Какая бывает земная кора


ЗЕМНА́Я КОРА́, верх­няя твёр­дая обо­лоч­ка Зем­ли, ог­ра­ни­чен­ная сни­зу Мо­хо­ро­ви­чи­ча гра­ни­цей. Tермин «З. к.» поя­вил­ся в 18 в. в ра­бо­тах M. B. Ло­мо­но­со­ва и в 19 в. в тру­дах Ч. Лай­е­ля; c раз­ви­ти­ем кон­трак­ци­он­ной ги­по­те­зы в 19 в. по­лу­чил оп­ре­де­лён­ное зна­че­ние в со­от­вет­ствии с иде­ей ох­ла­ж­де­ния Зем­ли до тех пор, по­ка не об­ра­зо­ва­лась ко­ра (Дж. Да­на). B ос­но­ве пред­став­ле­ний o со­ста­ве, струк­ту­ре и фи­зич. свой­ст­вах З. к. ле­жат гео­фи­зич. дан­ные o ско­ро­стях рас­про­стра­не­ния сейс­мич. волн (в осн. про­доль­ных, Vp), ко­то­рые на гра­ни­це Mо­хо­ровичича при пе­ре­хо­де к по­ро­дам ман­тии Зем­ли скач­ко­об­раз­но воз­рас­та­ют c 7,5–7,8 км/с до 8,1–8,2 км/c. При­ро­да ниж­ней гра­ни­цы З. к., по-ви­ди­мо­му, обу­слов­ле­на из­ме­не­ни­ем хи­мич. со­ста­ва по­род (ос­нов­ные по­ро­ды – ульт­ра­ос­нов­ные) ли­бо фа­зо­вы­ми пе­ре­хо­да­ми (в сис­те­ме габб­ро – эк­ло­гит).


Для З. к. ха­рак­тер­на го­ри­зон­таль­ная не­од­но­род­ность (ани­зо­тро­пия), вы­ра­жаю­щая­ся в раз­ли­чии со­ста­ва, строе­ния, мощ­но­сти и др. ха­рак­те­ри­стик ко­ры в пре­де­лах её отд. струк­тур­ных эле­мен­тов: кон­ти­нен­тов и океа­нов, плат­форм и складча­тых поя­сов, впа­дин и под­ня­тий и др. Вы­де­ля­ют два гл. ти­па З. к. – кон­ти­нен­таль­ную и океа­ни­че­скую.

Кон­ти­нен­таль­ная ко­ра, рас­про­стра­нён­ная в пре­де­лах кон­ти­нен­тов и мик­ро­кон­ти­нен­тов в океа­нах, име­ет ср. мощ­ность 35–40 км, ко­то­рая умень­ша­ет­ся до 25–30 км на кон­ти­нен­таль­ных ок­раи­нах (на шель­фе) и в об­лас­тях риф­то­гене­за и воз­рас­та­ет до 45–75 км в об­лас­тях го­ро­об­ра­зо­ва­ния. B кон­ти­нен­таль­ной ко­ре раз­ли­ча­ют оса­доч­ный (Vp до 4,5 км/c), «гра­нит­ный» (Vp 5,1– 6,4 км/c) и «ба­заль­то­вый» (Vp 6,1– 7,5 км/c) слои. Оса­доч­ный слой от­сут­ст­ву­ет на щи­тах и ме­нее круп­ных под­ня­ти­ях фун­да­мен­та древ­них плат­форм, а так­же в осе­вых зо­нах склад­ча­тых со­ору­же­ний. Во впа­ди­нах мо­ло­дых и древ­них плат­форм, пе­ре­до­вых и меж­гор­ных про­ги­бах склад­ча­тых со­ору­же­ний мощ­ность оса­доч­но­го слоя дос­ти­га­ет 10 км (ред­ко 20–25 км).
сло­жен пре­им. кон­ти­нен­таль­ны­ми и мел­ко­вод­но-мор­ски­ми оса­доч­ны­ми по­ро­да­ми, воз­раст ко­то­рых ме­нее 1,7 млрд. лет, а так­же пла­то­ба­заль­та­ми (трап­па­ми), сил­ла­ми маг­ма­тич. по­род ос­нов­но­го со­ста­ва, ту­фа­ми. На­зва­ния «гра­нит­но­го» и «ба­заль­то­во­го» сло­ёв ус­лов­ны и ис­то­ри­че­ски свя­за­ны c вы­де­ле­ни­ем гра­ни­цы Kон­ра­да (Vp 6,2 км/c), раз­де­ляю­щей слои, в ко­то­рых ско­ро­сти про­доль­ных сейс­мич. волн со­от­вет­ст­ву­ют ско­ро­стям в гра­ни­те и ба­заль­те. По­сле­дую­щие ис­сле­до­ва­ния (в т. ч. сверх­глу­бо­кое бу­ре­ние) по­ста­ви­ли под со­мне­ние су­ще­ст­во­ва­ние чёт­кой сейс­мич. гра­ни­цы, по­это­му оба эти слоя объ­еди­ня­ют в кон­со­ли­ди­ро­ван­ную ко­ру. «Гра­нит­ный» слой вы­сту­па­ет на по­верх­ность в пре­де­лах щи­тов и мас­си­вов плат­форм и в осе­вых зо­нах склад­ча­тых со­ору­же­ний; он так­же вскрыт сква­жи­на­ми сверх­глу­бо­ко­го бу­ре­ния (в т. ч. Коль­ской сверх­глу­бо­кой сква­жи­ной на глу­би­ну св. 12 км). Его мощ­ность на плат­фор­мах 15–20 км, в склад­ча­тых со­ору­же­ни­ях 25–30 км. В пре­де­лах щи­тов древ­них плат­форм в со­став это­го слоя вхо­дят гней­сы, разл. кри­стал­лич. слан­цы, ам­фи­бо­ли­ты, мра­мо­ры, квар­ци­ты и гра­ни­тои­ды, по­это­му его час­то на­зы­ва­ют гра­нит­но-гней­со­вым (Vp 6–6,4 км/c). В фун­да­мен­те мо­ло­дых плат­форм и в пре­де­лах мо­ло­дых склад­ча­тых со­ору­же­ний верх­ний слой кон­со­ли­ди­ро­ван­ной ко­ры сло­жен ме­нее ме­та­мор­фи­зов.
­ро­да­ми и со­дер­жит мень­ше гра­ни­тов, в свя­зи с чем его так­же име­ну­ют гра­нит­но-ме­та­мор­фи­че­ским (Vp 5,1–6 км/c). Пря­мое изу­че­ние «ба­заль­то­во­го» слоя кон­ти­нен­таль­ной ко­ры не­воз­мож­но. Зна­че­ни­ям ско­ро­стей сейс­мич. волн, по ко­то­рым он вы­де­лен, мо­гут удов­ле­тво­рять как маг­ма­тич. по­ро­ды ос­нов­но­го со­ста­ва (ба­зи­ты), так и по­ро­ды, ис­пы­тав­шие вы­со­кую сте­пень ме­та­мор­физ­ма (гра­ну­ли­ты), по­это­му ниж­ний слой кон­со­ли­ди­ро­ван­ной ко­ры ино­гда на­зы­ва­ют гра­ну­лит-ба­зи­то­вым. От­не­се­ние к З. к. или верх­ней ман­тии по­род со ско­ро­стя­ми про­доль­ных сейс­мич. волн бо­лее 7 км/c спор­но. Воз­раст древ­ней­ших по­род кон­со­ли­ди­ро­ван­ной ко­ры дос­ти­га­ет 4 млрд. лет.

Oсн. от­ли­чия океа­ни­че­ской ко­ры от кон­ти­нен­таль­ной – от­сут­ст­вие «гра­нит­но­го» слоя, су­ще­ст­вен­но мень­шая мощ­ность (в ср. 5–7 км), бо­лее мо­ло­дой воз­раст (юра, мел, кай­но­зой; ме­нее 170 млн. лет), бо́ль­шая ла­те­раль­ная од­но­род­ность. Oкеанич. ко­ра, строе­ние ко­то­рой изу­че­но глу­бо­ко­вод­ным бу­ре­ни­ем, дра­ги­ро­ва­ни­ем, на­блю­де­ни­ем с под­вод­ных ап­па­ра­тов в стен­ках раз­ло­мов, со­сто­ит из трёх сло­ёв. Пер­вый слой, или оса­доч­ный, со­сто­ит из пе­ла­гич.


ем­ни­стых, кар­бо­нат­ных и гли­ни­стых осад­ков (Vp 1,6–5,4 км/c). В на­прав­лении кон­ти­нен­таль­ных под­но­жий его мощ­ность воз­рас­та­ет до 10–15 км. Оса­доч­ный слой мо­жет от­сут­ст­во­вать в осе­вых зо­нах сре­дин­но-океа­нич. хреб­тов. В глу­бо­ко­вод­ных впа­ди­нах за­ду­го­вых бас­сей­нов, часть из ко­то­рых под­сти­ла­ет­ся океа­нич. ко­рой, тол­щи­на оса­доч­но­го слоя, обыч­но вклю­чаю­ще­го тур­би­ди­ты, мо­жет дос­ти­гать 15–20 км. Вто­рой слой (Vp 4,5–5,5 км/c) в верх­ней час­ти сло­жен ба­заль­та­ми (час­то с по­ду­шеч­ной от­дель­но­стью – пил­лоу-ба­заль­та­ми) с ред­ки­ми про­слоя­ми пе­ла­гич. осад­ков; в ниж­ней час­ти слоя раз­вит ком­плекс па­рал­лель­ных да­ек до­ле­ри­тов (об­щая мощ­ность 1,2–2 км). Тре­тий слой (Vp 6–7,5 км/c) в верх­ней час­ти со­сто­ит из мас­сив­ных габб­ро, в ниж­ней – из рас­сло­ен­но­го ком­плек­са, в ко­то­ром габб­ро че­ре­ду­ют­ся с ульт­ра­ос­нов­ны­ми по­ро­да­ми (об­щая мощ­ность 2–5 км). В пре­де­лах внутр. под­ня­тий океа­нов З. к. утол­ще­на до 25–30 км за счёт уве­ли­че­ния мощ­но­сти вто­ро­го и третье­го сло­ёв. Древ­ним ана­ло­гом океа­нич. ко­ры на кон­ти­нен­тах яв­ля­ют­ся офио­ли­ты.

Океа­нич. ко­ра фор­ми­ру­ет­ся на ди­вер­гент­ных гра­ни­цах ли­то­сфер­ных плит (про­тя­ги­ва­ют­ся вдоль осе­вых час­тей сре­дин­но-океа­нич. хреб­тов), на ко­то­рых про­ис­хо­дит подъ­ём к по­верх­но­сти и за­сты­ва­ние ба­заль­то­вой маг­мы. Кон­ти­нен­таль­ная ко­ра об­ра­зу­ет­ся в про­цес­се пе­ре­ра­бот­ки океа­нич. ко­ры на ак­тив­ных кон­ти­нен­таль­ных ок­раи­нах.


Кро­ме двух гл. ти­пов З. к., вы­де­ля­ют пе­ре­ход­ные ти­пы. Су­бо­кеа­ни­че­ская ко­ра пред­став­ля­ет со­бой уто­нён­ную в ре­зуль­та­те риф­то­ге­не­за до 15–20 км кон­ти­нен­таль­ную ко­ру, про­ни­зан­ную дай­ка­ми и сил­ла­ми ос­нов­ных маг­ма­тич. по­род; раз­ви­та вдоль кон­ти­нен­таль­ных скло­нов и под­но­жий, а так­же под­сти­ла­ет глу­бо­ко­вод­ные впа­ди­ны не­ко­то­рых за­ду­го­вых бас­сей­нов. Суб­кон­ти­нен­таль­ная ко­ра (не­дос­та­точ­но кон­со­ли­ди­ро­ван­ная, мощ­ность ме­нее 25 км) на­блю­да­ет­ся в вул­ка­нических ост­ров­ных ду­гах, где океа­ническая ко­ра пре­вра­ща­ет­ся в кон­ти­нен­таль­ную.

З. к. ис­пы­ты­ва­ет го­ри­зон­таль­ные и вер­ти­каль­ные тек­то­ни­че­ские дви­же­ния. В ней рас­по­ло­же­ны оча­ги зем­ле­тря­се­ний, фор­ми­ру­ют­ся маг­ма­тич. оча­ги, по­ро­ды ло­каль­но или на боль­ших пло­ща­дях под­вер­га­ют­ся ме­та­мор­физ­му. Тек­то­нич. дви­же­ния З. к. и про­те­каю­щие в ней эн­до­ген­ные про­цес­сы обу­слов­ле­ны су­ще­ст­во­ва­ни­ем в не­драх Зем­ли час­тично рас­плав­лен­ной ас­те­но­сфе­ры. Под дей­ст­ви­ем тек­то­нич. дви­же­ний и де­фор­ма­ций, маг­ма­тич. дея­тель­но­сти, ме­та­мор­физ­ма, эк­зо­ген­ных про­цес­сов (пе­ре­ме­ще­ние лед­ни­ков, ополз­ни, карст, реч­ная эро­зия и др.) гор­ные по­ро­ды З. к. во­вле­ка­ют­ся в склад­ча­тые и раз­рыв­ные дис­ло­ка­ции тек­то­ни­че­ские. Воз­дей­ст­вие на по­ро­ды З. к. ат­мо-, гид­ро- и био­сфе­ры при­во­дит к их вы­вет­ри­ва­нию.

Источник: bigenc.ru


Форма и размеры планеты Земля

Форма и геометрические размеры Земли — основные понятия, которыми она описывается, как небесное тело. В средние века считалось, что планета имеет плоскую форму, находится в центре Вселенной, а вокруг нее вращается Солнце и другие планеты.

Какая бывает земная кора

Но такие смелые естествоиспытатели, как Джордано Бруно, Николай Коперник, Исаак Ньютон опровергли подобные суждения и математически доказали, что Земля имеет форму шара с приплюснутыми полюсами и вращается вокруг Солнца, а не наоборот.

Структура планеты очень многообразная, при том, что ее размеры достаточно невелики по меркам даже солнечной системы – длина экваториального радиуса составляет 6378 километров, полярного радиуса – 6356 км.


Какая бывает земная кора

Длина одного из меридианов равняется 40008 км, а экватор простирается на 40007 км. Из этого также видно, что планета несколько «приплющена» между полюсами, ее вес составляет 5.9742 × 1024 кг.

Плотность

Впервые плотность Земли была выявлена И. Ньютоном в 1736 году. Он доказал, что этот показатель находится в пределах от 5 до 6 г/см3. Последующие измерения позволили выявить более точные данные, которые получили название средней плотности планеты Земля. Эта величина превышает плотность верхних горизонтов земной коры, которая на основе многочисленных измерений выходит на поверхность горных пород и может быть определена более точно.

Вычислить плотность поверхности Земли ученым еще как-то удалось, а вот решить, каким будет это значение на глубине свыше 16 километров, невозможно. Для определения этих показателей учитывается скорость сейсмических волн, сила тяжести и ряд других параметров.

Земные оболочки

Земля состоит из многих оболочек, образующих своеобразные слои. Каждый слой является центрально симметричным по отношению к базовой центральной точке. Если визуально выполнить разрез грунта по всей его глубине, то откроются слои с разным составом, агрегатным состоянием, плотностью и т. д.

Какая бывает земная кора

Все оболочки делятся на две большие группы:


  1. Внутреннее строение описывается, соответственно, внутренними оболочками. Ими является земная кора и мантия Земли.
  2. Внешние оболочки, к которым относится гидросфера и атмосфера.

Строение каждой оболочки является предметом изучения отдельных наук. Ученые до сих пор, в век бурного технического прогресса, не все вопросы выяснили до конца.

Немного размышлений

Как известно, средняя плотность планеты равна средней плотности Земли, т. е. эти показатели находятся в соотношении 1:1. Чтобы выяснить точные размеры: массу, вес и другие габариты, используют самые разные формулы.

Земля – это уникальная планета. Здесь есть множество неразгаданных тайн. Одной из загадок является то, что находится под поверхностью земли, в глубинах океанов, и какова плотность на глубине свыше семнадцати километров под поверхностью.

Средняя плотность планеты равна средней плотности земли

Ученых всего мира интересуют вопросы о возникновении Вселенной и ее истинном устройстве. Изучение космоса не дает ответы на все возникающие вопросы, но на некоторые уже нашлись ответы.

Земная кора и ее типы


Земная кора – это одна из оболочек планеты, занимающая только около 0,473% от ее массы. Глубина коры 5 — 12 километров.

Какая бывает земная кора

Интересно отметить, что глубже ученые практически не проникали, а если провести аналогию, то кора – это как кожица на яблоке по отношению ко всему его объему. Дальнейшее и более точное изучение требует совершенно другого уровня развития техники.

Если смотреть на планету в разрезе, то по мере разной глубины проникновения внутрь ее структуры можно по порядку выделить такие типы земной коры:

  1. Океаническая кора — состоит преимущественно из базальтов, находится на дне океанов под огромными слоями воды.
  2. Континентальная или материковая кора — покрывает сушу, состоит из очень богатого химического состава, включающего на 25% кремний, на 50% кислород, а также 18% других основных элементов таблицы Менделеева. В целях удобного изучения этой коры ее еще делят на нижнюю и верхнюю. Наиболее древние относятся к нижней части.

Температура коры увеличивается по мере углубления.

Еще факты

  1. Стоя на одном месте, человек считает, что он стоит. На самом деле он двигается, но вместе с Землей. Это происходит из-за вращения планеты вокруг Солнца и вокруг своей оси. В зависимости от места, где стоит объект, скорость его движения в пространстве может составлять 1600 км/ч. На экваторе люди двигаются быстрее, а вот те, кто живет в северных и южный районах планеты, практически стоят на месте.
  2. Земля движется вокруг Солнца со скоростью 107826 км/ч.
  3. Считается, что возраст Земли около 4,5 млн лет.
  4. В центре планеты располагается магма.
  5. На планете происходят водные приливы и отливы. Это явление возникает из-за воздействия Луны – естественного спутника Земли.
  6. Самая холодная точка на планете – Антарктида. Здесь температура может опускаться до -80 и более градусов Цельсия.
  7. Некоторые ученые предполагают, что когда-то у Земли было два спутника.

Средняя плотность планеты земля

На планете есть множество загадочных мест, где происходят странные явления. Ученые пытались их объяснить: что-то им раскрыть удалось, а что-то все так же остается тайной. Одной из таких тайн являются движущиеся камни на плато Плайя в США. На этом участке горные породы совершают перемещения по пескам, оставляя следы в виде борозд. Это уникальное явление не имеет аналогов, и нет другого места, где происходило бы подобное.

Есть мнения, что когда-то, планета была фиолетовой. Этот окрас ей придавали бактерии, проживающие на всей территории Земли. Позже планета стала зелено-голубой.

Мантия

Основной объем нашей планеты составляет мантия. Она занимает все пространство между рассмотренной выше корой и ядром и состоит из многих слоев. Наименьшая толщина до мантии составляет около 5 — 7 км.

Какая бывает земная кора

Современный уровень развития науки и техники не позволяет непосредственно изучать данную часть Земли, поэтому для получения информации о ней используют косвенные методы.

Очень часто рождение новой земной коры сопровождается ее контактом с мантией, что особенно активно происходит в местах под океанскими водами.

Сегодня считается, что существует верхняя и нижняя мантии, которые разделяются границей Мохоровичича. Проценты этого распределения просчитаны достаточно точно, но требуют уточнения в будущем.

Интересные факты

Есть мнения, что Земля – это единственная планета во всей Вселенной со сложной формой жизни, хотя это утверждение пока не доказано. Почему-то ученые считают, что формы жизни могут развиваться только такими, которые привычно видеть людям на нашей планете, и никто не допускает, что есть формы, способные расти и развиваться при совершенно других условиях. Это утверждение полностью никто не опроверг, а значит, оно имеет право на существование. Хотя ученые мира выяснили много интересного о планете:

  1. Средняя плотность планеты Земля выше, чем у других планет.
  2. Среди планет земной группы только она имеет наибольшую гравитацию и наисильнейшее магнитное поле.
  3. Хотя все люди и представляют планету в форме ровного шара, на самом деле это не совсем так. Она больше похожа на два приплюснутых полукруга, имеющих выпуклости в зоне экватора. Эту особую форму связывают с вращением планеты.
  4. Изначально существовал один континент под названием Пангея. По мере движения земной коры образовались известные сегодня континенты.
  5. В защитном слое имеются озоновые дыры: самая крупная располагается над Антарктидой. Ее обнаружили в 2006 году.

Внешнее ядро

Ядро планеты также не является однородным. Огромные температуры, давление заставляют протекать здесь многие химические процессы, производится распределение масс, веществ. Ядро делится на внутреннее и внешнее.

Внешнее ядро имеет толщину около 3000 километров. Химический состав этого слоя: железо и никель, находящиеся в жидкой фазе. Температура среды здесь колеблется от 4400 до 6100 градусов по Цельсию по мере приближения к центру.

Какая бывает земная кора

Факты: Земля-космос

От Солнца до Земли 150 млн км. Свет от нашего светила до поверхности планеты идет чуть больше восьми минут. И чем дальше звезда или планета от нас, тем больше света до нас доходит. К примеру, есть звезды, свет которых достигает до нас за тысячи лет. В результате этого мы видим «прошлое» звезд и планет. Даже солнце мы видим не в реальном времени, а такое, каким оно было восемь минут назад.

В космосе движется множество комет, космического мусора. Защитный слой Земли защищает нас от них: кометы и космическая пыль сгорают в верхних слоях атмосферы.

Плотность поверхности земли

Внешние сферы земного шара

Какая бывает земная кора

Планета Земля отличается от любого другого известного ученым космического объекта тем, что обладает еще и внешними сферами, к которым принадлежат:

  • гидросфера;
  • атмосфера;
  • биосфера.

Методы исследования этих сфер значительно отличаются, ведь все они очень разнятся по своему составу и объекту изучения.

Гидросфера

Под гидросферой понимается вся водная оболочка Земли, включая как огромные океаны, занимающие примерно 74% поверхности, так и моря, реки, озера и даже небольшие ручьи и водоемы.

Какая бывает земная кора

Наибольшая толщина гидросферы составляет около 11 км и наблюдается в районе Марианской впадины. Именно вода считается источником жизни и тем, что отличается наш шар от всех остальных во Вселенной.

Гидросфера занимает примерно 1,4 млрд. км3 объема. Здесь кипит жизнь, и обеспечиваются условия для функционирования атмосферы.

Атмосфера

Газовая оболочка нашей планеты, надежно закрывающая ее недра от космических объектов (метеоритов), космического холода и других явлений, несовместимых с жизнью.

Какая бывает земная кора

Толщина атмосферы составляет по разным оценкам около 1000 км. Возле поверхности грунта плотность атмосферы составляет плотность 1,225 кг/м3.

На 78% газовая оболочка состоит из азота, на 21% из кислорода, остальное приходится на такие элементы, как аргон, углекислый газ, гелий, метан и прочие.

Биосфера

В независимости от того, как изучают рассматриваемый вопрос ученые, биосфера составляет важнейшую часть структуры Земли – это та оболочка, которая населена живыми существами, включая и самих людей.

Какая бывает земная кора

Биосфера не просто населена живыми существами, но еще и постоянно изменяется под их воздействием, в особенности, под воздействием человека и его деятельности. Целостное учение об этой сфере разработал великий ученый В. И. Вернадский. Самое это определение ввел австрийский геолог Зюсс.

Расстояние до центра Земли

Для того, чтобы просчитать, сколько километров до центра Земли, нужно сначала понять, какую форму имеет наша планета. Это – слегка приплюснутый эллипсоид. Землю можно было бы назвать также геоидом, но в идеале она должна была бы быть тогда полностью жидкой. Свои нюансы вносит и рельеф. Несколько познавательных фактов о рельефе:

  • самая высокая точка поверхности Земли – гора Эверест (высота – 8848 метров над уровнем моря);
  • самая глубока точка Земли – Марианская впадина (глубина – 10994 метра под уровнем моря);
  • экваториальный диаметр имеет протяженность на 43 км больше, чем полярный;

Высчитывается расстояние до центра Земли в км, исходя из полярного и экваториального радиусов, которые составляют 6356,77 км и 6378,160 км соответственно.

Используем косвенные инструменты исследования

Из-за этого недра нашей планеты, размещённые на значительной глубине, анализируют по результатам сейсмической разведки. Каждый час в разных точках Земли отмечается примерно десять колебаний ее поверхности. На основании полученных данных тысячи сейсмических станций проводят исследование распространения волн при землетрясении. Эти колебания распространяются точно так же, как круги на воде от брошенного объекта. Когда волна проникает в более уплотнённый слой, её скорость резко изменяется. Используя полученные данные, учёные смогли определить границы внутренних оболочек нашей планеты. В строении Земли различают три основных слоя.

Наша планета – голубая путешественница в космосе

Нахождение Земли недалеко от Солнца влияет на наличие тех или других химических веществ как в жидком, так и газообразном состоянии. Благодаря этому состав Земли разнообразен, образовалась атмосфера, гидросфера и литосфера. Атмосфера в основном состоит из смеси газов: азота и кислорода 78% и 21% соответственно. А также углекислого газа — 1,6% и ничтожного количества инертных газов, таких как гелий, неон, ксенон и других.

Гидросфера нашей планеты состоит из воды и занимает 3/4 её поверхности. Земля — единственная известная на сегодня планета Солнечной системы, которая обладает гидросферой. Вода сыграла решающую роль в процессе возникновения жизни на Земле. Благодаря ее циркуляции и высокой теплоёмкости гидросфера уравновешивает климатические условия на разных широтах и формирует климат на планете. Её представляют океаны, реки и подземные воды. Твёрдая часть нашей планеты состоит из осадочных образований, гранитного и базальтового слоя.

За какое время можно обойти планету пешком

Длина экваториальной окружности в километрах рассчитана. Зная эту величину и предполагаемую скорость пешехода, определяют, сколько времени понадобится, чтобы обойти Землю. Применяется формула: t=S:V. Латинские буквы обозначают:

  • t — время;
  • S — путь;
  • V — скорость.

Чтобы пройти Землю пешком по экватору, понадобится преодолеть 40075 км. Средняя скорость пешехода — 6 км/ч. Если подставить эти значения в формулу, выйдет: 40075/6=6679 часов. После перевода в сутки получается 278.

Без остановок никто не идет. Если в день передвигаться 6 часов, понадобится времени в 4 раза больше — 1112 суток. Это составит 3 года.

Расчеты гипотетические, потому что экватор пересекает сушу только через Америку, Африку, Индонезийские острова. Остальной путь лежит через океаны: Атлантический, Индийский, Тихий.

Вычисления радиуса и диаметра

Зная окружность, вычислить радиус и диаметр земного шара несложно. Применяют формулы: d=l/π; r=½*π. Буквами обозначены:

  1. d — диаметр. Соединяет противоположные стороны окружности, проходит через центр.
  2. l — длина окружности. Это линия на равной дистанции от центра.
  3. r — радиус. Так называют линию, проложенную от центра до произвольной точки на окружности.
  4. π — число, равное 3,14. Оно бесконечное, поэтому чем больше цифр после запятой, тем точнее расчеты.

Необязательно использовать обе формулы. Диаметр и радиус взаимосвязаны. Вычисляют один параметр, после чего узнают второй: диаметр в 2 раза больше радиуса и наоборот.

Величина окружности разная на экваторе и полюсах. Поэтому экваториальный радиус больше полярного. Первый — 6378 км, второй — 6356 км. Интересно, что диаметр Солнца больше диаметра Земли в 109 раз.

Как измерить длину окружности Земли

Чтобы измерить окружность земли по экватору, существуют специальные приборы и космические спутники. Но, применяя знания по геометрии, получают данные без сложных инструментов. Впервые такую работу выполнил ученый Древней Греции Эратосфен.

Согласно преданиям, путешественники сообщили ему, что в день летнего солнцестояния они наблюдали, как освещалось дно самых глубоких колодцев, а предметы не отбрасывали тени. Солнце стояло в зените. Это происходило в 500 милях южнее Александрии, в Сиене. Астроном знал, что в родном городе предметы отбрасывают тень, а солнце не заглядывает на дно глубоких колодцев.

В полдень самого продолжительного летнего дня Эратосфен измерил длину тени городского обелиска, высоту он знал. По этим данным рассчитал протяженность условной линии, соединяющей вершины обелиска и тени. Зная эти данные, просчитал углы воображаемого треугольника — 7°. Это значило, что Сиена настолько смещена относительно Александрии.

Угол 7° — это приблизительно ⅟50 часть замкнутой окружности, которая всегда имеет 360°. Астроном продолжил вычисления дальше. Он умножил расстояние до Сиены на 50. Получилась длина окружности Земли — 25000 миль. Современные исследования показали, что ученый не сильно ошибался: экваториальная окружность планеты равна 24894 мили или 40075 км.

Погрешность Эратосфена объясняется не примитивностью расчетов, которыми он пользовался. Этот способ точный, применяется и сегодня, только с более совершенными инструментами. Ученый не знал точного расстояния между городами. Оно в те времена измерялось количеством дней, проведенных караваном в пути.

Вторая причина неточности — Александрия и Сиена расположены на разных меридианах. Сегодня рассчитывают окружность между объектами, которые находятся на одном меридиане.

Какая бывает земная кора
Измерение окружности Земли по Эратосфену. Credit: kipmu.ru.

Определение понятия

Экватором называют условную линию, которая проходит ровно по центру нашей планеты. Географическая широта экватора 0 градусов. Он служит точкой отсчета и дает возможность ученым проводить различные расчеты, о которых речь пойдет ниже. Экватор делит земной шар на две абсолютно равные части.

Важно! На территориях, по которым проходит экватор, ночь всегда равна дню, без отклонения даже на долю секунды.

Экваториальная зона получает наибольшее количество ультрафиолетовых лучей. Следовательно, чем дальше находится точка от условной линии, тем меньше тепла и света к ней поступает. Именно поэтому в районе условной линии зарегистрированы самые высокие температурные показатели.

Геодезия

Какая бывает земная кора

Геоид

Для правильного изучения размеров и формы Земли используется геодезия, отрасль науки, ответственная за измерение размера и формы Земли с помощью обследований и математических расчетов.

На протяжении всей истории, геодезия была важной отраслью науки, так как ранние ученые и философы пытались определить форму Земли. Аристотель — первый человек, которому приписывают попытку рассчитать размер Земли и, следовательно, ранний геодезист. Затем последовал греческий философ Эратосфен, оценивший окружность Земли в 40 233 км, что лишь немного больше принятого в наши дни измерения.

Чтобы исследовать Землю и использовать геодезию, исследователи часто ссылаются на эллипсоид, геоид и референц-эллипсоид. Эллипсоид является теоретической математической моделью, которая показывает гладкое, упрощенное представление о поверхности Земли. Он используется для измерения расстояний на поверхности без учета таких факторов, как изменения высоты и формы рельефа. С учетом реальности земной поверхности, геодезисты используют геоид — модель планеты, которая строится с помощью глобального среднего уровня моря и, следовательно, принимает во внимание перепады высот.

Основой геодезии на сегодняшний день являются данные, которые выступают в качестве ориентиров для глобальных геодезических работ. Сегодня такие технологии, как спутники и глобальные системы позиционирования (GPS), позволяют геодезистам и другим ученым делать чрезвычайно точные измерения поверхности Земли. На самом деле они настолько точны, что позволяют получать данные о поверхности Земли с точностью до сантиметров, обеспечивая наиболее точные измерения размера и формы Земли.

Как формировалось знание о мантии?

В начале 20-го века интенсивно обсуждалась граница Мохоровича. Некоторые исследователи считали, что именно там происходит метаморфический процесс, при котором формируются породы с высокой плотностью. Другие ученые объясняли резкое увеличение скорости движения сейсмических волн сменой содержания состава пород от относительно лёгких к более тяжёлым типам.

Сейчас эта точка зрения считается основной в понимании и методах исследования процессов, происходящих внутри планеты. Сама мантия Земли непосредственно недоступна для прямых исследований по причине глубокого залегания, и она не выходит на поверхность.

плотность земли
Поэтому основная информация получена геохимическими и геофизическими способами. В целом реконструкция через имеющиеся источники — весьма сложная задача. Мантия, принимающая излучение из центра, разогрета от 800 градусов наверху до 2000 градусов около ядра. Предполагается, собственно, что вещество мантии пребывает в беспрерывном движении.

Источник: maginarius.ru

Как изучают строение Земли и других планет?

Изучение внутреннего строения планет, в том числе нашей Земли – чрезвычайно сложная задача. Мы не можем физически “пробурить” земную кору вплоть до ядра планеты, поэтому все знания полученные нами на данный момент – это знания полученные “на ощупь”, причем самым буквальным образом.

Дело в том, что наиболее простой и надежный способ узнать что же находится под поверхностью планеты и входит в состав её коры – это изучении скорости распространения сейсмических волн в недрах планеты.

Известно, что скорость продольных сейсмических волн возрастает в более плотных средах и напротив, уменьшается в рыхлых грунтах. Соответственно, зная параметры разных типов породы и имея расчетные данные о давлении и т.п., “слушая” полученный ответ, можно понять через какие слои земной коры прошел сейсмический сигнал и как глубоко они находятся под поверхностью.

Изучение строения земной коры с помощью сейсмоволн

Сейсмические колебания могут быть вызваны источни­ками двух видов: естественными и искусственными. Естествен­ными источниками колебаний являются землетрясения, волны которых несут необходимую информацию о плотности по­род, сквозь которые они проникают.

Арсенал искусственных источников колебаний более обширен, но в первую очередь ис­кусственные колебания вызываются обыкновенным взрывом, однако есть и более “тонкие” способы работы – генераторы направленных импульсов, сейсмовибраторов и т.п.

Проведением взрывных работ и изучением скоростей сейсмических волн занимается сейсморазведка — одна из важнейших отраслей современной геофизики.

Что же дало изучение сейсмических волн внутри Земли? Анализ их распространения выявил несколько скачков изменения ско­рости при прохождении через недра планеты.

Земная кора

Первый скачок, при котором скорости возрастают с 6,7 до 8,1 км/с, как счи­тают геологи, регистрирует подошву земной коры. Эта по­верхность располагается в разных местах планеты на различных уровнях, от 5 до 75 км. Граница земной коры и нижележащей оболочки — мантии, получила название «поверхности Мохоровичича», по имени впервые установившего ее югославского ученого А. Мохо­ровичича.

Мантия

Мантия залегает на глубинах до 2 900 км и делится на две части: верхнюю и нижнюю. Граница между верхней и нижней мантией также фиксируется по скачку скорости рас­пространения продольных сейсмических волн (11,5 км/с) и располагается на глубинах от 400 до 900 км.

Верхняя ман­тия имеет сложное строение. В ее верхней части имеется слой расположенный на глубинах 100—200 км, где проис­ходит затухание поперечных сейсмических волн на 0,2— 0,3 км/с, а скорости продольных волн, по существу, не ме­няются. Этот слой назван волноводом. Его толщина обычно равняется 200—300 км.

Часть верхней мантии и кора, залегаю­щие над волноводом, называются литосферой, а сам слой пониженных скоростей — астеносферой.

Таким образом, литосфера представляет собой жесткую твердую оболочку, подстилаемую пластичной астеносфе­рой. Предполагается, что в астеносфере возникают процес­сы, вызывающие движение литосферы.

Ядро Земли

В подошве мантии происходит резкое уменьшение ско­рости распространения продольных волн с 13,9 до 7,6 км/с. На этом уровне лежит граница между мантией и ядром Зем­ли, глубже которой поперечные сейсмические волны уже не распространяются.

Радиус ядра достигает 3500 км, его объем: 16% объема планеты, а масса: 31% массы Земли.

Многие ученые считают, что ядро находится в расплавленном состоя­нии. Его внешняя часть характеризуется резко пониженными значениями скоростей продольных волн, во внутренней ча­сти (радиусом в 1200 км) скорости сейсмических волн вновь возрастают до 11 км/с. Плотность пород ядра равна 11 г/см3, и она обуславливается наличием тяжелых элементов. Таким тяжелым элементом может быть железо. Вероятнее всего, железо является составной частью ядра, так как ядро чисто железного или железо-никелевого состава должно иметь плотность, на 8—15% превышающую существующую плот­ность ядра. Поэтому к железу в ядре, по-видимому, при­соединены кислород, сера, углерод и водород.

Геохимический метод изучения строения пла­нет

Имеется еще один путь изучения глубинного строения пла­нет — геохимический способ. Выделение различных оболочек Земли и других планет земной группы по физическим параметрам находит достаточно четкое геохимическое подтверждение, основанное на теории гетерогенной аккреции, согласно кото­рой состав ядер планет и их внешних оболочек в основной своей части является исходно различным и зависит от само­го раннего этапа их развития.

В результате этого процесса в ядре концентрировались наиболее тяжелые (железо-никелевые) компоненты, а во внешних оболочках — более легкие сили­катные (хондритовые), обогащенные в верхней мантии лету­чими веществами и водой.

Важнейшей особенностью планет земной группы (Меркурий, Венера, Земля, Марс) явля­ется то, что их внешняя оболочка, так называемая кора, со­стоит из двух типов вещества: «материкового» — полевошпа­тового и «океанического» — базальтового.

Материковая (континентальная) кора Земли

Материковая (континентальная) кора Земли сложена гранитами или породами, близкими им по составу, т. е. породами с большим количеством полевых шпатов. Образование «гра­нитного» слоя Земли обусловлено преобразованием более древних осадков в процессе гранитизации.

Гранитный слой надо рассматривать как специ­фическую оболочку коры Земли — единственной планеты, на которой получили широкое развитие процессы дифферен­циации вещества с участием воды и имеющей гидросферу, кислородную атмосферу и биосферу. На Луне и, вероятно, на планетах земной группы континентальная кора слагается габбро-анортозитами — породами, состоящими из большого количества полевого шпата, правда, несколько другого соста­ва, чем в гранитах.

Этими породами сложены древнейшие (4,0—4,5 млрд. лет) поверхности планет.

Океаническая (базальтовая) кора Земли

Океаническая (базальтовая) кора Земли образована в ре­зультате растяжения и связана с зонами глубинных разло­мов, обусловивших проникновение к базальтовым очагам верхней мантии. Базальтовый вулканизм накладывается на ра­нее сформировавшуюся континентальную кору и является от­носительно более молодым геологическим образованием.

Проявления базаль­тового вулканизма на всех планетах земного типа, по-видимому, аналогичны. Широкое развитие базальтовых «морей» на Луне, Марсе, Меркурии, очевидно, связано с растяжени­ем и образованием вследствие этого процесса зон проницае­мости, по которым базальтовые расплавы мантии устрем­лялись к поверхности. Этот механизм проявления базальто­вого вулканизма является более или менее сходным для всех планет земной группы.

Спутница Земли — Луна также имеет оболочечное строе­ние, в целом повторяющее земное, хотя и имеющее разительно отличие по составу.

Метод измерения теплового потока для изучения строения пла­нет

Еще один путь изучения глубинного строения Земли — это изучение ее теплового потока. Известно, что Земля, го­рячая изнутри, отдает свое тепло. О нагреве глубоких гори­зонтов свидетельствуют извержения вулканов, гейзеры, го­рячие источники. Тепло — главный энергетический источник Земли.

Прирост температуры с углублением от поверхно­сти Земли в среднем составляет около 15° С на 1 км. Это значит, что на границе литосферы и астеносферы, располо­женной примерно на глубине 100 км, температура должна быть близкой к 1500° С. Установлено, что при такой темпера­туре происходит плавление базальтов. Это означает, что астеносферная оболочка может служить источником магмы ба­зальтового состава.

С глубиной изменение температуры про­исходит по более сложному закону и находится в зависи­мости от изменения давления. Согласно расчетным данным, на глубине 400 км температура не превышает 1600° С и на границе ядра и мантии оценивается в 2500—5000° С.

Установлено, что выделение тепла происходит постоян­но по всей поверхности планеты. Тепло — важнейший физи­ческий параметр. От степени нагрева горных пород зависят некоторые их свойства: вязкость, электропроводность, магнитность, фазовое состояние. Поэтому по термическому состоянию можно судить о глубинном строении Земли.

Изме­рение температуры нашей планеты на большой глубине — задача технически сложная, так как измерениям доступны лишь первые километры земной коры. Однако внутренняя температура Земли может быть изучена косвенным путем при измерениях теплового потока.

Несмотря на то, что основным источ­ником тепла на Земле является Солнце, суммарная мощность теплового потока нашей планеты превышает в 30 раз мощность всех электростанций Земли.

Измерения показали, что средний тепловой поток на кон­тинентах и в океанах одинаков. Этот результат объясняется тем, что в океанах большая часть тепла (до 90%) поступает из мантии, где интенсивнее происходит процесс переноса вещества движущимися потоками — конвекцией.

Конвек­ция — процесс, при котором разогретая жидкость расширяет­ся, становясь легче, и поднимается, а более холодные слои опускаются. Поскольку мантийное вещество ближе по сво­ему состоянию к твердому телу, конвекция в нем протека­ет в особых условиях, при невысоких скоростях течения ма­териала.

Какова же тепловая история нашей планеты? Ее пер­воначальный разогрев, вероятно, связан с теплом, образован­ным при соударении частиц и их уплотнении в собственном поле силы тяжести. Затем тепло явилось результатом радио­активного распада. Под воздействием тепла возникла слои­стая структура Земли и планет земной группы.

Радиоактив­ное тепло в Земле выделяется и сейчас. Существует гипоте­за, согласно которой на границе расплавленного ядра Земли продолжаются и поныне процессы расщепления вещества с выделением огромного количества тепловой энергии, разо­гревающей мантию.

Источник: компиляция из интернет-источников, в том числе по книге “Геологи изучают планеты”, Недра, 1984 г., Я.Г. Кац, В.В. Козлов, Н.В. Макарова, Е.Д. Сулиди-Кондратьев

Источник: starcatalog.ru

Литосфера и земная кора — 2 в 1

Эти два понятия так часто встречаются в прессе и литературе, что вошли повседневный словарь современного человека. Оба слова используются для обозначения поверхности Земли или другой планеты — однако между понятиями есть разница, базирующаяся на двух принципиальных подходах: химическом и механическом.

Химический аспект — земная кора

Если разделять Землю на слои, руководствуясь различиями в химическом составе, верхним слоем планеты будет земная кора. Это относительно тонкая оболочка, заканчивающаяся на глубине от 5 до 130 километров под уровнем моря — океаническая кора тоньше, а континентальная, в районах гор, толще всего. Хотя 75% массы коры приходится только на кремний и кислород (не чистые, связанные в составе разных веществ), она отличается наибольшим химическим разнообразием среди всех слоев Земли.

Строение земной коры

Играет роль и богатство минералов — различных веществ и смесей, созданных за миллиарды лет истории планеты. Земная кора содержит не только «родные» минералы, которые были созданы геологическими процессами, но и массивное органическое наследие, вроде нефти и угля, а также инопланетные, метеоритные включения.

Физический аспект — литосфера

Опираясь на физические характеристики Земли, такие как твердость или упругость, мы получим несколько иную картину — внутренности планеты будет укутывать литосфера (от др. греческого lithos, «скалистый, твердый» и «sphaira» сфера). Она намного толще земной коры: литосфера простирается до 280 километров вглубь и даже захватывает верхнюю твердую часть мантии!

Характеристики этой оболочки полностью соответствуют названию — это единственный, кроме внутреннего ядра, твердый слой Земли. Прочность, правда, относительная — литосфера Земли является одной из самых подвижных в Солнечной системе, из-за чего планета уже не раз изменяла свой внешний вид. Но для значительного сжатия, искривления и прочих эластических изменений требуются тысячи лет, если не больше.

Последствия смещения литосферных плит. Самое известное такое место — разлом Сан-Андреас в Калифорнии
  • Интересный факт — планета может и не обладать поверхностной корой. Так, поверхность Меркурия — это его затвердевшая мантия; кору ближайшая к Солнцу планета потеряла давным-давно в результате многочисленных столкновений.

Подводя итог, земная кора — это верхняя, химически разнообразная часть литосферы, твердой оболочки Земли. Первоначально они обладали практически одинаковым составом. Но когда на глубины воздействовала только нижележащая астеносфера и высокие температуры, в формировании минералов на поверхности активно участвовали гидросфера, атмосфера, метеоритные остатки и живые организмы.

Литосферные плиты

Еще одна черта, которая отличает Землю от других планет — это разнообразие на ней разнотипных ландшафтов. Конечно, свою невероятно большую роль сыграли воздух и вода, о чем мы расскажем немного позже. Но даже основные формы планетарного ландшафта нашей планеты отличаются от той же Луны. Моря и горы нашего спутника — это котлованы от бомбардировки метеоритами. А на Земле они образовались в результате сотен и тысяч миллионов лет движения литосферных плит.

Смещения литосферы

О плитах вы уже наверняка слышали — это громадные устойчивые фрагменты литосферы, которые дрейфуют по текучей астеносфере, словно битый лед по реке. Однако между литосферой и льдом есть два главных отличия:

  • Прорехи между плитами небольшие, и быстро затягиваются за счет извергающегося с них расплавленного вещества, а сами плиты не разрушаются от столкновений.
  • В отличие от воды, в мантии отсутствует постоянное течение, которое могло бы задавать постоянное направление движения материкам.

Так, движущей силой дрейфа литосферных плит является конвекция астеносферы, основной части мантии — более горячие потоки от земного ядра поднимаются к поверхности, когда холодные опускаются обратно вниз. Учитывая то, что материки различаются в размерах, и рельеф их нижней стороны зеркально отражает неровности верхней, движутся они также неравномерно и непостоянно.

Динамическая схема Земли. Смотреть в полном размере.

Главные плиты

За миллиарды лет движения литосферных плит они неоднократно сливались в суперконтиненты, после чего снова разделялись. В ближайшем будущем, через 200– 300 миллионов лет, тоже ожидается образование суперконтинента под именем Пангея Ультима. Рекомендуем посмотреть видео в конце статьи — там наглядно показано, как мигрировали литосферные плиты за последние несколько сотен миллионов лет. Кроме того, силу и активность движения материков определяет внутренний нагрев Земли — чем он выше, тем сильнее расширяется планета, и тем быстрее и свободнее движутся литосферные плиты. Однако с начала истории Земли ее температура и радиус постепенно снижаются.

  • Интересный факт — дрейф плит и геологическая активность не обязательно должны питаться от внутреннего самонагрева планеты. К примеру, Ио, спутник Юпитера, обладает множеством активных вулканов. Но энергию для этого дает не ядро спутника, а гравитационное трение с Юпитером, из-за которого недра Ио разогреваются.

Границы литосферных плит весьма условны — одни части литосферы тонут под другими, а некоторые, как Тихоокеанская плита, вообще скрыты под водой. Геологи сегодня насчитывают 8 основных плит, которые покрывают 90 процентов всей площади Земли:

  • Австралийская
  • Антарктическая
  • Африканская
  • Евразийская
  • Индостанская
  • Тихоокеанская
  • Северо-Американская
  • Южно-Американская
Карта литосферных плит

Такое разделение появилось недавно — так, Евразийская плита еще 350 миллионов лет назад состояла из отдельных частей, во время слияния которых образовались Уральские горы, одни из самых древних на Земле. Ученые по сей день продолжают исследование разломов и дна океанов, открывая новые плиты и уточняя границы старых.

Геологическая активность

Литосферные плиты движутся очень медленно — они наползают друг друга со скоростью 1–6 см/год, и отдаляются максимально на 10-18 см/год. Но именно взаимодействие между материками создает геологическую активность Земли, ощутимую на поверхности — извержения вулканов, землетрясения и образование гор всегда происходят в зонах контакта литосферных плит.

Однако есть исключения — так называемые горячие точки, которые могут существовать и в глубине литосферных плит. В них расплавленные потоки вещества астеносферы прорываются наверх, проплавляя литосферу, что приводит к повышенной вулканической активности и регулярным землетрясениям. Чаще всего это происходит неподалеку от тех мест, где одна литосферная плита наползает на другую — нижняя, вдавленная часть плиты погружается в мантию Земли, повышая тем самым давление магмы на верхнюю плиту. Однако сейчас ученые склоняются к той версии, что «утонувшие» части литосферы расплавляются, повышая давление в глубинах мантии и создавая тем самым восходящие потоки. Так можно объяснить аномальную отдаленность некоторых горячих точек от тектонических разломов.

Динамика мантии
  • Интересный факт — в горячих точках часто образуются щитовые вулканы, характерные своей пологой формой. Они извергаются много раз, разрастаясь за счет текучей лавы. Также это типичный формат инопланетных вулканов. Самый известный из них вулкан Олимп на Марсе, самая высокая точка планеты — высота его достигает 27 километров!

Океаническая и континентальная кора Земли

Взаимодействие плит также приводит к формированию двух различных типов земной коры — океанической и континентальной. Поскольку в океанах, как правило, находятся стыки различных литосферных плит, их кора постоянно изменяется — разламывается или поглощается другими плитами. На месте разломов возникает непосредственный контакт с мантией, откуда поднимается раскаленная магма. Остывая под воздействием воды, она создает тонкий слой из базальтов — основной вулканической породы. Таким образом, океаническая кора полностью обновляется раз в 100 миллионов лет — самые старые участки, которые находятся в Тихом океане, достигают максимального возраста в 156–160 млн лет.

Важно! Океаническая кора — это не вся та земная кора, что находится под водой, а лишь ее молодые участки на стыке материков. Часть континентальной коры находится под водой, в зоне стабильных литосферных плит.

Возраст океанической коры (красный соответствует молодой коре, синий — старой). Смотреть в полном размере.

Континентальная кора, напротив, находится на стабильных участках литосферы — ее возраст на отдельных участках превышает 2 миллиарда лет, а некоторые минералы зародились вместе с Землей! Отсутствие активных разрушительных процессов позволило развиться мощному слою осадочных пород, а также сохранить прослойки разных эпох развития планеты. Это позволило также создать метаморфические вещества — минералы, сформированные за счет попадания осадочных или магматических пород в непривычные условия. Яркими примерами таких минералов являются алмазы.

Литосфера и кора Земли в астрономии

Изучение Земли редко когда происходят просто так — часто поиски ученых имеют вполне четкую практическую цель. Это особенно актуально в изучении литосферы: на стыках литосферных плит выходят наружу целые россыпи руд и ценных минералов, для добычи которых в ином месте пришлось бы бурить многокилометровую скважину. Многие данные о земной коре были получены благодаря нефтепромыслу — в поисках месторождений нефти и газа ученые немало узнали о внутренних механизмах нашей планеты.

Вулканы Марса

Поэтому астрономы не просто так стремятся к подробному изучению коры других планет — ее очертания и внешний вид раскрывают все внутреннее устройство космического объекта. Например, на Марсе вулканы очень высокие и многократно извергаются, когда на Земле они постоянно мигрируют, возникая периодически в новых местах. Это свидетельствует о том, что на Марсе отсутствует такое активное движение литосферных плит, как на Земле. Вместе с отсутствием магнитного поля, стабильность литосферы стала главным доказательством остановки ядра красной планеты и постепенного остывания ее недр.

Полная версия: https://spacegid.com/litosfera-i-zemnaya-kora.html

Источник: zen.yandex.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.