Кеплер установил что


Иоганн КЕПЛЕР

Johannes Kepler, 1571–1630

Немецкий астроном. Родился в Вюртембурге. Начав с изучения богословия в Тюбингенской академии (позднее университет), увлекся математикой и астрономией и вскоре получил приглашение на должность преподавателя математики в гимназии австрийского города Грац. Там он снискал себе репутацию блестящего астролога благодаря ряду сбывшихся метеорологических прогнозов на 1595 год. Начиная с 1598 года Кеплер и другие протестанты стали подвергаться в католическом Граце жестоким религиозным гонениям, и в 1600 году ученый по приглашению датского астронома Тихо Браге переехал в Прагу. Работы Кеплера основывались на наблюдениях, сделанных Тихо Браге. Его дальнейшая жизнь сложилась трагично. Он жил в бедности и умер от лихорадки по дороге в Австрию, куда он отправился в надежде получить причитающееся ему жалованье.


Законы Кеплера

Чем ближе планеты к Солнцу, тем больше линейная и угловая скорости их обращения вокруг Солнца. Период обращения планет вокруг Солнца по отношению к звездам называется звездным периодом.

Такой период обращения Земли относительно звезд называется звездным годом. Наименьший звездный период обращения у планеты Меркурий. У Марса он составляет около 2 лет, у Юпитера — 12 лет и, все возрастая с удалением от Солнца, у Плутона доходит до 250 лет.

Заслуга открытия законов движения планет принадлежит выдающемуся австрийскому ученому Кеплеру. В начале XVII в. Кеплер установил три закона движения планет. Они названы законами Кеплера.

Первый закон Кеплера: каждая планета обращается вокруг Солнца по эллипсу, в одном аз фокусов которого находится Солнце.

Эллипсом называется плоская замкнутая кривая, имеющая такое свойство, что сумма расстояний каждой ее точки от двух точек, называемых фокусами, остается постоянной.

Степень вытянутости эллипса характеризуется величиной его эксцентриситета. Эксцентриситет равен отношению расстояния фокуса от центра к длине большой полуоси. В пределе при совпадении фокусов и центра эксцентриситет равен нулю и эллипс превращается в окружность.


Ближайшая к Солнцу точка орбиты называется перигелием, а самая далекая от него точка называется афелием. Орбиты планет — эллипсы, мало отличающиеся от окружностей, их эксцентриситеты малы. Например, эксцентриситет орбиты Земли е = 0,017.

Эксцентриситеты орбит у комет приближаются к единице. При е=1 второй фокус эллипса удаляется (в пределе) в бесконечность, так что эллипс становится разомкнутой кривой, называемой параболой. Ее ветви в бесконечности стремятся стать параллельными. При е>1 орбита является гиперболой. Двигаясь по параболе или гиперболе, тело только однажды огибает Солнце и навсегда удаляется от него.

Кеплер открыл свои законы, изучая периодическое обращение планет вокруг Солнца. Ньютон, исходя из законов Кеплера, открыл закон всемирного тяготения. При этом он нашел, что под действием взаимного тяготения тела могут двигаться друг относительно друга по эллипсу, в частности по кругу, по параболе и по гиперболе. Выяснилось, что некоторые кометы огибают Солнце, двигаясь по параболе или по гиперболе. В таком случае они уходят из солнечной системы и уже не являются ее членами.


Ньютон установил, что вид орбиты, которую описывает тело, зависит от его скорости. При некоторой скорости тело описывает окружность около притягивающего центра. Такую скорость, которую называют первой космической скоростью, и придают телам, запускаемым в качестве искусственных спутников Земли (направляя эту скорость горизонтально). Первая космическая скорость составляет около 8 км/с. Если телу сообщить скорость в корень из двух раз большую, то это будет вторая космическая скорость, около 11 км/с, при которой тело навсегда удалится от Земли и может стать спутником Солнца. В этом случае движение тела будет происходить по параболе относительно Земли. При еще большей скорости относительно Земли тело полетит по гиперболе.

Средняя скорость движения Земли по орбите 30 км/с. Орбита Земли близка к окружности, а скорость Земли по орбите близка к круговой на расстоянии Земли от Солнца. Параболическая скорость для Земли будет равна √2*30 км/с = 42 км/с. При такой скорости относительно Солнца тело покинет солнечную систему.


Второй закон Кеплера (закон площадей): радиус-вектор планеты за одинаковые промежутки времени описывает равные площади. Радиусом — вектором планеты называется отрезок прямой, соединяющий планету с Солнцем. Скорость планеты при движении ее по орбите тем больше, чем ближе она к Солнцу. В перигелии скорость планеты наибольшая. Второй закон Кеплера количественно определяет изменение скорости движения планеты по эллипсу.




Третий закон Кеплера: квадраты звездных периодов обращения планет относятся как кубы больших полуосей их орбит.

Третий закон Кеплера связывает средние расстояния планет от Солнца с периодами их звездных обращений и позволяет большие полуоси всех планетных орбит выразить в единицах большой полуоси земной орбиты. Большую полуось земной орбиты называют астрономической единицей расстояний. В астрономических единицах средние расстояния планет от Солнца были определены раньше, чем узнали длину астрономической единицы в километрах.

 

Источник: www.sites.google.com

Рудольфовы таблицы


Осенью 1598 года в Штирии начались гонения на протестантов. Кеплеру вместе с многими единоверцами пришлось покинуть Грац, но через месяц ему в виде исключения позволили вернуться и продолжить работу в качестве окружного математика. Тем не менее из-за изгнания ректора и почти всех учителей занятия в школе прекратились. Кеплеру стало ясно, что будущего в Граце у него нет. Он предпринимал лихорадочные попытки найти место за пределами Австрии, но безуспешно.

И тут помог Тихо Браге, который к этому времени стал придворным математиком императора Священной Римской империи и короля Богемии Рудольфа II. В декабре 1599 года Браге вторично пригласил Кеплера в целях совместной работы. Еще до получения этого письма Кеплер отправился в имперскую столицу Прагу в надежде стать ассистентом Браге. 4 февраля ученые встретились, и после этого свидания их жизненные линии уже не расплетались, хотя личные отношения оказались очень непростыми. Браге попросил императора взять Кеплера на службу, дабы тот смог обработать его архивы и составить на их основе самые совершенные таблицы планетных движений. Эти таблицы Браге предложил назвать в честь императора — Рудольфовыми. План монарху понравился, и он дал согласие.


Небо

Первоначально предполагалась, что для Кеплера создадут специальную должность. Однако вскоре Тихо Браге скоропостижно скончался (среди причин смерти назывались и детективные версии). Через два дня после похорон Браге Кеплера назначили придворным математиком с годовым окладом 500 флоринов. Правда, императорская казна перманентно пустовала и Кеплеру хронически не доплачивали. Однако он получил часть архива Браге — ту, которая относилась к движениям Марса. Эти материалы и легли в основу кеплеровской теории планетных движений, обессмертившей имя своего создателя.

Новая астрономия

Кеплер прожил в Праге 11 лет — самых спокойных и плодотворных. Там он написал свой главный астрономический труд. Сначала Кеплер хотел назвать его «Марсианскими комментариями», но потом придумал заголовок посложнее — «Новая астрономия, обоснованная в соответствии с ее причинами, или Небесная физика, изложенная посредством комментариев к движениям Марса, вычисленных на основе наблюдений благородного мужа Тихо Браге». Именно эта книга была напечатана в судьбоносном для астрономии 1609 году.


Анализ марсианских движений Кеплер начал с Земли. И это естественнно, ведь именно с этой движущейся космической платформы Тихо Браге определял небесные координаты и Марса, и остальных планет. На основании этих измерений Кеплер показал, что Земля то приближается к Солнцу, то удаляется от него. В соответствии с теорией, изложенной еще в «Тайне мироздания», отсюда следует, что скорость орбитального движения Земли уменьшается вдали от Солнца и возрастает по мере приближения к светилу. Именно эту закономерность Кеплер и выявил, обрабатывая результаты Тихо Браге.

Космический телескоп «Кеплер» Космический телескоп «Кеплер» Иоганн Кеплер посвятил свою жизнь изучению движения планет Солнечной системы, а названный в его честь космический телескоп (запущен 6 марта 2009 года) будет исследовать планетарные системы других звезд.


Этот вывод позволил ученому по‑новому понять движение Марса. Уже античные астрономы знали, что Марс движется по небосводу с переменной скоростью. Объяснение было таким: и Марс, и прочие планеты совершают комбинации круговых движений, скорости которых строго постоянны, поэтому наблюдаемая переменная скорость — всего лишь видимость. А вот с точки зрения Кеплера, непостоянство скорости Марса совершенно реально и объясняется тем, что эта планета, как и Земля, изменяет свое расстояние от Солнца. Кроме того, Кеплер убедился, что Земля движется вполне аналогично Марсу, то есть является обычной планетой. Это был сильный аргумент в пользу гелиоцентрической теории Коперника, которая в те времена отнюдь не пользовалась всеобщим признанием (в частности, ее не разделял Тихо Браге).

Кеплер поначалу исходил из того, что Земля движется по окружности, центр которой находится не слишком далеко от Солнца. Эта рабочая гипотеза позволила описать изменчивость планетарной скорости Земли в виде простого математического правила: радиус-вектор планеты (отрезок, соединяющий ее с Солнцем) за равные промежутки времени зачерчивает равные площади. В списке законов Кеплера это правило значится под вторым номером, хотя исторически было установлено раньше прочих, в самом конце 1601 или в начале 1602 года.


Млечный путь

Второй закон Кеплера следует из того, что орбитальное движение планеты не меняет ее момента количества движения. Сей факт прямо следует из ньютоновской динамики, но Кеплеру, конечно, он не был известен. Свой закон площадей Кеплер фактически угадал, а если и обосновал, то весьма приблизительно. Однако проверка на им же вычисленных параметрах земной орбиты подтвердила, что это правило хорошо соблюдается. Судя по всему, Кеплер в ходе работы над «Новой астрономией» все же не уверился в нем до конца; во всяком случае, он не утверждает его истинности открытым текстом. Математическое доказательство закона площадей дал только Исаак Ньютон. Наверное, не лишне заметить, что этому закону подчиняются любые тела, движущиеся в центральном поле тяготения, даже если они перемещаются по разомкнутым траекториям. Более того, силовой потенциал вовсе не обязан соответствовать ньютоновскому закону обратных квадратов — достаточно, если он зависит только от расстояния до центра силы. Так что второй закон Кеплера обладает куда большей общностью, нежели предполагал его первооткрыватель.


Самым крепким орешком оказалось определение формы марсианской орбиты. С помощью крайне трудоемких вычислений Кеплер установил, что она никак не может быть окружностью. Сначала Кеплер решил, что Марс движется по овалу, потом попробовал нечто вроде сечения яйца, но все эти фигуры явно не соответствовали наблюдениям Тихо Браге. В конце концов Кеплер увидел, что отношение минимального и максимального расстояний между Марсом и Солнцем отличается от единицы на величину, равную половине квадрата орбитального эксцентриситета (отношения дистанции между Солнцем и центром орбиты к ее радиусу). Именно такое соотношение должно выполняться, если орбита — правильный эллипс (в предположении, что эксцентриситет много меньше единицы). Выходило, что Марс движется по эллипсу, в одном из фокусов которого расположено Солнце. Если это утверждение обобщить на остальные планеты, получается первый закон Кеплера. Правда, такое обобщение Кеплер сформулировал позднее, но, судя по всему, считал так с самого начала.

Космос

Кеплер окончательно пришел к концепции эллиптической орбиты Марса весной 1605 года. После этого он всего за несколько месяцев закончил рукопись «Новой астрономии» (книга вышла лишь спустя четыре года, но на то были ненаучные причины).

Колдовство, война и гармония мира

Публикация этой книги принесла Кеплеру европейскую известность. Правда, его результаты признали далеко не все — например, их так и не принял (а возможно, и не понял) великий Галилей. Но такова судьба едва ли не всех великих открытий.

А жизнь продолжалась — и не всегда удачно. Умерла жена, оставив Кеплера с двумя маленькими детьми. Незадолго до этого с престола был смещен покровитель Кеплера Рудольф II. Осложнились отношения с лютеранскими священниками, которые заподозрили его в сочувствии кальвинизму. Из-за этого Кеплер не смог получить работу в Вюртемберге, куда хотел вернуться. После длительных переговоров Кеплеру предложили место математика в Линце, столице Верхней Австрии, на условиях, что он продолжит работу над таблицами планетных движений и займется местной картографией. Кеплер перебрался в Линц в 1612 году и прожил там 14 с половиной лет. Там он повторно женился, и супруга родила ему семерых детей.

На годы жизни в Линце пришелся длительный процесс по обвинению матери Кеплера в колдовстве, и ее защита отняла у ученого много здоровья и душевных сил. К тому же весной 1618 года началась Тридцатилетняя война, со временем захлестнувшая и Верхнюю Австрию.

Космос

Но Кеплер работал — и как работал! В 1619 году он опубликовал свой любимый труд «Пять книг гармонии мира». Об астрономии в нем говорится немного, больше о геометрии и философии. Однако именно на страницах этой книги появился третий закон Кеплера, который он открыл 15 мая 1618 года.

В 1617—1621 годах увидел свет публиковавшийся по частям самый обширный труд Кеплера «Очерки коперниканской астрономии», первый в мире учебник с детальным описанием гелиоцентрической модели мира. В этой книге законы планетных движений представлены как общие принципы, которым подчиняются все планеты; там же приведены результаты вычислений, с помощью которых Кеплер определил орбитальные параметры Меркурия, Венеры, Юпитера и Сатурна. В этой монографии впервые появился термин «инерция» — правда, не в том понимании, что сложилось после работ Галилея и Ньютона.

В конце пребывания в Праге после изнурительных переговоров с наследниками Тихо Браге Кеплер получил в свое распоряжение весь архив его наблюдений и у него наконец-то появилась возможность вплотную впрячься в составление астрономических таблиц, ради которых его взял на службу покойный Рудольф II. Эта исполинская работа была завершена во второй половине 1624 года.

Источник: www.PopMech.ru

15 ноября 1630 года умер выдающийся ученый Иоганн Кеплер. За свою жизнь он сделал открытия во многих областях: физике, математике, астрономии, механике, оптике. Эйнштейн называл его «несравненным человеком». Мы сделали подборку великих открытий Кеплера.

Астрономия

Кеплер был первооткрывателем трех законов движения планет. Они полностью и с превосходной точностью объяснили видимую неравномерность этих движений. Вместо многочисленных надуманных эпициклов модель Кеплера включает только одну кривую — эллипс. Второй закон, открытый ученым, установил, как изменяется скорость планеты, когда она удаляется от Солнца или приближается к нему. Третий же позволяет рассчитать эту скорость и период обращения вокруг Солнца. Кеплеровская система основана на модели Коперника, но в ней очень много нового. Например, исчезли круговые движения сфер, несущих на себе планеты, было введено понятие планетной орбиты. Если у Коперника центром была Земля, а точнее — центр земной орбиты, то у Кеплера она — рядовая планета, движение которой подчинено общим трём законам. Общим же фокусом орбит планет Кепплер назвал солнце.

Математика

В этой области Кеплер открыл математический анализ. А предшествовало этому то, что ученый нашел способ определения объемов разнообразных тел вращения, который описал в книге «Новая стереометрия винных бочек». Метод содержал первые элементы интегрального исчисления. К заслугам Кеплера также относится составление одной из первых таблиц логарифмов. Кроме того, у него впервые встречается такое понятие, как «среднее арифметическое».

Механика и физика

Кеплер ввел в физику понятие инерции — прирожденного свойства тел сопротивляться приложенной внешней силе. Ученый вплотную подошел к открытию закона тяготения, хотя и не пытался выразить его математически. Он был первым, кто выдвинул гипотезу о том, что причиной приливов является воздействие Луны на верхние слои океанов. Это произошло почти на сто лет раньше Ньютона.

Источник: www.vologda.kp.ru

Первый закон Кеплера

Это эллипсический закон.

В нашей системе планеты осуществляют оборот по эллипсу. К тому же, Солнце находится на одном из фокусов данной кривой.

Форму эллипса и его сходство с окружностью определяют эксцентриситетом. Это выражение сечения конуса в числовой мере. Более того, именно он указывает на степень отклонения от окружности.

Его вычисляют делением промежутка от центра до фокуса эллипса на большую полуось. Если расстояние равно нулю, соответственно эллипс будет являться окружностью.

Первый закон Кеплера

Открытие и использование закона всемирного тяготения в астрономии является доказательством первого закона Кеплера. Закон всемирного тяготения установил то, что каждый объект во Вселенной притягивает другой объект по определённой линии. Которая, помимо всего прочего, соединяет центры их масс. Но в то же время является пропорциональной массе каждого объекта, и обратно пропорциональной квадрату расстояния между этими объектами. Разработал закон всемирного тяготения Ньютон.

Первый закон Кеплера взаимосвязан с ньютоновскими законами.

Во втором законе Ньютон утверждал и доказывал, что ускорение объекта является пропорциональной равнодействующей всех сил. Которые прилагаются к объекту. Кроме того, ускорение также является обратно пропорциональным массе объекта.

Второй кеплеровский закон

По другому, его называют законом площадей. Он сообщает, что каждая планета движется в определённой плоскости. Которая, к тому же, простирается через центр Солнца. Вдобавок радиус-вектор, объединяющий планету и Солнце, заметает собой равные площади за равные промежутки времени.

Второй закон Кеплера

В Солнечной системе планеты движутся вокруг Солнца совсем непостоянно. Например, от самой ближней точки орбиты до главной звезды наблюдается большая скорость, чем от самой дальней точки.

Действительно, мы наблюдаем такое явление в начале года. Видимое движение Солнца проходит быстрее, нежели в другое время. Так как Земля в это время расположена на ближнем пункте орбиты. Кстати, её называют перигелий. А прямо противоположную точку, то есть самую отдаленную-афелий.

Третий закон Кеплера

Часто называют его название гармоничный закон. Он подразумевает, что период вращения планеты в квадрате вокруг Солнца относится, как куб большой полуоси орбиты планеты.

По правилам силы гравитации, закон Кеплера не совсем точен. Помимо всего прочего, в нём должна учитываться масса планеты.

Гармоничный закон с учётом закона тяготения актуально применять для измерения массы космического объекта. Но только, если установлены их орбиты.

Третий закон Кеплера

Третий закон Кеплера показывает связь между промежутком от планеты до звезды и периодом обращения по орбите.

Проще говоря, чем планета ближе к Солнцу, тем быстрее она крутится.

Источник: zen.yandex.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.