Когда произошел большой взрыв согласно современной науке


Что такое «Большой взрыв», правда ли, что Вселенная родилась из крошечной точки и как люди смогли заглянуть в далекое прошлое нашего мира.

Теория «большого взрыва» – теория о расширяющейся вселенной, это одна из самых странных и захватывающих теорий, которую вообще придумало человечество. Эта история появления нашей Вселенной и всего того, что нас окружает, хотя и звучит очень просто, но при этом настолько невероятна, что даже воспринять её всерьез (я не говорю о том, чтобы осмыслить в полной мере) – уже само по себе не простая задача.

Однако, хотя Теория большого взрыва невероятна как фантастический рассказ, на данный момент – это самая “стройная” из теорий, которой мы мы располагаем для объяснения того откуда появился привычный нам мир с незыблемыми законами физики.

Как была создана Теория “большого взрыва”

В 1917 г. было обнаружено, что в спектре некоторых “туманностей”, спектральные линии явственно смещены к красному концу спектра. А надо сказать, что в ту пору, как и во времена Шарля Мессье, “туманностями”, из-за не совершенства оптических приборов, именовали любые светящиеся объекты на небосклоне, имеющие неясные очертания (т.е. “туманностью” могла быть и классическая туманность и далекая галактика и звездное скопление).


Эдвин Хаббл и красное смещение галактик

Что одним и тем же термином обозначались совсем разные объекты, выяснилось лишь десятилетие спустя, когда известный американский исследователь  Эдвин Хаббл с помощью крупнейшего на то время телескопа установил, что некоторые из туманностей являются скоплениями звезд. С тех пор туманностями астрономы называют лишь разреженные облака газа и пыли. Для объектов же, «распавшихся» на звезды и оказавшихся в действительности огромными и очень далекими от нас звездными системами, придумали термин галактики.

Постепенно к началу 30-х годов сложилось мнение, что главные вещественные составляющие Вселенной — галактики, каждая из которых в среднем состоит приблизительно из ста миллиардов звезд. Солнце вместе с Солнечной системой входит в нашу Галактику “Млечный путь”, и основная масса звезд которую мы наблюдаем на небосклоне, принадлежит той же галактике. Кроме звезд и планет Галактика содержит также значительное количество разреженных газов и космической пыли.

Когда в 1929 г. Эдвин Хаббл составил сводку всех известных к тому времени данных по «красному смещению» в спектрах галактик, результат получился неожиданным. За исключением знаменитой туманности Андромеды (галактика М31) и двух других ближайших звездных систем, в спектрах остальных галактик спектральные линии были смещены к красному концу тем сильнее, чем дальше от нас находились эти галактики.


Величина красного смещения была пропорциональной расстоянию до источника излучения — такова была строгая формулировка неожиданно открытого Хабблом закона, по-простому звучавшего так – если объект удаляется от наблюдателя, его спектр смещается в красную часть, и чем дальше объект от наблюдателя, тем сильнее происходит это смещение.

Расширяющаяся вселенная – проблема не только математики, но и философии!

Если приписать «красное смещение» хорошо известному физикам принципу Доплера (частота излучения объекта изменяется тем сильнее, чем быстрее объект наблюдения движется относительно наблюдателя), то получается, что все галактики с огромными скоростями (в сотни, тысячи и десятки тысяч километров в секунду) разлетаются прочь от Земли. Иными словами, все космические объекты не стоят на месте, а постоянно удаляются друг от друга, то есть Вселенная постоянно расширяется и делает это непрерывно.

Этот вывод казался поначалу явно ошибочным. Рушились сложившиеся веками представления о спокойной, стабильной Вселенной, а главное, был непонятен физический механизм, заставляющий галактики «разбегаться» друг от друга. К этим сомнениям научного характера примешивались и возражения чисто философские.


К началу 30-х годов широкую популярность приобрела теория конечной, замкнутой Вселенной, разработанная Альбертом Эйнштейном. При некоторых упрощающих предположениях о структуре Вселенной и использовании теории относительности можно доказать, что вследствие действия гравитации трехмерное космическое пространство должно быть замкнутым, конечным, хотя и безграничным, как поверхность шара. Это, правда, только аналогия, не больше. Если Вселенную и можно назвать шаром, то шаром четырехмерным, не поддающимся наглядному представлению. В сферическом замкнутом космосе Эйнштейна количество галактик хотя и очень велико, но все же конечно. Значит, конечна и масса такой замкнутой Вселенной, как конечны ее объем и радиус.

Итак, вселенная бесконечна, но что такое «Большой Взрыв»?

А 1922 г. советский математик Александр Александрович Фридман уточнил схему мира, нарисованную Эйнштейном. Он доказал, что замкнутая Вселенная Эйнштейна нестабильна. Она неизбежно должна расширяться: радиус конечной Вселенной должен расти, а вместе с ним будут увеличиваться и расстояния между космическими объектами. Расширяющееся пространство замкнутой Вселенной как бы разрежает находящееся внутри нее вещество. Иначе говоря, модель «расширяющейся Вселенной» была создана еще до того, как расширение всей известной системы галактик стало наблюдаемым фактом.


Но именно этот факт и оказался философски неприемлемым. В самом деле, если Вселенная — четырехмерный шар, то этот шар, вероятно, погружен в какое-то четырехмерное пространство. Но «четвертое измерение» долгое время ассоциировалось со всякой мистикой. Оно было излюбленной темой всевозможных спиритов, пытавшихся с помощью «четвертого измерения» объяснить разные «чудеса». Реальная же многовековая практика человечества совершалась и совершается в трехмерном пространстве. Отсюда и сложилось убеждение, что реально лишь пространство трех измерений, а многомерные пространства — не более чем удобная в ряде случаев математическая абстракция.

Психологически очень трудно было отказаться не только от бесконечной в евклидовом пространстве Вселенной, но и от ее вечности. Такую привычную для сознания вечность теория расширяющейся Вселенной явно не гарантировала. Если экстраполировать процесс расширения в прошлое, легко подсчитать, что около 10 млрд. лет назад радиус Вселенной был близок к нулю. Иначе говоря, «всего» 14 млрд. лет назад Вселенная представляла собой очень небольшой по объему, но зато сверхплотный сгусток вещества и энергии.

Надо заметить, что «возраст» Вселенной, т. е. промежуток времени от начала ее расширения до наших дней, по ряду причин определен не вполне точно. Возможно, этот возраст измеряется 18-20 миллиардами лет (оценка американского астронома Сэндиджа) или даже большим сроком. Важно другое: когда-то Вселенная была крошечной и сверхплотной.


Внезапный (и по неизвестным причинам) взрыв, а точнее то, что называют «Большой Взрыв» этого сгустка и положил начало расширению Вселенной. Если же расширение Вселенной будет длиться вечно, миру грозит «растворение в ничто».

Все это казалось явно абсурдным, противоречащим материалистическим представлениям о мире. Не случайно буржуазные идеалисты тотчас ухватились за экстравагантную теорию расширяющейся Вселенной и объявили ее «первовзрыв» актом божественного творения мира.

С тех пор на протяжении трех десятилетий предпринимались попытки объяснить «красное смещение» каким-нибудь физическим процессом, не связанным с принципом Доплера, а значит, и с разбеганием галактик. Ныне большинство астрофизиков считают, что «красное смещение» в спектрах галактик — чисто доплеровский эффект, а следовательно, разбегание галактик — твердо установленный факт.

Строго говоря, в переводе с языка философии и науки на обычный, это звучало так – да, вселенная постоянно расширяется. И да, когда-то очень давно, она была значительно меньше, плотнее и (с сохранением всего того же, что и сейчас объема атомов, молекул, материи и энергии) сжата в непостижимо плотный с нашей точки зрения “клубочек”, который однажды был “развязан” неким не поддающимся осмыслению и описанию событием, которое мы называем “большой взрыв”.

Что было после «Большого взрыва»? А что было «до» него..?


Как мы можем говорить про какой-то “большой взрыв”, если возраст Вселенной по самым скромным подсчетам составляет 14 миллиардов лет, а возраст Земли – “всего” 4,5 миллиарда? Как мы можем заглянуть так далеко в прошлое и о чем-то уверенно рассуждать?  Как эволюционировала материя от таинственного «первовзрыва» до состояния, в общих чертах близкого к современному? Можно ли достаточно наглядно представить себе первоначальное сверхплотное состояние Вселенной? Насколько близок к нулю был тогда ее объем и что заключалось внутри этого объема?

Сплошные вопросы! И, к сожалению, у нас (по названным выше причинам, включая возраст Земли) нет никакой возможности “отмотать” время назад и увидеть – как же происходил “большой взрыв”, и что было до него.

Однако, благодаря расчетам и наблюдениям, мы можем приблизительно восстановить хронологию событий.

Представьте себе нашу Вселенную, только … сжатую до размеров одной точки. Всё вещество, что есть сейчас и из которого сделаны планеты, звезды, пылевые облака – вот всё это вещество, только сжатое в точку. Невероятное зрелище, как говорит наука, “высокооднородная среда с необычайно высокой плотностью энергии, температурой и давлением”. С современной точки зрения, такой объем вещества в одной точке, должен был находится в сингулярности, то есть, по простому, “не существовать” с точки зрения обычных законов физики. Но в таком деле, как рождение Вселенной, законы физики отдыхают! Физика, впрочем, даже не пытается этот момент объяснить – на этом этапе царят не физические законы, а практически “волшебство” нам пока недоступное и непостижимое.

И вдруг вся эта “сверхточка” “взрывается” и начинает “разворачиваться”, увеличиваясь в объеме, разлетаясь в высь и в ширь, разреживаясь и … остывая.


  • То что произошло с момента и до 10-43  секунд после Большого взрыва, физика также не объясняет (не потому что нет объяснения, то есть происходит некая “магия”, а потому, что наша наука этого пока объяснить не может – в современных условиях невозможно достичь того состояния плотности и температуры вещества). Температура и плотность вещества Вселенной теперь близки к планковским значениям. По окончании этого этапа происходит великое разделение – гравитационное излучение отделилось от вещества.
  • Приблизительно через 10-42 секунд после момента Большого взрыва фазовый переход вызвал экспоненциальное расширение Вселенной. Данный период получил название Космической инфляции и завершился через 10-36 секунд после момента Большого взрыва. После окончания этого периода строительный материал Вселенной представлял собой кварк-глюонную плазму. По прошествии некоторого времени температура упала до значений, при которых стал возможен следующий фазовый переход, называемый бариогенезисом. На этом этапе кварки и глюоны объединились в барионы, такие как протоны и нейтроны. При этом одновременно происходило асимметричное образование как материи, которая превалировала, так и антиматерии, которые взаимно аннигилировали, превращаясь в электромагнитное излучение.

  • Дальнейшее падение температуры привело к следующему фазовому переходу — образованию физических сил и элементарных частиц в их современной форме. После чего наступила эпоха нуклеосинтеза, при которой протоны, объединяясь с нейтронами, образовали ядра дейтерия, гелия-4 и ещё нескольких лёгких изотопов. После дальнейшего падения температуры и расширения Вселенной наступил следующий переходный момент, при котором гравитация стала доминирующей силой. Через 380 тысяч лет после Большого взрыва температура снизилась настолько, что стало возможным существование атомов водорода. После эры рекомбинации материя стала прозрачной для излучения, которое, свободно распространяясь в пространстве, дошло до нас в виде реликтового излучения.

Дальше… дальше уже ничего такого не происходило. Работали привычные нам законы физики, Вселенная расширялась и дальше, возникали звезды и планеты.

И вот тут самое главное:

Необходимо отметить, что на всех стадиях Большого взрыва выполняется так называемый космологический принцип — Вселенная в любой данный момент времени выглядит одинаково для наблюдателя в любой точке пространства. В частности, в любой данный момент во всех точках пространства плотность материи в среднем одна и та же.


То есть Большой взрыв не похож на некий взрыв динамитной шашки в пустом пространстве, когда вещество начинает расширяться из небольшого объёма в окружающую пустоту, образуя сферическое газовое облако с чётким фронтом расширения, за пределами которого — вакуум. Это популярное представление ошибочно.

На самом деле Большой взрыв происходил во всех точках пространства одновременно и синхронно, нельзя указать на какую-либо точку как на центр взрыва, в пространстве нет крупномасштабных градиентов давления и плотности и нет никаких границ или фронтов, отделяющих расширяющееся вещество от пустоты.

Большой взрыв следует представлять как расширение самого пространства вместе с содержащейся в нём материей, которая в среднем в каждой данной точке покоится.

До каких пор будет продолжаться расширение Вселенной?

Как вы могли заметить, сама теория “Большого взрыва”, далеко не всё объясняет. И хотя на самом деле, проблема не в теории как таковой (мы можем объяснить что-то только с точки зрения законов физики, однако ясно, что в момент “рождения вселенной”, т.е. “взрыва”, законы физики просто…. не работали!), в ней все же есть ряд белых пятен, которые ещё предстоит разобрать ученым ближайшего будущего.

К счастью, основные положения теория “Большого взрыва” обоснованы надёжными экспериментальными данными, а современный уровень теоретической физики позволяет вполне достоверно описать эволюцию такой системы во времени, за исключением самого начального этапа — порядка сотой доли секунды от «начала мира» – то есть, хотя мы не можем точно описать, что было в самом-самом начале, мы вполне уверенно можем прогнозировать, как дела будут развиваться дальше.


Так вот, согласно теории Большого взрыва, дальнейшая эволюция Вселенной зависит от средней плотности вещества в современной Вселенной. Если плотность не превосходит некоторого критического значения, Вселенная будет расширяться вечно, если же плотность больше критической, то процесс расширения когда-нибудь остановится и начнётся обратная фаза сжатия, возвращающая к исходному сингулярному состоянию.

Современные наблюдательные данные показывают, что средняя плотность в пределах экспериментальной погрешности (доли процента) равна критической.

Источник: starcatalog.ru

«Биг бэнг»

Так звучит по-английски словосочетание «Большой Взрыв». Впервые этот термин использовал в одной из своих лекций выдающийся астроном и писатель Фред Хойл, обозначив им момент начала расширения Вселенной.

Зная скорости «разбегания» галактик, не так уж сложно определить момент, когда оно началось. По самым точным оценкам, это случилось примерно 13,73 млрд лет назад.

Именно тогда материя, из которой впоследствии возникли все объекты Вселенной, получила ту скорость, с которой она и сегодня продолжает разлетаться.

А до того вся материя находилась в чрезвычайно малом объеме и в таком состоянии, о котором современные физики могут только строить догадки. Ученые называют его сингулярностью — особым состоянием, для которого характерны бесконечно большая плотность и температура вещества.

Существование сингулярности было математически строго доказано еще в 1967 г. Стивеном Хокингом. Однако главная проблема в другом — никакие данные о том, что произошло после Большого Взрыва, не могут нам дать никакой информации о том, что происходило до этого.

От атома до галактики

Спустя всего несколько часов после того как закончилась первоначальная «суматоха» Большого Взрыва, уже существовали ядра гелия и других элементов — например, лития.

Затем около миллиона лет Вселенная продолжала просто расширяться и ничего существенного не происходило.

Наконец температура понизилась до нескольких тысяч градусов, энергия движения электронов и ядер стала недостаточной для того, чтобы преодолевать силу электромагнитного притяжения, и они начали объединяться в атомы.

Вселенная в целом продолжала бы расширяться и остывать, но в областях, где плотность была выше средней, расширение тормозилось гравитационным притяжением избыточного вещества.

Под действием этого притяжения расширение не просто тормозилось, а сменялось сжатием. По мере сжатия тяготение окружающего вещества придавало этим областям едва заметное вращение. Чем меньший объем занимало вещество, тем быстрее становилось вращение.

Наконец, когда размеры такой области становились достаточно небольшими, ее вращение ускорялось настолько, что могло уравновесить силы гравитации. Так образовались вращающиеся спиральные галактики.

Другие плотные области Вселенной, не получившие «толчка извне», превратились в эллиптические галактики. В таких областях гравитации противодействует обращение отдельных частей галактики вокруг ее центра, тогда как звездная система в целом не вращается.

Первоначальные галактики представляли собой скопления водородно-гелиевого газа, которые со временем стали распадаться на небольшие облака — глобулы.

Эти облака, в свою очередь, сжимались под действием собственного тяготения. При сжатии атомы в них сталкивались, и температура газа росла, пока не достигала величины, необходимой для начала реакций ядерного синтеза, похожих на управляемый взрыв термоядерной бомбы. Так рождалось первое поколение звезд.

Рождение пространства и времени

«Большой Взрыв» — всего лишь образное выражение, не описывающее истинную картину того, что произошло в момент возникновения Вселенной.

Взрыв в физическом смысле слова — это резкое повышение давления и температуры газа, распространяющееся в окружающей среде.

Ничего подобного взрыву уже существовавшей «глыбы» вещества в вакууме тогда не происходило. Прежде всего потому, что пространства вне Вселенной не существует.

Большой Взрыв следует рассматривать как такое событие, в результате которого возникло не только вещество, но и пространство.

Научная картина «сотворения мира» оказалась глубже той, что описана в Библии, так как она изображает не только сотворение материи, но и пространства и даже… времени.

Поэтому Большой Взрыв — это не грандиозное событие, которое произошло во Вселенной, это самозарождение Вселенной — целиком и буквально «из ничего».

Многие специалисты-космологи убеждены, что времени до Большого Взрыва не существовало, поэтому нет смысла говорить о том, что было «до того».

Один из главных уроков новой физики заключается в том, что пространство и время существуют не сами по себе, а составляют неотъемлемую часть физического мира. И если Большой Взрыв ознаменовал рождение физического мира, то пространство и время возникли как раз в момент Большого Взрыва.

Между прочим, идея отождествления момента рождения Вселенной с началом времени далеко не нова. Еще в 4 в. н. э. Святой Августин, крупнейший христианский философ и богослов, писал: «Мир сотворен с временем, но не во времени».

После сингулярности

Обычную физику невозможно использовать для описания состояния сингулярности. Описанию поддается лишь период, наступивший через 10-40 с после начала Большого Взрыва, когда средняя температура и плотность вещества начали постепенно снижаться и возникла гравитация.

В этот момент ранняя Вселенная представляла собой однородную среду с необычайно высокой плотностью энергии, температурой и давлением.

В результате дальнейшего расширения и охлаждения во Вселенной произошли явления, отдаленно напоминающие конденсацию жидкости из газа, однако речь идет не об атомах, которых еще не существовало, а о мельчайших элементарных частицах — кварках и глюонах, которые образовали нечто вроде раскаленной плазмы.

На следующем этапе кварки и глюоны объединились, образовав более крупные протоны и нейтроны. Одновременно происходило образование и вещества, и антивещества, которые взаимодействовали, превращаясь в излучение.

Дальнейшее снижение температуры Вселенной привело к образованию элементарных частиц в их современной форме. Затем наступила эпоха синтеза атомных ядер, при которой протоны, объединяясь с нейтронами, образовали ядра дейтерия и гелия.

Постепенно гравитация стала главной силой во Вселенной а через 380 тыс. лет после Большого Взрыва температура снизилась настолько, что стало возможным существование атомов водорода.

С этого момента материя стала прозрачной для излучения, которое, свободно распространяясь в пространстве, существует и сегодня в виде реликтового излучения.

До сих пор остается немало вопросов, на которые теория Большого Взрыва не дает ответа, однако ее основные положения подтверждаются экспериментальными данными.

Рождение материи

«Странное» инфляционное состояние очень неустойчиво и вскоре сменяется состоянием обычной горячей материи с положительным давлением.

Тут гравитация вступает в свои права, и «отталкивание» сменяется «притяжением». Это происходит потому, что за микроскопическую долю секунды Вселенная расширилась в миллион миллионов миллионов миллионов миллионов раз, и все неоднородности — вспомните надуваемый воздушный шарик! — просто «разгладились».

Через секунду после Большого Взрыва температура Вселенной упала приблизительно до 10 млрд градусов Цельсия — это в тысячу раз больше, чем в центре Солнца. В то время в ней присутствовали главным образом фотоны, электроны, нейтрино и их античастицы, а также значительно меньшее количество протонов и нейтронов.

Все эти частицы обладали настолько высокой энергией, что, сталкиваясь, порождали множество различных пар частица-античастица. Некоторые из таких вновь возникших частиц, сталкиваясь со своими близнецами-античастицами, взаимно уничтожались (аннигилировали), выделяя огромную энергию.

В конечном счете, большая часть электронов и позитронов аннигилировали друг с другом, произведя большое количество фотонов и оставив относительно мало электронов.

Приблизительно через 100 с после Большого Взрыва Вселенная остыла до одного миллиарда градусов — температуры недр самых горячих звезд. В этих условиях протоны и нейтроны начали сливаться, образуя ядра дейтерия (тяжелого водорода), которые содержат один протон и один нейтрон.

Продолжая присоединять протоны и нейтроны, ядра дейтерия могли превратиться в ядра гелия, состоящие из пары протонов и пары нейтронов. В общей сложности около четверти всех протонов и нейтронов объединились в ядра гелия, тогда как остальные протоны стали ядрами обычных атомов водорода.

Эйнштейн удивился

Конечно, пример с надувным шариком — всего лишь аналогия с реально существующим трехмерным пространством. Подобных областей нет во Вселенной. Однако и трехмерное пространство способно «растягиваться» — это вытекает из общей теории относительности Эйнштейна.

Решая уравнения, описывающие в самом общем виде поведение материи во Вселенной (задолго до открытий Э. Хаббла), сам создатель теории обнаружил, что Вселенная может оказаться нестабильной — постоянно меняющейся.

Удивившись и не поверив в такую возможность, Эйнштейн ввел в свои уравнения произвольный член, который как бы обеспечивал «устойчивость» мироздания — на бумаге, а не в действительности.

А русский астрофизик и математик А. Фридман спустя несколько лет получил решение без этой величины и пришел к выводу, что Вселенная просто обязана либо расширяться, либо сжиматься. Что и происходит на самом деле.

Однако хоть мы и видим, как далекие галактики «разбегаются», это вовсе не означает, что мы находимся в центре расширяющейся Вселенной; с тем же успехом любую точку на поверхности раздувающегося воздушного шара можно считать ее центром. Таким образом, Вселенная просто увеличивается в размере.

Где находится «точка взрыва»?

Для большей наглядности закон Хаббла можно пояснить следующим образом.

Когда-то давно Вселенная образовалась в результате Большого Взрыва. В момент взрыва различные частицы материи (осколки) получили различные скорости. Те из них, которые получили большие скорости, к настоящему моменту успели улететь дальше, чем те, которые получили меньшие скорости.

Если провести расчет, то окажется, что зависимость расстояния от скорости — линейная. Кроме того, эта зависимость одна и та же для всех точек пространства, то есть по наблюдениям за разлетающимися осколками невозможно обнаружить «точку взрыва»: с «точки зрения» каждого осколка, именно он находится в центре.

Однако следует помнить, что расширение Вселенной невозможно описать с помощью классической механики. Для этого и была создана теория относительности.

Источник: vunderkind.info

Эйнштейн и Вселенная

Восприятие окружающего мира людьми всегда было неоднозначным. Кто-то до сих пор не верит в существование огромной Вселенной вокруг нас, кто-то считает Землю плоской. До научного прорыва в 20 веке существовала всего пара версий происхождения мира. Приверженцы религиозных взглядов верили в божественное вмешательство и творение высшего разума, несогласных иногда сжигали. Была и другая сторона, которая верила, что окружающий нас мир, равно как и Вселенная, бесконечен.

Для многих людей все изменилось тогда, когда в 1917 году с докладом выступил Альберт Эйнштейн, представив широкой публике труд своей жизни – Общую теорию относительности. Гений 20-го века связал пространство-время с материей космоса с помощью выведенных им уравнений. В результате этого получалось, что Вселенная конечна, неизменна в размерах и имеет форму правильного цилиндра.

Альберт Эйнштейн фото величайший гений науки и человечества

На заре технического прорыва опровергнуть слова Эйнштейна не мог никто, поскольку его теория была слишком сложна даже для величайших умов начала 20 века. Поскольку других вариантов не было, модель цилиндрической стационарной Вселенной была принята научным сообществом как общепринятая модель нашего мира. Впрочем, прожить она смогла всего несколько лет. После того, как физики смогли оправиться от научных трудов Эйнштейна и начали разбирать их по полочкам, параллельно с этим начали вноситься коррективы в теорию относительности и конкретные расчеты немецкого ученого.

В 1922 году в журнале «Известия физики» внезапно выходит статья российского математика Александра Фридмана, в которой тот заявляет, что Эйнштейн ошибся и наша Вселенная не стационарна. Фридман объясняет, что утверждения немецкого ученого относительно неизменности радиуса кривизны пространства – заблуждения, на самом деле радиус изменяется относительно времени. Соответственно, Вселенная должна расширяться.

Более того, здесь же Фридман привел свои предположения относительно того, как именно может расширяться Вселенная. Всего модели было три: пульсирующая Вселенная (предположение того, что Вселенная расширяется и сжимается с некоей периодичностью во времени); расширяющаяся Вселенная из массы и третья модель – расширение из точки. Поскольку в те времена других моделей не существовало, за исключением божественного вмешательства, то физики быстро взяли на заметку все три модели Фридмана и начали разрабатывать их в своем направлении.

Александр Александрович Фридман выдающийся физик математик и создатель теории большого взрыва

Работа российского математика слегка уязвила Эйнштейна, и в том же году он публикует статью, в которой высказывает свои замечания относительно трудов Фридмана. В ней немецкий физик пытается доказать верность своих расчетов. Вышло это довольно неубедительно, и когда боль от удара по самооценке немного спала, Эйнштейн выпустил еще одну заметку в журнале «Известия физики», в которой сказал:

«В предыдущей заметке я подверг критике названную выше работу. Однако моя критика, как я убедился из письма Фридмана, сообщенного мне г-ном Крутковым, основывалась на ошибке в вычислениях. Я считаю результаты Фридмана правильными и проливающими новый свет».

Ученым пришлось признать, что все три модели Фридмана появления и существования нашей Вселенной абсолютно логичны и имеют право на жизнь. Все три объясняются понятными математическими расчетами и не оставляют вопросов. Кроме одного: с чего бы Вселенной начинать расширяться?

Теория, которая изменила мир

Заявления Эйнштейна и Фридмана привели к тому, что ученое сообщество всерьез задалось вопросом происхождения Вселенной. Благодаря общей теории относительности появился шанс пролить свет на наше прошлое, и физики не преминули этим воспользоваться. Одним из ученых, попытавшимся представить модель нашего мира, стал астрофизик Жорж Леметр из Бельгии. Примечателен тот факт, что Леметр был католическим священником, но при этом занимался математикой и физикой, что для нашего времени настоящий нонсенс.

Жорж Леметр бельгийский ученый физик католик епископ священник теория большого взрыва

Жорж Леметр заинтересовался уравнениями Эйнштейна, и с их помощью смог вычислить, что наша Вселенная появилась в результате распада некоей суперчастицы, которая находилась вне пространства и времени до начала деления, которое можно фактически считать взрывом. При этом физики отмечают, что Леметр первым пролил свет на рождение Вселенной.

Теория взорвавшегося суператома устроила не только ученых, но также и духовенство, которое было очень недовольно современными научными открытиями, под которые приходилось придумать новые толкования Библии. Большой взрыв не вступал в существенные противоречия с религией, возможно на это повлияло воспитание самого Леметра, который посвятил свою жизнь не только науке, но и служению Богу.

22 ноября 1951 года Папа Римский Пий XII сделал заявление, что Теория большого взрыва не конфликтует с Библией и католическими догмами о возникновении мира. Православные священнослужители также заявили, что относятся к этой теории положительно. Эту теорию относительно нейтрально восприняли и приверженцы других религий, некоторые из них даже сказали, что в их священных писаниях есть упоминания о Большом Взрыве.

Впрочем, несмотря на то, что Теория Большого Взрыва на данный момент является общепринятой космологической моделью, она завела многих ученых в тупик. С одной стороны, взрыв суперчастицы отлично вписывался в логику современной физики, но с другой в результате такого взрыва могли образоваться, в основном, лишь тяжелые металлы, в частности железо. Но, как оказалось, Вселенная состоит, в основном, из сверхлегких газов – водорода и гелия. Что-то не сходилось, поэтому физики продолжили работу над теорией происхождения мира.

Изначально термина «Большой взрыв» не существовало. Леметр и другие физики предлагали лишь скучное название «динамическая эволюционирующая модель», что вызывало зевоту у студентов. Лишь в 1949 году на одной из своих лекций британский астроном и космолог Фрейд Хойл произнес:

«Эта теория основана на предположении, что Вселенная возникла в процессе одного-единственного мощного взрыва и потому существует лишь конечное время… Эта идея Большого взрыва кажется мне совершенно неудовлетворительной».

С тех пор этот термин стал широко использоваться в научных кругах и представлении широкой общественности об устройстве Вселенной.

Откуда появились водород и гелий

Наличие легких элементов поставило физиков в тупик, и многие приверженцы Теории Большого Взрыва задались целью найти их источник. На протяжении многих лет им не удавалось добиться особых успехов, пока в 1948 году гениальный ученый Георгий Гамов из Ленинграда наконец не смог установить этот источник. Гамов был одним из учеников Фридмана, поэтому с удовольствием взялся за разработку теории своего преподавателя.

Георгий Антонович Гамов советский ученый физик популяризатор науки

Гамов постарался представить жизнь Вселенной в обратном направлении, и отмотал время до того момента, когда она только начала расширяться. К тому времени, как известно, человечество уже открыло принципы термоядерного синтеза, поэтому теория Фридмана-Леметра получила право на жизнь. Когда Вселенная была совсем маленькой, она была очень горячей, согласно законам физики.

По мнению Гамова, спустя всего секунду после Большого взрыва, пространство новой Вселенной заполнили элементарные частицы, которые начали взаимодействовать друг с другом. В результате этого начался термоядерный синтез гелия, который смог рассчитать для Гамова математик из Одессы Ральф Ашер Альфер. Согласно подсчетам Альфера, уже спустя пять минут после Большого взрыва Вселенная была заполнена гелием на столько, что даже убежденным противникам Теории Большого Взрыва придется смириться и принять эту модель, как основную в космологии. Своими исследованиями Гамов не только открыл новые пути изучения Вселенной, но также воскресил теорию Леметра.

Несмотря на стереотипы об ученых, им нельзя отказать в романтизме. Свои исследования относительно теории Супергорячей Вселенной в момент Большого взрыва Гамов опубликовал в 1948 году в работе «Происхождение химических элементов». В качестве коллег-помощников он указал не только Ральфа Ашера Альфера, но и Ханса Бете – американского астрофизика и будущего лауреата Нобелевской премии. На обложке книги получилось: Альфер, Бете, Гамов. Ничего не напоминает?

Впрочем, несмотря на то, что труды Леметра получили вторую жизнь, физики до сих пор не могли ответить на самый волнующий вопрос: а что было до Большого Взрыва?

Попытки воскресить стационарную Вселенную Эйнштейна

Не все ученые были согласны с теорией Фридмана-Леметра, но, несмотря на это, им приходилось преподавать в университетах общепринятую космологическую модель. Например астроном Фред Хойл, который сам же и предложил термин «Большой Взрыв», на самом деле считал, что никакого взрыва не было, и посвятил свою жизнь попыткам это доказать.
Хойл стал одним из тех ученых, которые в наше время предлагают альтернативные взгляд на современный мир. Большинство физиков довольно прохладно относятся к заявлениям подобных людей, но это ничуть их не смущает.

Фред Хойл американский астрофизик ученый и сторонник альтернативной модели вселенной

Чтобы посрамить Гамова и его обоснования Теории Большого Взрыва, Хойл вместе с единомышленниками решили разработать свою модель происхождения Вселенной. За ее основу они взяли предложения Эйнштейна о том, что Вселенная стационарна, и внесли некоторые коррективы, предлагающие альтернативные причины расширения Вселенной.

Если приверженцы теории Леметра-Фридмана считали, что Вселенная возникла из одной единственной сверхплотной точки с бесконечно малым радиусом, то Хойл предположил, что материя образуется постоянно из точек, которые находятся между удаляющимися друг от друга галактиками. В первом случае, из одной частицы образовалась вся Вселенная, с ее бесконечным числом звезд и галактик. В другом случае, одна точка дает вещества столько, сколько достаточно для производства всего одной галактики.

Несостоятельность теории Хойла в том, что он так и не смог объяснить, откуда берется то самое вещество, которое продолжает создавать галактики, в которых находятся сотни миллиардов звезд. Фактически Фред Хойл предлагал всем поверить, что структура Вселенной возникает из ниоткуда. Несмотря на то, что многие физики пытались найти решение теории Хойла, никому так и не удалось этого сделать, и спустя пару десятилетий это предложение утратило свою актуальность.

Вопросы без ответов

На самом деле Теория Большого Взрыва также не дает нам ответы на многие вопросы. Например, в уме обычного человека не может уложиться тот факт, что вся окружающая нас материя некогда была сжата в одну точку сингулярности, которая по своим размерам намного меньше атома. И как так получилось, что эта суперчастица нагрелась до такой степени, что запустилась реакция взрыва.

До середины 20 века теория расширяющейся Вселенной так и не была подтверждена экспериментально, поэтому не имела широкого распространения в учебных заведениях. Все изменилось в 1964 году, когда двое американских астрофизиков — Арно Пензиас и Роберт Вильсон – не решили заняться исследованием радиосигналов звездного неба.

Арно Пензиас один из открывателей реликтового излучения нобелевская премия

Сканируя излучение небесных тел, а именно Кассиопеи А (один из мощнейших источников радиоизлучения на звездном небе) ученые заметили какой-то посторонний шум, который постоянно мешал зафиксировать точные данные по излучению. Куда бы они ни направили свою антенну, в какое бы время суток они не начинали свои исследования – этот характерный и постоянный шум всегда преследовал их. Разозлившись до определенной степени, Пензиас и Вильсон решили изучить источник этого шума и неожиданно совершили открытие, которое изменило мир. Они открыли реликтовое излучение, которое является отголоском того самого Большого Взрыва.

Наша Вселенная остывает гораздо медленнее, чем чашка горячего чая, и реликтовое излучение свидетельствует о том, что некогда окружающая нас материя была очень горяча, и теперь охлаждается по мере расширения Вселенной. Таким образом, все теории, связанные с холодной Вселенной, остались за бортом, и на вооружение была окончательно принята Теория Большого Взрыва.

В своих трудах Георгий Гамов предполагал, что в космосе удастся обнаружить фотоны, которые существуют с момента Большого Взрыва, нужно лишь более совершенное техническое оснащение. Реликтовое излучение подтверждало все его предположения относительно существования Вселенной. Также с его помощью удалось установить, что возраст нашей Вселенной составляет примерно 14 миллиардов лет.

Карта реликтового излучения телескоп планк теория большого взрыва

Как и всегда, при практическом доказательстве какой-либо теории, сразу возникает множество альтернативных мнений. Некоторые физики с насмешкой восприняли открытие реликтового излучения как свидетельство Большого Взрыва. Несмотря на то, что Пензиас и Вильсон стали лауреатами Нобелевской премии за свое историческое открытие, появилось множество несогласных с их исследованиями.

Основными аргументами в пользу несостоятельности расширения Вселенной стали несовпадения и логические ошибки. Например, взрыв равноускорил все галактики в космосе, однако вместо того, чтобы удаляться от нас, галактика Андромеды медленно, но верно приближается к Млечному Пути. Ученые предполагают, что эти две галактики столкнутся между собой всего через каких-то 4 миллиарда лет. К сожалению, человечество пока слишком молодо, чтобы ответить на этот и другие вопросы.

Источник: voka.me


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.