никакой неопределенности для нас не существовало.

Достаточно быстро ученые установили, что если дополнительные переменные есть, то их должно быть бесконечно много. В 1964 Джон Белл сформулировал так называемые локальные неравенства, которые получили название неравенств Белла. Оказалось, что в случае наличия скрытых локальных переменных квантовая система не может вести себя произвольным образом. Беллу удалось оценить степень корреляции – численную величину, которая описывает то, насколько сильно взаимосвязаны частицы для некоторых квантовых систем, в частности для запутанных фотонов. Оказалось, что эта величина не может превышать 0,71.

Достаточно быстро выяснилось, что экспериментальные данные противоречат этим неравенствам. Первые подобные тесты (тесты Белла) были выполнены Фридманом и Клаузером в 1972 году. В последовавшей за тестом работе ученые формулировали так называемую теорему о нелокальности, которая утверждает, что всякое изменение объектов входящих в квантовую систему влияет на ее общую эволюцию.

С тех пор было проведено достаточно много тестов Белла. Самыми популярными объектами для них стали фотоны. Это связано с тем, что запутать пару фотонов достаточно просто. Однако вскоре появилась критики подобных экспериментов. Экспериментаторы признают, что возможности теоретических ошибок существуют, но при этом утверждают, что в ближайшие годы стоит ожидать идеального теста Белла, который раз и навсегда решит вопрос с локальностью.

Эксперимент Белла Университета Женевы

Эксперимент, поставленный физиками из Университета Женевы, является очередным шагом на пути к идеальному эксперименту. Напомним, в чем он заключался.

Итак, в лаборатории университета создавалась пара запутанных фотонов. Эти фотоны разделяли, и посылали в две близлежащие деревни Жюсси (Jussy) и Саньи (Sagny), одна из которых находится к востоку, а другая к западу от Женевы. Город находится почти в середине отрезка, соединяющего эти два населенных пункта. Общая длина пути составляет около 18 километров.

Физики в Жюсси и Саньи фотоны получали и измеряли один из параметров – их энергию. После этого считали показатель корреляции. Его значение оказалось в пределах от 0,8 до 0,95 – больше ограничения (0,71), накладываемого неравенством Белла. Большое расстояние было необходимо для того, чтобы исключить эффект локальной запутанности – то есть предположения, что коллапс волновых функций не является одновременным, а происходит в результате того, что одна частица сообщает другой о факте измерения.

Новые результаты швейцарских ученых позволили оценить скорость взаимодействия двух спутанных фотонов. Она оказалась в десятки тысяч раз больше скорости света. Сами ученые считают, что это связано с иными свойствами пространства-времени в механике. По словам физиков, подобное сверхбыстрое взаимодействие совершенно не противоречит классической теории относительности. Напомним, что согласно этой теории, информация (взаимодействие) не может распространяться быстрее скорости света. В рамках запутанности не происходит передачи информации в классическом понимании. Таким образом, признавая существование квантовых эффектов, мы, пользуясь терминологией Эйнштейна, вынуждены заключить, что теория относительности не является «полной».

Сами авторы опыта также не скрывают того факта, что современная теория не в состоянии объяснить механизмы некоторых квантовых взаимодействий. Исследователи считают, что это связано с нашим примитивным пониманием пространства и времени. Практические работы в этом направлении, однако, ведутся. Недавно ученым сначала удалось уменьшить квантовую неопределенность, а потом обратить процесс схлопывания волновой функции

Многоликие кванты

Хочется отметить еще одну вещь. Существует несколько интерпретаций квантовой механики, некоторые из которых кажутся совершенно экзотическими. При этом математический аппарат разных механик схож – отличается то, каким образом результаты описывают окружающую действительность. При этом вопрос интерпретации – это в первую очередь философский вопрос. Наиболее сложными являются объяснения коллапса волновой функции и квантовой запутанности.

Например, существует теоретическая основа называемая формализмом фон Неймана. Немного изменив интерпретацию аксиом, можно добиться того, что явление запутанности не влечет за собой теорему Фридмана-Краузера о нелокальности. Кроме этого не сдаются люди, поддерживающие теорию скрытых локальных переменных. Например, предлагается добавить к переменным так называемое скрытое время. По словам создателей, это позволит решить многие проблемы, присущие квантовой механике, и для подобной теории не будут выполняться неравенства Белла. Непонятно, правда, не вызовет ли скрытое время появление еще более глобальных проблем.

В заключение необходимо напомнить, что со времени публикации работы Эйнштейна прошло более 70 лет, а физики до сих пор не пришли к единому мнению: есть локальность, или ее нет.

Источник: lenta.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.