Как появился большой взрыв


Как характерная черта, основанная на наблюдении космической инфляции, может провозгласить научную революцию века (18 марта 2014 года)

Несмотря на название, Теория большого взрыва – это вообще не теория взрыва. Это теория последствий взрыва.
— Алан Гут

Когда вы представляете себе начало Вселенной, вы, наверно, думаете о горячем, плотном состоянии, наполненном материей и излучением, которое невероятно быстро расширяется и охлаждается (и, кстати, так всё и было). Но чего нельзя сделать – так это экстраполировать назад до произвольно горячего и плотного состояния. Вы можете думать, что без проблем пройдёте назад по времени, до «сингулярности» с бесконечными температурой и плотностью, когда вся энергия Вселенной была сжата в единую точку – но это не соответствует действительности.

Как появился большой взрыв

Одна из замечательных особенностей Вселенной состоит в том, что излучение, зародившееся в то время, всё ещё существует. Оно претерпевало отражения от заряженных частиц во времена Вселенной, бывшей юной, горячей и ионизированной (а это продлилось в течение 380 000 лет). Когда Вселенная стала электрически нейтральной (когда материя впервые сформировала нейтральные атомы), оставшееся от Большого взрыва излучение устремилось по прямой, не прерываемое этой нейтральной материей.


Как появился большой взрыв

По мере расширения Вселенной — из-за того, что энергия излучения определяется длиной волны – эти длина волны растягивалась вместе с расширением пространства, а энергия с тех пор весьма сильно упала. Но это очень помогает нам, поскольку даёт материал для наблюдений.

Как появился большой взрыв

И если бы мы могли увидеть и измерить эти волны, они дали бы нам окошко для заглядывания в раннюю Вселенную! И вот, в 1960-х, Арно Пензиас и Роберт Уилсон обнаружили это остаточное свечение от Большого взрыва – излучение, равномерно идущее во всех направлениях, всего лишь на несколько градусов выше абсолютного нуля – и в нём учёные сразу узнали микроволновое космическое фоновое излучение, которое так долго искали!

Как появился большой взрыв

Спустя 50 лет мы добились невероятного прогресса. Мы смогли не только измерить энергетический спектр этого излучения, но и измерить присущие ему крошечные флуктуации температуры, а так же их масштабы, их взаимосвязь между собой и как это все относится к эволюции Вселенной.


Как появился большой взрыв
Как появился большой взрыв

В частности, мы узнали, как выглядела Вселенная в возрасте 380 000 лет, из чего она сделана, и как взаимодействующая материя повлияла на излучение на его пути к нашим глазам длиною в 13,8 миллиардов лет.

Но есть ещё кое-что, что может дать нам информацию об этих вещах: мы можем изучать не только энергию и температуру света, но и его поляризацию. Дайте-ка я поясню.

Как появился большой взрыв

По сути, свет – это электромагнитная волна. Значит, он состоит из колеблющихся электрических и магнитных полей, перпендикулярных друг другу, у него есть особая длина волны (определяемая энергией), и он распространяется со скоростью света.

Пролетая мимо заряженных частиц, отражаясь от поверхности, взаимодействуя с другими электромагнитными явлениями, электрические и магнитные поля реагируют с окружающей их средой.

Как появился большой взрыв

Изначально полученный свет должен быть неполяризованным, но огромное количество вещей приводит к его поляризации самыми разными способами. Иначе говоря, свет, который обычно имеет случайно ориентированные электрические и магнитные поля, может испытать взаимодействия, в результате которых у них появится предпочтительная ориентация. И вот она уже сможет рассказать нам очень много познавательных вещей про то, с кем свет взаимодействовал за свою историю.


Как появился большой взрыв

Эффект поляризации фонового микроволнового излучения впервые открыли в прошлом десятилетии при помощи спутника WMAP, а от обсерватории «Планк» в будущем ожидают ещё лучших результатов (но этот тип исследований, надо отметить, очень сложен в реализации). Поляризация, благодаря которой свет выглядит «радиальным», называется Е-модой поляризации (для электрических полей), а та, из-за которой свет «закручен», называется B-модой поляризации (для магнитных полей).

Как появился большой взрыв

Большинство наблюдаемых эффектов произошло из-за миллиардов световых лет материи, которую прошёл насквозь свет; мы называем это «передним планом». Ему пришлось пройти весь путь во всех направлениях со времён эры излучения, чтобы дойти сегодня до наших глаз.

Как появился большой взрыв

Но крохотная, малюсенькая часть поляризации должна была дойти до нас с более ранних времён. Видите ли, до Большого взрыва – до того, как Вселенную вообще можно было бы описать, как горячую, плотную, и наполненную материей и излучением – Вселенная просто экспоненциально расширялась; это был период космической инфляции. В это время во Вселенной господствовала энергия, присущая самому пустому пространству – энергия в количестве гораздо большем, чем присутствует в ней сегодня.


Как появился большой взрыв

В это время квантовые флуктуации – присущие самому пространству – растягивались по Вселенной, и обеспечивали изначальные флуктуации плотности, которые породили сегодняшнюю Вселенную.

Но только в регионах, где закончилась инфляция, и где эта энергия, присущая пространству, преобразовывается в материю и излучение, и случается Большой взрыв.

Как появился большой взрыв

И в этих регионах – где закончилась инфляция – у нас получается Вселенная, гораздо большая, чем наблюдаемый её участок. Это и есть идея мультивселенной, и именно поэтому мы считаем, что, скорее всего, живём в ней.

Как появился большой взрыв

А что насчёт самой этой инфляции? Можем ли мы что-нибудь узнать о ней?

Вы можете решить, что квантовые флуктуации – и посеянные ими флуктуации плотности – это всё, что у нас есть. И до недавнего времени я бы вам так и сказал. Но в теории инфляция порождает и гравитационные волны, которые мы до сих пор не могли обнаружить. LISA, космическая антенна лазерного интерферометра (проект, отодвинутый в лучшем случае в 2030-е), был нашей лучшей надеждой на прямое обнаружение волн.


Как появился большой взрыв

Но и без LISA гравитационные волны можно обнаружить непрямым методом. Хотя гравитационные волны и свет передвигаются с одинаковой скоростью, свет замедляется при проходе через среду. Это происходит даже в такой разреженной среде, как межгалактическое и межзвёздное пространство! А поскольку гравитационные волны не замедляются – на них влияет только кривизна пространства-времени – они обгоняют свет и сами приводят к поляризации!

Как появился большой взрыв

Вообще, именно деформации пространства-времени на определённых масштабах растягивают волны света определённым образом, когда они путешествуют от Большого взрыва и до наших глаз.

Как появился большой взрыв

Конкретно, характерные признаки гравитационных волн должны проявиться, как B-мода поляризации, и они должны оставить специфический рисунок на больших масштабах.

Хотя в обсерватории «Планк» должны это увидеть и подтвердить, его опередила команда, работающая на Южном полюсе: BICEP2!

Как появился большой взрыв

На масштабах порядка 1,5 градусов B-мода поляризации весьма очевидна, и её уже объявляли открытой, правда со значимостью 2,7σ (примечание: на данных масштабах значимость составляет 5,2σ, но им надо убедить всех, что этот уровень обнаружения не появился благодаря комбинации переднего плана и систематики). 2,7σ означает, что существует 2% шанс того, что это обнаружение ложное, и исчезнет с получением большего количества данных. Но в мире науки это довольно большая вероятность, поэтому пока не стоит считать это открытие свершившимся фактом.


Как появился большой взрыв

Если открытие выдержит проверку, это будет весьма серьёзным событием. Именно это нам надо измерить, и не только для того, чтобы узнать, была ли инфляция (скорее всего, она была), но чтобы узнать, какая из моделей инфляции описывает Вселенную?

«Планк», выпустив первые результаты в прошлом году, не обнаружил вообще ничего.

Как появился большой взрыв

Существует несколько общих типов инфляции, которые могли произойти: в частности, если значение r в указанных графиках окажется равным нулю, это будет в пользу модели «малых полей», а если он окажется чем-то огромным (например, 0,2, судя по этим результатам), это будет доказательством модели «больших полей».

Как появился большой взрыв

Однозначный ли это результат? Нет. Нам нужна гораздо лучшая статистика, чтобы объявить это открытием – мы не можем принять эти результаты и объявить: «да, это изначальные гравитационные волны, оставшиеся со времени до инфляции», так как нам нужны доказательства получше. 2,7σ – это неплохо, но в жестоком мире физики нам нужен подтверждённый результат в 5σ. Мусорная корзина истории физики полна «открытий» с 3σ, которые исчезли с поступлением новых данных.


Мы знаем, что инфляция была; истоки структуры во Вселенной – её сегодняшний внешний вид, её вид 13,8 миллиардов лет назад, и в любом месте в промежутке – уже рассказал нам об этом. Но есть возможность, и первые намёки, что гравитационные волны также могли остаться. И если выяснится, что мы действительно их увидели, мы должны будем получить подтверждение этому в следующие несколько лет. Но если наблюдение перейдёт в разряд незначительных по мере сбора данных, это не будет означать, что модель инфляции неправильная – только, что не она производит самые сильные B-моды.

Как появился большой взрыв

Это пока ещё не «открытие», но намёк, что мы могли наткнуться на что-то удивительное: первый намёк на то, как родилась наша Вселенная. Если он окажется верным, это будет открытие столетия. Но если новые данные опровергнут его – что вполне может произойти – это не значит, что модель инфляции неправильная; это значит, что гравитационные волны от инфляции меньше, чем предсказывали самые оптимистичные модели.

Но будет оно реальным или нет, мы всё равно узнаем ещё немного о том, как появилась вся наша Вселенная.

Обновление: в комментариях к оригинальной статье читатели сообщали, что в работе упоминается значимость больше, чем 5σ. В частности, они смотрят на определённый участок угловой шкалы, где они и в самом деле видят сигнал со значимостью в 5.2σ.


Как появился большой взрыв

Может ли фокусировка быть за это в ответе? Это единственный компонент, который можно вычеркнуть – если я, конечно, правильно понял работу – со значимостью всего лишь в 2.7σ.

Смотрите сами.

Как появился большой взрыв

Значимость результата не выше, чем у самого вероятного из источников неопределённости, и если даже r и может быть равен нулю, очень важно исключить эту возможность. В работе её, возможно, исключили, но мне не показалось, что это было сделано чётко и ясно. Тем не менее, мне очень интересно, как это всё будет развиваться! Если они исключат фокусировку так же, как и синхротронную эмиссию, ограничение в 5σ будет выполнено, и это уже будет означать Нобелевку!

Более позднее примечание к статье, написанной 18 марта 2014 года:

17 марта 2014 года учёные из Гарвард-Смитсоновского центра астрофизики объявили о обнаружении B-моды на уровне r = 0,2. Однако, более поздний анализ (опубликован 19 сентября 2014), проведённый другой группой исследователей с использованием данных обсерватории «Планк», показал, что результат BICEP2 можно полностью отнести на счёт галактической пыли.

Источник: habr.com

Как была создана Теория “большого взрыва”


В 1917 г. было обнаружено, что в спектре некоторых “туманностей”, спектральные линии явственно смещены к красному концу спектра. А надо сказать, что в ту пору, как и во времена Шарля Мессье, “туманностями”, из-за не совершенства оптических приборов, именовали любые светящиеся объекты на небосклоне, имеющие неясные очертания (т.е. “туманностью” могла быть и классическая туманность и далекая галактика и звездное скопление).

Эдвин Хаббл и красное смещение галактик

Что одним и тем же термином обозначались совсем разные объекты, выяснилось лишь десятилетие спустя, когда известный американский исследователь  Эдвин Хаббл с помощью крупнейшего на то время телескопа установил, что некоторые из туманностей являются скоплениями звезд. С тех пор туманностями астрономы называют лишь разреженные облака газа и пыли. Для объектов же, «распавшихся» на звезды и оказавшихся в действительности огромными и очень далекими от нас звездными системами, придумали термин галактики.

Постепенно к началу 30-х годов сложилось мнение, что главные вещественные составляющие Вселенной — галактики, каждая из которых в среднем состоит приблизительно из ста миллиардов звезд. Солнце вместе с Солнечной системой входит в нашу Галактику “Млечный путь”, и основная масса звезд которую мы наблюдаем на небосклоне, принадлежит той же галактике. Кроме звезд и планет Галактика содержит также значительное количество разреженных газов и космической пыли.


Когда в 1929 г. Эдвин Хаббл составил сводку всех известных к тому времени данных по «красному смещению» в спектрах галактик, результат получился неожиданным. За исключением знаменитой туманности Андромеды (галактика М31) и двух других ближайших звездных систем, в спектрах остальных галактик спектральные линии были смещены к красному концу тем сильнее, чем дальше от нас находились эти галактики.

Величина красного смещения была пропорциональной расстоянию до источника излучения — такова была строгая формулировка неожиданно открытого Хабблом закона, по-простому звучавшего так – если объект удаляется от наблюдателя, его спектр смещается в красную часть, и чем дальше объект от наблюдателя, тем сильнее происходит это смещение.

Расширяющаяся вселенная – проблема не только математики, но и философии!

Если приписать «красное смещение» хорошо известному физикам принципу Доплера (частота излучения объекта изменяется тем сильнее, чем быстрее объект наблюдения движется относительно наблюдателя), то получается, что все галактики с огромными скоростями (в сотни, тысячи и десятки тысяч километров в секунду) разлетаются прочь от Земли. Иными словами, все космические объекты не стоят на месте, а постоянно удаляются друг от друга, то есть Вселенная постоянно расширяется и делает это непрерывно.

Этот вывод казался поначалу явно ошибочным. Рушились сложившиеся веками представления о спокойной, стабильной Вселенной, а главное, был непонятен физический механизм, заставляющий галактики «разбегаться» друг от друга. К этим сомнениям научного характера примешивались и возражения чисто философские.

К началу 30-х годов широкую популярность приобрела теория конечной, замкнутой Вселенной, разработанная Альбертом Эйнштейном. При некоторых упрощающих предположениях о структуре Вселенной и использовании теории относительности можно доказать, что вследствие действия гравитации трехмерное космическое пространство должно быть замкнутым, конечным, хотя и безграничным, как поверхность шара. Это, правда, только аналогия, не больше. Если Вселенную и можно назвать шаром, то шаром четырехмерным, не поддающимся наглядному представлению. В сферическом замкнутом космосе Эйнштейна количество галактик хотя и очень велико, но все же конечно. Значит, конечна и масса такой замкнутой Вселенной, как конечны ее объем и радиус.

Итак, вселенная бесконечна, но что такое «Большой Взрыв»?

А 1922 г. советский математик Александр Александрович Фридман уточнил схему мира, нарисованную Эйнштейном. Он доказал, что замкнутая Вселенная Эйнштейна нестабильна. Она неизбежно должна расширяться: радиус конечной Вселенной должен расти, а вместе с ним будут увеличиваться и расстояния между космическими объектами. Расширяющееся пространство замкнутой Вселенной как бы разрежает находящееся внутри нее вещество. Иначе говоря, модель «расширяющейся Вселенной» была создана еще до того, как расширение всей известной системы галактик стало наблюдаемым фактом.

Но именно этот факт и оказался философски неприемлемым. В самом деле, если Вселенная — четырехмерный шар, то этот шар, вероятно, погружен в какое-то четырехмерное пространство. Но «четвертое измерение» долгое время ассоциировалось со всякой мистикой. Оно было излюбленной темой всевозможных спиритов, пытавшихся с помощью «четвертого измерения» объяснить разные «чудеса». Реальная же многовековая практика человечества совершалась и совершается в трехмерном пространстве. Отсюда и сложилось убеждение, что реально лишь пространство трех измерений, а многомерные пространства — не более чем удобная в ряде случаев математическая абстракция.

Психологически очень трудно было отказаться не только от бесконечной в евклидовом пространстве Вселенной, но и от ее вечности. Такую привычную для сознания вечность теория расширяющейся Вселенной явно не гарантировала. Если экстраполировать процесс расширения в прошлое, легко подсчитать, что около 10 млрд. лет назад радиус Вселенной был близок к нулю. Иначе говоря, «всего» 14 млрд. лет назад Вселенная представляла собой очень небольшой по объему, но зато сверхплотный сгусток вещества и энергии.

Надо заметить, что «возраст» Вселенной, т. е. промежуток времени от начала ее расширения до наших дней, по ряду причин определен не вполне точно. Возможно, этот возраст измеряется 18-20 миллиардами лет (оценка американского астронома Сэндиджа) или даже большим сроком. Важно другое: когда-то Вселенная была крошечной и сверхплотной.

Внезапный (и по неизвестным причинам) взрыв, а точнее то, что называют «Большой Взрыв» этого сгустка и положил начало расширению Вселенной. Если же расширение Вселенной будет длиться вечно, миру грозит «растворение в ничто».

Все это казалось явно абсурдным, противоречащим материалистическим представлениям о мире. Не случайно буржуазные идеалисты тотчас ухватились за экстравагантную теорию расширяющейся Вселенной и объявили ее «первовзрыв» актом божественного творения мира.

С тех пор на протяжении трех десятилетий предпринимались попытки объяснить «красное смещение» каким-нибудь физическим процессом, не связанным с принципом Доплера, а значит, и с разбеганием галактик. Ныне большинство астрофизиков считают, что «красное смещение» в спектрах галактик — чисто доплеровский эффект, а следовательно, разбегание галактик — твердо установленный факт.

Строго говоря, в переводе с языка философии и науки на обычный, это звучало так – да, вселенная постоянно расширяется. И да, когда-то очень давно, она была значительно меньше, плотнее и (с сохранением всего того же, что и сейчас объема атомов, молекул, материи и энергии) сжата в непостижимо плотный с нашей точки зрения “клубочек”, который однажды был “развязан” неким не поддающимся осмыслению и описанию событием, которое мы называем “большой взрыв”.

Что было после «Большого взрыва»? А что было «до» него..?

Как мы можем говорить про какой-то “большой взрыв”, если возраст Вселенной по самым скромным подсчетам составляет 14 миллиардов лет, а возраст Земли – “всего” 4,5 миллиарда? Как мы можем заглянуть так далеко в прошлое и о чем-то уверенно рассуждать?  Как эволюционировала материя от таинственного «первовзрыва» до состояния, в общих чертах близкого к современному? Можно ли достаточно наглядно представить себе первоначальное сверхплотное состояние Вселенной? Насколько близок к нулю был тогда ее объем и что заключалось внутри этого объема?

Сплошные вопросы! И, к сожалению, у нас (по названным выше причинам, включая возраст Земли) нет никакой возможности “отмотать” время назад и увидеть – как же происходил “большой взрыв”, и что было до него.

Однако, благодаря расчетам и наблюдениям, мы можем приблизительно восстановить хронологию событий.

Представьте себе нашу Вселенную, только … сжатую до размеров одной точки. Всё вещество, что есть сейчас и из которого сделаны планеты, звезды, пылевые облака – вот всё это вещество, только сжатое в точку. Невероятное зрелище, как говорит наука, “высокооднородная среда с необычайно высокой плотностью энергии, температурой и давлением”. С современной точки зрения, такой объем вещества в одной точке, должен был находится в сингулярности, то есть, по простому, “не существовать” с точки зрения обычных законов физики. Но в таком деле, как рождение Вселенной, законы физики отдыхают! Физика, впрочем, даже не пытается этот момент объяснить – на этом этапе царят не физические законы, а практически “волшебство” нам пока недоступное и непостижимое.

И вдруг вся эта “сверхточка” “взрывается” и начинает “разворачиваться”, увеличиваясь в объеме, разлетаясь в высь и в ширь, разреживаясь и … остывая.

  • То что произошло с момента и до 10-43  секунд после Большого взрыва, физика также не объясняет (не потому что нет объяснения, то есть происходит некая “магия”, а потому, что наша наука этого пока объяснить не может – в современных условиях невозможно достичь того состояния плотности и температуры вещества). Температура и плотность вещества Вселенной теперь близки к планковским значениям. По окончании этого этапа происходит великое разделение – гравитационное излучение отделилось от вещества.
  • Приблизительно через 10-42 секунд после момента Большого взрыва фазовый переход вызвал экспоненциальное расширение Вселенной. Данный период получил название Космической инфляции и завершился через 10-36 секунд после момента Большого взрыва. После окончания этого периода строительный материал Вселенной представлял собой кварк-глюонную плазму. По прошествии некоторого времени температура упала до значений, при которых стал возможен следующий фазовый переход, называемый бариогенезисом. На этом этапе кварки и глюоны объединились в барионы, такие как протоны и нейтроны. При этом одновременно происходило асимметричное образование как материи, которая превалировала, так и антиматерии, которые взаимно аннигилировали, превращаясь в электромагнитное излучение.
  • Дальнейшее падение температуры привело к следующему фазовому переходу — образованию физических сил и элементарных частиц в их современной форме. После чего наступила эпоха нуклеосинтеза, при которой протоны, объединяясь с нейтронами, образовали ядра дейтерия, гелия-4 и ещё нескольких лёгких изотопов. После дальнейшего падения температуры и расширения Вселенной наступил следующий переходный момент, при котором гравитация стала доминирующей силой. Через 380 тысяч лет после Большого взрыва температура снизилась настолько, что стало возможным существование атомов водорода. После эры рекомбинации материя стала прозрачной для излучения, которое, свободно распространяясь в пространстве, дошло до нас в виде реликтового излучения.

Дальше… дальше уже ничего такого не происходило. Работали привычные нам законы физики, Вселенная расширялась и дальше, возникали звезды и планеты.

И вот тут самое главное:

Необходимо отметить, что на всех стадиях Большого взрыва выполняется так называемый космологический принцип — Вселенная в любой данный момент времени выглядит одинаково для наблюдателя в любой точке пространства. В частности, в любой данный момент во всех точках пространства плотность материи в среднем одна и та же.

То есть Большой взрыв не похож на некий взрыв динамитной шашки в пустом пространстве, когда вещество начинает расширяться из небольшого объёма в окружающую пустоту, образуя сферическое газовое облако с чётким фронтом расширения, за пределами которого — вакуум. Это популярное представление ошибочно.

На самом деле Большой взрыв происходил во всех точках пространства одновременно и синхронно, нельзя указать на какую-либо точку как на центр взрыва, в пространстве нет крупномасштабных градиентов давления и плотности и нет никаких границ или фронтов, отделяющих расширяющееся вещество от пустоты.

Большой взрыв следует представлять как расширение самого пространства вместе с содержащейся в нём материей, которая в среднем в каждой данной точке покоится.

До каких пор будет продолжаться расширение Вселенной?

Как вы могли заметить, сама теория “Большого взрыва”, далеко не всё объясняет. И хотя на самом деле, проблема не в теории как таковой (мы можем объяснить что-то только с точки зрения законов физики, однако ясно, что в момент “рождения вселенной”, т.е. “взрыва”, законы физики просто…. не работали!), в ней все же есть ряд белых пятен, которые ещё предстоит разобрать ученым ближайшего будущего.

К счастью, основные положения теория “Большого взрыва” обоснованы надёжными экспериментальными данными, а современный уровень теоретической физики позволяет вполне достоверно описать эволюцию такой системы во времени, за исключением самого начального этапа — порядка сотой доли секунды от «начала мира» – то есть, хотя мы не можем точно описать, что было в самом-самом начале, мы вполне уверенно можем прогнозировать, как дела будут развиваться дальше.

Так вот, согласно теории Большого взрыва, дальнейшая эволюция Вселенной зависит от средней плотности вещества в современной Вселенной. Если плотность не превосходит некоторого критического значения, Вселенная будет расширяться вечно, если же плотность больше критической, то процесс расширения когда-нибудь остановится и начнётся обратная фаза сжатия, возвращающая к исходному сингулярному состоянию.

Современные наблюдательные данные показывают, что средняя плотность в пределах экспериментальной погрешности (доли процента) равна критической.

Источник: starcatalog.ru

Астрономы употребляют термин «Большой взрыв» в двух взаимосвязанных значениях. С одной стороны этим термином называют само событие, ознаменовавшее зарождение Вселенной около 15 миллиардов лет назад; с другой — весь сценарий ее развития с последующим расширением и остыванием.

Концепция Большого взрыва появилась с открытием в 1920-е годы закона Хаббла. Этот закон описывает простой формулой результаты наблюдений, согласно которым видимая Вселенная расширяется и галактики удаляются друг от друга. Нетрудно, следовательно, мысленно «прокрутить пленку назад» и представить, что в исходный момент, миллиарды лет назад, Вселенная пребывала в сверхплотном состоянии. Такая картина динамики развития Вселенной подтверждается двумя важными фактами.

Космический микроволновой фон

В 1964 году американские физики Арно Пензиас и Роберт Уилсон обнаружили, что Вселенная наполнена электромагнитным излучением в микроволновом диапазоне частот. Последовавшие измерения показали, что это характерное классическое излучение черного тела, свойственное объектам с температурой около −270°С (3 К), т. е. всего на три градуса выше абсолютного нуля.

Простая аналогия поможет вам интерпретировать этот результат. Представьте, что вы сидите у камина и смотрите на угли. Пока огонь горит ярко, угли кажутся желтыми. По мере затухания пламени угли тускнеют до оранжевого цвета, затем до темно-красного. Когда огнь почти затух, угли перестают испускать видимое излучение, однако, поднеся к ним руку, вы почувствуете жар, что означает, что угли продолжают излучать энергию, но уже в инфракрасном диапазоне частот. Чем холоднее объект, тем ниже излучаемые им частоты и больше длина волн (см. Закон Стефана—Больцмана). По сути, Пензиас и Уилсон определили температуру «космических углей» Вселенной после того, как она остывала на протяжении 15 миллиардов лет: ее фоновое излучение оказалось в диапазоне микроволновых радиочастот.

Исторически это открытие и предопределило выбор в пользу космологической теории Большого взрыва. Другие модели Вселенной (например, теория стационарной Вселенной) позволяют объяснить факт расширения Вселенной, но не наличие космического микроволнового фона.

Источник: elementy.ru

Большой взрыв и советский след

К середине 1940-х годов стало ясно, что большую часть видимой материи во Вселенной составляют водород и гелий. Яркие звезды и галактики состоят из водорода примерно на 75% и из гелия примерно на 24%. Водород — самый простой элемент: каждый его атом состоит всего из одного протона и одного электрона, поэтому физики не могли понять, как же сформировались прочие элементы.

Первым ученым, который применил космологические идеи в попытке понять происхождение химических элементов, стал Георгий Гамов — физик — эмигрант из СССР. Получив подтверждение того, что Вселенная непрерывно расширяется — тогда это открытие только было сделано — Гамов первым поддержал идею, что она образовалась из исходного плотного и горячего состояния под влиянием того, что мы сегодня называем Большим взрывом.

Гамов предположил, что сначала был горячий, плотный газ. И он состоял из нейтронов — очень нестабильных частиц, которые быстро распадаются и образуют атомы водорода. А сталкиваясь друг с другом, они могут образовывать еще и гелий. Однако в теории был пробел.

Гамов вместе со своим аспирантом Альфером выяснил, что получить так гелий действительно несложно. Однако более тяжелые элементы, которые тоже присутствуют во Вселенной, просто не успели бы сформироваться — Вселенная остыла б раньше, чем бы завершился процесс. Гамова это не смутило. Никогда не сомневавшийся в своих силах ученый заявил, что его теория объясняет происхождение 99% видимой Вселенной, так что остальное — всего лишь детали, которые можно оставить для выяснения другим исследователям.

Теория стационарной Вселенной

Несмотря на то, что Гамов вместе с коллегами сделал ключевой шаг в космологии уже потому, что впервые доказал возможность проведения научных расчетов в рамках теории Большого взрыва, оставались белые пятна. Вопрос происхождения всех элементов, помимо водорода и гелия, висел в воздухе.

Неясность с происхождением элементов  и ядерным синтезом стала одной из причин, по которой в том же 1948 году Германом Бонди, Томми Голдом и Фредом Хойлом была выдвинута альтернатива Большому взрыву — теория стационарной Вселенной.

В основе их концепции лежала идея, что хотя Вселенная и расширяется (скопления звезд, называемые галактиками, отходят дальше друг от друга), она не образовалась в конкретный момент времени из некоего горячего и плотного состояния — а всегда имела приблизительно нынешний вид.

По мере расширения в промежутках между галактиками возникает новая материя в виде атомов водорода, которая затем включается в новые звезды и галактики. Далее внутри звезд происходит ядерный синтез. Хойл обнаружил, что, хотя ядерный синтез внутри звезд действительно объяснял возникновение пресловутого 1% материи, объяснить происхождение всего гелия во Вселенной с его помощью было невозможно.

Для интерпретации всех элементов в видимой Вселенной необходимо было использовать еще и идею ядерного синтеза согласно теории Большого взрыва…

Альтернативная теория Большого взрыва

Роберт Дикке, американский физик, известен своими работами в области астрофизики, атомной физики, космологии и гравитации. И одной интересной идеей. Совсем коротко идею Дикке можно назвать «Большой взрыв, но не такой, каким мы его знаем».

Дикке смущала мысль, что вся материя во Вселенной могла быть создана за долю секунды во время Большого взрыва, но ему не казалось правдоподобным и то, что материя создается непрерывно в промежутках между галактиками. Впрочем, существовал еще и третий вариант — так называемая циклическая Вселенная.

Согласно этой теории, количество материи во Вселенной остается неизменным, но после фазы расширения наступает фаза сжатия: Вселенная доходит до горячего и плотного состояния, как перед Большим взрывом, и вновь расширяется, возрождаясь, словно Феникс.

Однако, понял Дикке, если бы эта модель была реальной, то не было бы двух видов звезд — Населения I и Населения II, молодых и старых звезд. А они были. Значит, Вселенная вокруг нас все-таки развилась из горячего и плотного состояния. Даже если это был не единственный в истории Большой взрыв.

Удивительно, правда? Вдруг этих взрывов было несколько? Десятки, сотни? Науке еще предстоит это выяснить. Дикке предложил своему коллеге Пиблсу просчитать необходимую для описанных процессов температуру и вероятную температуру остаточного излучения в наши дни. Примерные расчеты Пиблса показали, что сегодня Вселенная должна быть наполнена микроволновым излучением с температурой менее 10 К, и Ролл с Уилкинсоном уже готовились искать это излучение, когда раздался звонок…

Трудности перевода

Однако тут стоит перенестись в другой уголок земного шара — в СССР. Ближе всех к открытию реликтового излучения подошли (и тоже не довели дело до конца!) в СССР. Проделав в течение нескольких месяцев огромную работу, отчет о которой вышел в 1964 году, советские ученые сложили, казалось, все части головоломки, не хватило лишь одной. Яков Борисович Зельдович, один из колоссов советской науки, осуществил расчеты, аналогичные тем, что провел коллектив Гамова (советского физика, живушего в США), и тоже пришел к выводу, что Вселенная должна была начаться с горячего Большого взрыва, оставившего фоновое излучение с температурой в несколько кельвинов.

Он даже знал о статье Эда Ома в «Техническом журнале Bell System», который примерно высчитал температуру реликтового излучения, но неверно интерпретировал выводы автора. Почему же советские исследователи не поняли, что Ом уже открыл это излучение? Из-за ошибки в переводе. В статье Ома утверждалось, что измеренная им температура неба составила около 3 К. Это означало, что он вычел все возможные источники радиопомех и что 3 К — это температура оставшегося фона.

Однако по случайному совпадению такой же (3 К) была и температура излучения атмосферы, поправку на которую Ом тоже сделал. Советские специалисты ошибочно решили, что именно эти 3 К и остались у Ома после всех предыдущих корректировок, вычли и их и остались ни с чем.

В наши дни подобные ошибки понимания легко устранились бы в процессе электронной переписки, но в начале 1960-х годов коммуникация между учеными Советского Союза и Соединенных Штатов была весьма затруднена. Это и стало причиной столь обидной ошибки.

Источник: blog.mann-ivanov-ferber.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.