Каких 2 типа космических катастроф существует


Это — звезды, пережившие страшный взрыв. Такое событие происходит, когда массивная звезда исчерпает все запасы своего топлива. Тогда в течение считанных мгновений она сжимается — словно спешит втиснуть все свое вещество в крохотное ядро.

Его плотность неимоверно растет. Ядро превращается в сверхплотную нейтронную звезду или черную дыру.

Свою внешнюю оболочку “сгоревшее на работе” светило сбрасывает в окружающее пространство. Эта пелена уносится в даль с огромной скоростью, преодолевая десятки тысяч километров в секунду.

В момент взрыва сверхновая звезда излучает столько энергии, сколько Солнце способно выработать за десять миллиардов лет.

Если подобное событие — взрыв массивной звезды — произойдет в радиусе 350 световых лет от Земли, оно оставит свой “шрам” и на нашей планете.

Потоки ультрафиолетового, рентгеновского и гамма-излучения неминуемо достигнут Земли и изрядно повредят ее озоновый слой. Тот не выдержит такого мощного удара. В нем образуются бреши, что не затянутся десятилетиями.


Жесткие ультрафиолетовые лучи истребят планктон — основу пищевой цепи в Мировом океане. Начнется массовое вымирание животных, питавшихся им. Затем погибнут хищники, оставшиеся без добычи.

Под действием космических лучей в верхних слоях атмосферы резко возрастет содержание диоксида азота. Мельчайшие капельки этого газа образуют туман, который окутает нашу планету и охладит ее атмосферу. Подсчитано, что при взрыве сверхновой звезды, находящейся на расстоянии ста световых лет от Земли, количество озона в стратосфере нашей планеты сократится в три раза.

Если же сверхновая звезда взорвется всего в десяти световых годах от Земли, то поток космических лучей увеличится в сотни раз. Весь озоновый щит попросту сметет.

Насколько велика такая опасность? В нашей Галактике вспышки сверхновых наблюдаются в среднем раз в 30 — 100 лет. Пожалуй, мы могли бы каждый век нашей истории называть именем взорвавшейся в ту пору звезды. Впрочем, в последние несколько тысяч лет что-то не помнится, чтобы эти космические фейерверки принесли нам хоть какую-то беду.

Разве что их вспышки иногда упоминали в хрониках, как то было, например, со звездой, воссиявшей в 1054 году в Крабовидной туманности. Большинство же сверхновых звезд располагалось так далеко от Солнечной системы, что люди даже не замечали их “страшных” взрывов. В непосредственной близости от нас, то есть на расстоянии всего нескольких десятков световых лет (это расстояние считается критическим), взрыв сверхновой звезды наблюдается лишь раз в пару сотен миллионов лет.


Вероятность этого события почти такова, как и вероятность падения на Землю астероида диаметром в добрый десяток километров. Обе эти катастрофы влияют на жизнь нашей планеты самым фатальным образом, и обе случаются крайне редко. Когда такое было в истории Земли? Как воскресить память о давних катастрофах?

В середине девяностых годов физик Джон Эллис из знаменитого женевского Центра ядерных исследований СЕRN и его американские коллеги Брайан Филдс и Дэвид Шрамм предположили, что сверхновые звезды оставляют в отложениях породы или слоях льда почти такой же след, как и астероиды. Дело в том, что в раскаленной газовой оболочке, которую сбросила с себя звезда, начинает работать настоящая химическая фабрика.

   
     
   
     

В течение считанных секунд здесь возникает почти весь ассортимент таблицы Менделеева вплоть до такого трансуранового элемента, как калифорний (порядковый номер — 98), который на Земле можно получить лишь искусственным путем. Если это “химическое” облако, выброшенное сверхновой звездой, достигнет Землю, то в ее атмосферу проникнут некоторые экзотические элементы.


Осев на поверхность суши или дно моря, они образуют отложения — такие же необычные, как и те, что остаются после падения громадного астероида. (Напомним: метеорит, выкосивший динозавров, как траву, был обнаружен, потому что оставил в слое, который разделял меловой и третичный периоды, огромное количество иридия.)

Впрочем, в случае со сверхновыми звездами не стоит преувеличивать объемы вещества, просыпавшегося на Землю. Так, если звезда взорвется в тридцати световых годах от нас, то общая масса этого вещества составит около десяти миллионов тонн. Это сооответствует глыбе длиной двести метров. Поиск этого вещества в чем-то сродни поиску иголки, провалившейся в стог сена.

Его масса в десять тысяч раз меньше массы астероида, рухнувшего на Землю 65 миллионов лет назад и погубившего динозавров. Если же учесть, что вещество это рассеялось по всей планете, то отыскать его очень трудно. Его могут выдать некоторые изотопы, которые не встретишь на Земле: например, железо-60 и плутоний-244.

Открытие пришло неожиданно. Группа немецких физиков во главе с Гюнтером Коршинеком обнаружила железо-60 в отложениях, добытых со дна Тихого океана близ острова Питкэрн. Вообще-то ученые занимались другими изысканиями. Они собирали образцы железомарганцевых конкреций в южной части океана. Эти слои, содержащие большое количество железа и марганца, часто обнаруживают в окрестностях подводных вулканов.


Вот здесь и был найден изотоп железа в количестве, превышавшем норму в тысячи раз. Период полураспада железа-60 равен полутора миллионам лет. Ученые подсчитали, что данная порция изотопа попала в земную атмосферу около пяти миллионов лет назад, а потом осела на дне океана. Причиной появления железа-60 мог быть лишь взрыв сверхновой звезды, находившейся в 50 — 100 световых годах от Солнца.

В ту пору эта звезда наверняка сияла на небосводе в сотни раз ярче, чем полная Луна. Впрочем, выяснить, где она находилась, не удастся. За минувшие миллионы лет нейтронная звезда, оставшаяся на месте взрыва, очевидно, удалилась на тысячу с лишним световых лет от Солнца, а сброшенная ею газовая оболочка разредилась до такой степени, что заметить ее уже нельзя.

По оценкам ученых, со времени зарождения жизни на нашей планете, то есть за последние три миллиарда лет, в окрестностях Солнечной системы несколько раз взрывались сверхновые звезды. Можно предположить, что эти космические катастрофы заметно повлияли на эволюцию жизни на Земле. Астрономы уже догадываются, где произойдет новый, опасный для нас взрыв.

В созвездии Киля — его хорошо видно в Южном полушарии — угрожающе застыла звезда Eta Carinae. Ее масса в сотни раз превышает массу звезды по имени Солнце. Возможно, это самая большая звезда в нашей Галактике. В ХIХ веке она была еще и самой яркой звездой на южном небосклоне. Затем она взорвалась и пропала из нашего поля зрения.


Однако ее газовое ядро осталось, пережив этот катаклизм. Как показывают снимки, сделанные космическим телескопом им. Хаббла, это громадное ядро все еще бурлит. За этим последует новый взрыв. Ждать осталось не более десяти тысяч лет. Вот тогда-то Эта Карины окончательно погибнет, но ее закат, возможно, обернется суровыми испытаниями и для нас. Ведь нас с ней разделяют “всего” каких-то 7500 световых лет.

После взрыва в сторону нашей планеты устремится поток страшных космических лучей. Остатки газовой оболочки, сброшенной звездой, со временем затопят всю Солнечную систему и, может быть, даже сдвинут планеты с их устойчивых орбит… читать дальше...

Источник: www.vokrugsveta.com

Различают два типа космических катастроф: ударно-столкновительная (УСК), когда не разрушенные в атмосфере части КО сталкиваются с поверхностью Земли, образуя на ней кратеры, и воздушно-взрывная (ВВК), при которой объект полностью разрушается в атмосфере. Возможны и комбинированные катастрофы. Примером УСК может служить Аризонский метеоритный кратер диаметром 1,2 км, образовавшийся около 50 тыс. лет назад вследствие падения железного метеорита массой 10 тыс. т, а ВВК — тунгусская катастрофа (метеорит диаметром 50 м полностью распылился в атмосфере), Последствия катастроф, возникающих при воздействии на Землю космических объектов, могут быть следующие:


природно-климатические — возникновение эффекта ядерной зимы, нарушение климатического и экологического баланса, эрозия почвы, необратимые и обратимые воздействия на флору и фауну, загазованность атмосферы окислами азота, обильные кислотные дожди, разрушение озонного слоя атмосферы, массовые пожары; гибель и поражение людей;

экономические— разрушение объектов экономики, инженерных сооружений и коммуникаций, в том числе разрушение и повреждение транспортных магистралей;

культурно-исторические — разрушение культурно-исторических ценностей;

политические— возможное осложнение международной обстановки, связанной с миграцией населения из мест катастрофы, и ослабление отдельных государств.

Поражающие факторы в результате воздействия КО

Поражающие факторы и их энергетика в каждом конкретном случае зависят от вида катастрофы, а также от места падения космического объекта, Они в значительной степени схожи с поражающими факторами, характерными для ядерного оружия (за исключением радиологических).

Ударная волна:

воздушная — вызывает разрушения зданий и сооружений, коммуникаций, линий связи, повреждения транспортных магистралей, поражения людей, флоры и фауны;


в воде — разрушения и повреждения гидросооружений, надводных и подводных судов, частичные поражения морской флоры и фауны (в месте катастрофы), а также стихийные природные явления (цунами), приводящие к разрушениям в прибрежных районах;

в грунте — явления, аналогичные землетрясениям (разрушения зданий и сооружений, инженерных коммуникаций, линий связи, транспортных магистралей, гибель и поражения людей, флоры и фауны).

Световое излучение приводит к уничтожению материальных ценностей, возникновению различных атмосферно-климатических эффектов, гибели и поражению людей, флоры и фауны.

Электромагнитный импульс оказывает воздействие на электрическую и электронную аппаратуру, повреждает системы связи, теле- и радиовещания и др.

Атмосферное электричество — последствия поражающего фактора аналогичны воздействию молний.

Отравляющие вещества — это возникновение загазованности атмосферы в районе катастрофы в основном окислами азота и его ядовитыми соединениями.

Аэрозольное загрязнение атмосферы — эффект этого подобен пыльным бурям, а при больших масштабах катастрофы может привести к изменению климатических условий на Земле.

Вторичные поражающие факторы появляются в результате разрушения атомных электростанций, плотин, химических заводов, складов различного назначения, хранилищ радиоактивных отходов и т.п.


 

ЗАКЛЮЧЕНИЕ

 

Чрезвычайные ситуации, как правило, затрагивают большие массы населения на обширных территориях, и велика вероятность появления большого числа пораженных, нуждающихся в экстренной помощи. В этой ситуации предотвращению жертв может способствовать только комплекс мероприятий по медицинской защите населения, включающий в себя лечебно-эвакуационные, санитарно-гигиенические и противоэпидемические мероприятия. При этом эти мероприятия должны выполняться в максимально сжатые сроки и специальными, профессионально подготовленными формированиями, которыми и являются формирования медицинской службы гражданской обороны. Но кроме этого большую роль в оказании помощи пострадавшим играет само население пораженных территорий (само- и взаимопомощь), поэтому возрастает необходимость в обучении населения основам гражданской обороны

Стихийные бедствия могут возникать как независимо друг от друга, так и во взаимосвязи: одно из них может повлечь за собой другое.

Все указанные причины ЧС могут существовать как отдельно, так и быть связанными друг с другом, а также дополнять друг друга.

Для обеспечения безопасности, в частности на производстве, во многих странах разрабатываются специальные законодательные акты, директивы, стандарты, регламентирующие правила и мероприятия по предупреждению аварийных ситуаций.


Во всех высокоразвитых странах в последние годы уделяется все большее внимание совершенствованию системы подготовки кадров, особенно руководителей высоко рискованных производств, разнообразных служб безопасности, экспертизы и страхования.

 

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

 

1. Положение “О классификации чрезвычайных ситуаций природного и техногенного характера” // Гражданская защита. 1996

2. Алимов Р., Дмитриев Е., Яковлев В. Космические катастрофы; надеяться на лучшее, готовиться к худшему // Гражданская защита. 1996

3. Макеев В., Михайлов А., Стражиц Д. Классификация чрезвычайных ситуаций // Гражданская защита. 1996

4. Постановление Правительства РФ от 13.09.96 № 1094О классификации чрезвычайных ситуаций природного и техногенного характера”

 

Источник: studopedia.ru

1. Последний полет челнока «Челенджер» должен был быть десятым в истории полетов многоразового транспортного космического корабля. Челнок строили три года — с 1979 по 1982 год. Летом его передали в эксплуатацию НАСА. Сначала он был оборудован как корабль для испытательных целей. Позже его переоборудовали для запуска в космос людей.

За полетом 28 января 1986 года наблюдали миллионы зрителей по всему миру. На мысе Канаверал работали съемочные группы журналистов, которые вели прямые трансляции со взлетной площадки. Старт задержали на 2 часа от запланированного времени из-за мелких неполадок на челноке. Это был недобрый знак. Однако корабль все же поднялся в воздух. На 73-й секунде полета, на высоте 14 километров от земли, «Челенджер» взорвался и развалился в воздухе.


Как потом выяснили специалисты, левый твердотопливный ускоритель оторвался от одного из двух креплений. Он провернулся вокруг второго ускорителя и пробил основной топливный бак. Из-за нарушения симметрии тяги и сопротивления воздуха корабль отклонился от оси и был разрушен аэродинамическими силами. Погибли все семь человек, которые находились на борту. Среди них был первый в истории космонавт-непрофессионал — учительница Криста МакОлифф. Право побывать в космосе она выиграла на общенациональном конкурсе. Крушением корабля наблюдали и ученики Кристы.

Ролик на английском языке.

2. Подобная катастрофа случилась и с космическим челноком «Columbia». Она произошла 1 февраля 2003 года. Корабль взорвался, а его осколки разметало над Техасом и Луизианой. Члены команды погибли. Как и в предыдущем случае, их было семеро. Для крушения хватило того, что от обшивки челнока откололся кусок теплоизоляции. Это привело к неисправности системы термозащиты, а потом и к крушению.

Ролик на английском языке.

3. В 1967 году космическая катастрофа произошла с кораблем СССР «Союз-1». Погиб пилот — 40-летний Владимир Комаров. Неполадки на космическом корабле начались сразу после выхода на орбиту: у «Союза-1» не раскрылась одна из солнечных батарей, потом вышли из строя обе системы ориентации. Летчик сделал все от него зависящее, чтобы вывести неуправляемый корабль на посадочную траекторию, но при посадке, на высоте семь километров, отказали оба парашюта. Корабль с космонавтом упал в Оренбургской области. «Союз-1» обрушился на землю со скоростью 60 метров в секунду. Обгоревшие останки космонавта обнаружили при разборе обломков.

4. Еще одна катастрофа с жертвами, советскими космонавтами, случилась летом 1971 года. Погибли трое человек: Георгий Добровольский, Владислав Волков и Виктор Пацаев — экипаж «Союза-11». Несчастье случилось, когда летчики возвращались из космоса. Хотя 30 июня спусковой аппарат успешно приземлился в Казахстане, поисковая группа обнаружила всех троих космонавтов мертвыми. Как показало расследование, при отделении от корабля спускового аппарата открылся вентиляционный клапан, и отсек разгерметизировался. Этот клапан был задуман, чтобы в случае неудачного приземления в кабину мог поступать воздух, но он почему-то открылся на высоте 150 километров. Через 20 секунд после разгерметизации все находившиеся внутри люди были уже без сознания. Они просто не успели закрыть клапан. Скафандров на космонавтах не было из-за того, что рассчитан «Союз-11» был только на одного человека, а не на троих, и в специальных костюмах экипаж в корабль бы просто не поместился.

5. Перед тем, как американцы высадились на Луну, история «Аполлона» началась с трагедии. В 1967 году, за месяц до планируемого запуска, внутри корабля «Аполлон-1» произошел пожар. Несчастье произошло на космодроме «Кеннеди» в разгар наземных испытаний, когда в корабле находились трое космонавтов: Виджил Грисс, Эдвард Уайт и Роджер Чаффи. Внутри кабины космического корабля был не воздух, а чистый кислород. В результате это привело к трагической случайности. Дело в том, что инженеры не проконтролировали, что часть проводов внутри «Аполлона» были не изолированы. К тому же, кто-то из механиков оставил внутри гаечный ключ, который потом соприкоснулся с оголенным проводом, возникло замыкание, вспыхнула искра. Этой искры хватило, чтобы в наполненной кислородом кабине мгновенно загорелась внутренняя обшивка. Космонавты не смогли открыть люк. Люди сгорели за 14 секунд.

Источник: www.il.kp.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.