Из каких слоев состоит литосфера


Общая характеристика

Литосфера граничит с гидросферой и атмосферой вверху, и с астеносферой внизу. Толщина этой оболочки значительно варьирует и составляет от 10 до 200 км. на разных участках планеты. На континентах литосфера толще, чем в океанах. Литосфера не представляет собой единое целое – она образована отдельными плитами, которые лежат на астеносфере и постепенно передвигаются по ней. Выделяют семь крупных литосферных плит и несколько маленьких. Границы между ними являются зонами сейсмической активности. На территории России соединяются две такие плиты – Евразийская и Североамериканская. Строение литосферы Земли представлено тремя слоями:

  • земная кора;
  • пограничный слой;
  • верхняя мантия.

Рассмотрим каждый слой подробнее.

Рис. 1. Слои литосферы

Земная кора

Это верхний и самый тонкий слой литосферы. Его масса составляет всего 1% от массы Земли. Толщина земной коры варьирует от 30 до 80 км. Меньшая толщина наблюдается на равнинных территориях, большая – на горных. Различают два типа земной коры – материковая и океаническая.

Материковая кора состоит из трех слоев:


  • осадочный – образован осадочными и вулканическими породами;
  • гранитный – образован метаморфическими горными породами (кварц, полевой шпат);
  • базальтовый – представлен магматическими породами.

В океанической коре есть только осадочный и базальтовый слой.

Из каких слоев состоит литосфера

Рис. 2. Слои океанической и континентальной земной коры

Земная кора содержит все известные минералы, металлы и химические вещества в разных количествах. Самые распространенные элементы:

  • кислород;
  • железо;
  • кремний;
  • магний;
  • натрий;
  • кальций;
  • калий.

Пограничный слой

Его называют поверхностью Мохоровичича. В этой зоне происходит резкий рост скорости сейсмических волн. Также здесь сменяется плотность вещества литосферы, оно становится более упругим. Поверхность Мохоровичича залегает на глубине от 5 до 70 км, полностью повторяя рельеф земной коры.

Рис. 3. Схема поверхности Мохоровичича

Мантия


К литосфере относится только верхний слой мантии. Он имеет толщину от 70 до 300 км. Какие явления происходят в этом слое? Здесь зарождаются очаги сейсмической активности – землетрясения. Это связано с повышением здесь скорости сейсмических волн. Каково строение этого слоя? Образована она в основном железом, магнием, кальцием, кислородом.

Источник: obrazovaka.ru

Внутреннее строение Земливключает три оболочки: земную кору, мантию и ядро. Оболочечное строение Земли установлено дистанционными методами, основанными на измерении скорости распространения сейсмических волн, имеющих две составляющие — продольные и поперечные волны. Продольные (Р) волны связаны с напряжениями растяжения (или сжатия), ориентированными по направлению их распространения. Поперечные (S) волны вызывают колебания среды, ориентированные под прямым углом к направлению их распространения. Эти волны в жидкой среде не распространяются. Основные значения физических параметров Земли даны на рис. 5.1.

Земная кора каменистая оболочка, сложенная твердым веществом с избытком кремнезема, щелочи, воды и недостаточным количеством магния и железа. Она отделяется от верхней мантии границей Мохоровичича (слоем Мохо), на которой происходит скачок скоростей продольных сейсмических волн примерно до 8 км/с. Этот рубеж, установленный в 1909 г. югославским ученым А. Мохоровичичем, как считают, совпадает с внешней перидотитовой оболочкой верхней мантии. Мощность земной коры (1% от общей массы Земли) составляет в среднем 35 км: под молодыми складчатыми горами на континентах она увеличивается до 80 км, а под сре-динно-океаническими хребтами уменьшается до 6 — 7 км (считая от поверхности океанского дна).


Мантия представляет собой наибольшую по объему и весу оболочку Земли, простирающуюся от подошвы земной коры до границы Гутенберга, соответствующей глубине приблизительно 2900 км и принимаемой за нижнюю границу мантии. Мантию подразделяют на нижнюю (50% массы Земли) и верхнюю (18%). По современным представлениям, состав мантии достаточно однороден вследствие интенсивного конвективного перемешивания внутримантийными течениями. Прямых данных о вещественном составе мантии почти нет. Предполагается, что она сложена расплавленной силикатной массой, насыщенной газами. Скорости распространения продольных и поперечных волн в нижней мантии возрастают, соответственно, до 13 и 7 км/с. Верхняя мантия с глубины 50—80 км (под океанами) и 200—300 км (под континентами) до 660—670 км называется астеносферой. Это слой повышенной пластичности вещества, близкого к температуре плавления.

Ядро представляет собой сфероид со средним радиусом около 3500 км. Прямые сведения о составе ядра также отсутствуют.


вестно, что оно является наиболее плотной оболочкой Земли. Ядро также подразделяется на две сферы: внешнее, до глубины 5150 км, находящееся в жидком состоянии, и внутреннее — твердое. Во внешнем ядре скорость распространения продольных волн падает до 8 км/с, а поперечные волны не распространяются вовсе, что принимается за доказательство его жидкого состояния. Глубже 5150 км скорость распространения продольных волн возрастает и вновь проходят поперечные волны. На внутреннее ядро приходится 2% массы Земли, на внешнее — 29%.

Внешняя «твердая» оболочка Земли, включающая земную кору и верхнюю часть мантии, образует литосферу (рис. 5.2). Ее мощность составляет 50—200 км.

Из каких слоев состоит литосфера

Рис. 5.1. Изменение физических параметров в недрах Земли (по С.В.Аплонову, 2001)

Из каких слоев состоит литосфера

Рис. 5.2. Внутреннее строение Земли и скорости распространения продольных (Р) и поперечных (S) сейсмических волн (по С. В. Аплонову, 2001)

Литосферу и подстилающие подвижные слои астеносферы, где обычно зарождаются и реализуются внутриземные движения тектонического характера, а также часто находятся очаги землетрясений и расплавленной магмы, называют тектоносферой.

Состав земной коры.Химические элементы в земной коре образуют природные соединения — минералы, обычно твердые вещества, обладающие определенными физическими свойствами. В земной коре содержится более 3000 минералов, среди которых около 50 породообразующих.


Закономерные природные сочетания минералов образуют горные породы. Земная кора сложена горными породами разного состава и происхождения. По происхождению горные породы подразделяют на магматические, осадочные и метаморфические.

Магматические горные породы образуются за счет застывания магмы. Если это происходит в толще земной коры, то формируются интрузивные раскристаллизованные породы, а при излиянии магмы на поверхность создаются эффузивные образования. По содержанию кремнезема (SiO2) различают следующие группы магматических горных пород: кислые (> 65% — граниты, липариты и др.), средние (65—53% — сиениты, андезиты и др.), основные (52—45% — габбро, базальты и др.) и ультраосновные (<45% — перидотиты, дуниты и др.).

Осадочные горные породы возникают на земной поверхности за счет отложения материала разными способами. Часть из них образуется в результате разрушения горных пород. Это обломочные, или пластические, породы. Величина обломков варьирует от валунов и галек до пылеватых частиц, что позволяет различать среди них породы разного гранулометрического состава — валунники, галечники, конгломераты, пески, песчаники и др. Органогенные породы создаются при участии организмов (известняки, угли, мел и др.). Значительное место занимают хемогенные породы, связанные с выпадением вещества из раствора при определенных условиях.


Метаморфические породы образуются в результате изменения магматических и осадочных пород под воздействием высоких температур и давлений в недрах Земли. К ним относятся гнейсы, кристаллические сланцы, мрамор и др.

Около 90% объема земной коры составляют кристаллические породы магматического и метаморфического генезиса. Для географической оболочки большую роль играет относительно маломощный и прерывистый слой осадочных горных пород (стратисфера), которые непосредственно контактируют с разными компонентами географической оболочки. Средняя мощность осадочных пород около 2,2 км, реальная мощность колеблется от 10— 14 км в прогибах до 0,5—1 км на океаническом ложе. По исследованиям А.Б.Ронова, наиболее распространенными среди осадочных пород являются глины и глинистые сланцы (50 %), пески и песчаники (23,6%), карбонатные образования (23,5%). В составе земной поверхности важную роль играют лёссы и лёссовидные суглинки внеледниковых регионов, несортированные толщи морен ледниковых регионов и интразональные скопления галечно-песчаных образований водного происхождения.

Строение земной коры.По строению и мощности (рис. 5.3) различают два основных типа земной коры — материковый (континентальной) и океанический. Различия их химического состава видны из табл. 5.1.


Материковая кора состоит из осадочного, гранитного и базальтового слоев. Последний выделен условно потому, что скорости прохождения сейсмических волн равны скоростям в базальтах. Гранитный слой состоит из пород, обогащенных кремнием и алюминием (SIAL), породы базальтового слоя обогащены кремнием и магнием (SIAM). Контакт между гранитным слоем со средней плотностью пород около 2,7 г/см3 и базальтовым слоем со средней плотностью порядка 3 г/см3 известен как граница Конрада (названа по имени немецкого исследователя В.Конрада, обнаружившего ее в 1923 г.).

Океаническая кора двухслойная. Ее основная масса сложена базальтами, на которых лежит маломощный осадочный слой. Мощность базальтов превышает 10 км, в верхних частях достоверно установлены прослои осадочных позднемезозойских пород. Мощность осадочного покрова, как правило, не превышает 1—1,5 км.

Из каких слоев состоит литосфера

Рис. 5.3. Строение земной коры: 1 — базальтовый слой; 2 — гранитный слой; 3 — стратисфера и кора выветривания; 4 — базальты океанического дна; 5 — районы с низкой биомассой; 6 — районы с высокой биомассой; 7 — океанские воды; 8 — морские льды; 9 — глубинные разломы континентальных склонов

Базальтовый слой на материках и океанском дне принципиально различается. На материках это контактные формирования между мантией и древнейшими земными породами, как бы первичная корочка планеты, возникшая до или в начале ее самостоятельного развития (возможно, свидетельство «лунной» стадии эволюции Земли). В океанах это реальные базальтовые образования в основном мезозойского возраста, возникшие за счет подводных излияний при раздвижении литосферных плит. Возраст первых должен составлять несколько миллиардов лет, вторых — не более 200 млн лет.


Таблица 5.1. Химический состав континентальной и океанической коры (по С.В.Аплонову, 2001)

  Содержание, %
Оксиды Континентальная кора Океаническая кора
SiO2 60,2 48,6
TiО2 0,7 1.4
Al2O3 15,2 16,5
2O3 2,5 2,3
FeO 3,8 6,2
MnO 0,1 0,2
MgO 3,1 6,8
CaO 5,5 12,3
Na2O 3,0 2,6
K2O 2,8 0,4

Местами наблюдается переходный тип земной коры, для которого характерны значительная пространственная неоднородность. Он известен в окраинных морях Восточной Азии (от Берингова до Южно-Китайского), Зондском архипелаге и некоторых других районах земного шара.


Наличие разных типов земной коры обусловлено различиями в развитии отдельных частей планеты и их возрасте. Эта проблема чрезвычайно интересна и важна с точки зрения реконструкции географической оболочки. Ранее предполагалось, что океаническая кора первична, а материковая — вторична, хотя она на многие миллиарды лет ее древнее. Согласно современным представлениям, океаническая кора возникла за счет внедрения магмы по разломам между континентами.

Мечты ученых о практической проверке представлений по строению литосферы, основанные на дистанционных геофизических данных, воплотились в жизнь во второй половине XX в., когда стало возможно глубокое и сверхглубокое бурение на суше и дне Мирового океана. Среди наиболее известных проектов — Кольская сверхглубокая скважина, пробуренная до глубины 12 066 м (в 1986 г. бурение было остановлено) в пределах Балтийского щита в целях достижения границы между гранитным и базальтовым слоями земной коры, а при возможности и ее подошвы — горизонта Мохо. Кольская сверхглубокая скважина опровергла многие устоявшиеся представления о структуре недр Земли. Предполагавшееся по геофизическому зондированию нахождение горизонта Конрада в этом районе на глубине около 4,5 км не подтвердилось. Скорость продольных волн изменилась (не возросла, а упала) на отметке 6842 м, где произошла смена вулканогенно-осадочных пород раннего протерозоя на амфиболито-гнейсовые породы позднего архея. «Виновником» смены оказался не состав горных пород, а их особое состояние — гидрогенное разуплотнение, впервые обнаруженное в естественном состоянии в толще Земли. Таким образом, стало возможным иное объяснение смены скоростей и направлений геофизических волн.


Структурные элементы земной коры.Земная кора формировалась не менее 4 млрд лет, в течение которых она усложнялась под . воздействием эндогенных (главным образом под воздействием тектонических движений) и экзогенных (выветривание и др.) процессов. Проявляясь с разной интенсивностью и в разное время, тектонические движения формировали структуры земной коры, которые образуют рельеф планеты.

Крупные формы рельефа называются морфоструктурами (например, горные хребты, плато). Сравнительно мелкие формы рельефа образуют морфоскульптуры (например, карст).

Основные планетарные структуры Земли — материки и океаны. В пределах материков выделяют крупные структуры второго порядка — складчатые пояса и платформы, которые отчетливо выражены в современном рельефе.

Платформы — это устойчивые в тектоническом отношении участки земной коры обычно двухъярусного строения: нижний, образованный древнейшими породами, называют фундаментом, верхний, сложенный преимущественно осадочными породами более позднего возраста — осадочным чехлом. Возраст платформ оценивают по времени формирования фундамента. Участки платформ, где фундамент погружен под осадочный чехол, называют плитами (например, Русская плита). Места выхода на дневную поверхность пород фундамента платформы называют щитами (например, Балтийский щит).

На дне океанов выделяются тектонически устойчивые участки — талассократоны и подвижные тектонически активные полосы — георифтогенали. Последние пространственно соответствуют срединно-океаническим хребтам с чередованием поднятий (в виде подводных гор) и опусканий (в виде глубоководных впадин и желобов). Совместно с вулканическими проявлениями и локальными поднятиями океанического дна океанические геосинклинали создают специфические структуры островных дуг и архипелагов, выраженных на северных и западных окраинах Тихого океана.

Контактные зоны между континентами и океанами подразделяют на два типа: активные и пассивные. Первые представляют собой очаги сильнейших землетрясений, активного вулканизма и значительного размаха тектонических движений. Морфологически они выражаются сопряжением окраинных морей, островных дуг и глубоководных желобов океанов. Наиболее типичными являются все окраины Тихого океана («тихоокеанское огненное кольцо») и северная часть Индийского океана. Вторые являют пример постепенной смены континентов через шельфы и материковые склоны к океаническому дну. Таковы окраины большей части Атлантического океана, а также Северного Ледовитого и Индийского океанов. Можно говорить и о более сложных контактах, особенно в Районах развития переходных типов земной коры.

Динамика литосферы.Представления о механизме формирования земных структур разрабатываются учеными различных направлений, которые можно объединить в две группы. Представители фиксизма исходят из утверждения о фиксированном положении Континентов на поверхности Земли и преобладании вертикальных Движений в тектонических деформациях пластов земной коры. Сторонники мобилизма первостепенную роль отводят горизонтальным движениям. Основные идеи мобилизма были сформулированы А. Вегенером (1880—1930) как гипотеза дрейфа материков. Новые данные, полученные во второй половине XX в., позволили развить это направление до современной теории неомобилизма, объясняющей динамику процессов в земной коре дрейфом крупных литосферных плит.

Согласно теории неомобилизма, литосфера состоит из плит (их число, по разным оценкам, колеблется от 6 до нескольких десятков), которые перемещаются в горизонтальном направлении со скоростью от нескольких миллиметров до нескольких сантиметров в год. Литосферные плиты вовлекаются в движение в результате тепловой конвекции в верхней мантии. Однако последние исследования, в частности глубокое бурение, показывают, что слой астеносферы не является сплошным. Если же признать дискретность астеносферы, то следует отвергнуть и сложившиеся представления о конвективных ячейках и структуре перемещения блоков земной коры, которые лежат в основе классических моделей геодинамики. П. Н. Кропоткин, например, считает, что правильнее говорить о вынужденной конвекции, которая связана с перемещением вещества в мантии Земли под действием попеременного увеличения и уменьшения земного радиуса. Интенсивное горообразование в последние десятки миллионов лет, по его мнению, было обусловлено прогрессировавшим сжатием Земли, составившим примерно 0,5 мм в год, или 0,5 км за миллион лет, возможно, при общей тенденции Земли к расширению.

Согласно современному строению земной коры, в центральных частях океанов границами литосферных плит являются срединно-океанические хребты с рифтовыми (разломными) зонами вдоль их осей. По периферии океанов, в переходных зонах между континентами и ложем океанического бассейна, сформировались геосинклинальные подвижные пояса со складчато-вулканическими островными дугами и глубоководными желобами вдоль их внешних окраин. Существует три варианта взаимодействия литосферных плит: расхождение, или спрединг; столкновение, сопровождающееся в зависимости от типа контактирующих плит субдукцией, эдукцией или коллизией; горизонтальное скольжение одной плиты относительно другой.

Касаясь проблемы возникновения океанов и материков, надо отметить, что в настоящее время она чаще всего решается путем признания раздробленности земной коры на ряд плит, раздвижение которых и вызвало образование огромных понижений, занятых океанскими водами. Схема геологического строения ложа океанов показана на рис. 5.4. Схема инверсий магнитного поля базальтов океанического дна показывает удивительные закономерности симметричного расположения однотипных образований по обе стороны зоны спрединга и их постепенное удревнение в сторону континентов (рис. 5.5). Не только ради справедливости отметим существующее мнение о достаточной древности океанов — глубоководные океанские осадки, а также реликты базальтовой океанской коры в виде офиолитов широко представлены в геологической истории Земли последних 2,5 млрд лет. Блоки древней океанской коры и литосферы, впечатанные в глубоко погруженный фундамент осадочных бассейнов — своеобразные провалы земной коры, по мнению С.В.Аплонова, свидетельствуют о нереализованных возможностях планеты — «несостоявшихся океанах».

Из каких слоев состоит литосфера

Рис. 5.4. Схема геологического строения ложа Тихого океана и его континентального обрамления (по А. А. Маркушеву, 1999): /— континентальный вулканизм — отдельные вулканы, б — поля траппов); II — вулканы островных дут и континентальных окраин (а — подводные, б — наземные); III — вулканы подводных хребтов (а) и океанических островов (б); IV — вулканы окраинных морей (а — подводные, б — наземные); V — спрединговые структуры развития современного толеит-базальтового подводного вулканизма; VI — глубоководные желоба; VII — литосферные плиты (цифры в кружках): 1 — Бирманская; 2 — Азиатская; 3 — Северо-Американская; 4 — Южно-Американская; 5 — Антарктическая; 6 — Австралийская; 7— Соломонова; 8— Бисмарка; 9 — Филиппинская; 10 — Марианская; 11 — Хуан-де-Фука; 12 — Карибская; 13 — Кокос; 14 — Наска; 15 — Скоша; 16 — Тихоокеанская; VIII — главнейшие вулканы и трапповые поля: 1 — Бейкер; 2 — Лассен-Пик; 3—5— траппы {3 — Колумбии, 4 — Патагонии, 5 — Монголии); 6 — Трес-Виргинес; 7 — Парикутин; 8 — Попокатепетль; 9 — Мон-Пеле; 10 — Котопахи; 11 — Таравера; 12 — Кермадек; 13 — Мауналоа (Гавайский архипелаг); 14— Кракатау; 75— Тааль; 16— Фудзияма; 17 — Богослов; 18 — Катмай. Возраст базальтов приводится по данным бурения

Из каких слоев состоит литосфера

Рис. 5.5. Возраст (млн лет) дна Атлантического океана, определенный по магнитостратиграфической шкале (по Е.Зейболу и В.Бергеру, 1984)

Формирование современного облика Земли. Втечение всей истории Земли расположение и конфигурация континентов и океанов постоянно изменялись. Согласно геологическим данным, континенты Земли объединялись четыре раза. Реконструкция этапов их становления за последние 570 млн лет (в фанерозое) свидетельствует о существовании последнего суперконтинента — Пангеи с достаточно мощной, до 30—35 км континентальной корой, сформировавшегося 250 млн лет назад, который распался на Гондвану, занявшую южную часть земного шара, и Лавразию, объединившей северные континенты. Распад Пангеи привел к раскрытию водного пространства, первоначально — в виде палео-Тихого океана и океана Тетис, а в дальнейшем (65 млн лет назад) — современных океанов. Сейчас мы наблюдаем, как континенты расходятся. Трудно предположить, какова будет дислокация современных континентов и океанов в будущем. По данным С. В. Аплонова, возможно их объединение в пятый суперконтинент, центром которого станет Евразия. В. П. Трубицын считает, что через миллиард лет материки вновь могут собраться у Южного полюса.


Дата добавления: 2015-05-20; просмотров: 2822; Опубликованный материал нарушает авторские права? | Защита персональных данных |

Источник: studopedia.ru

Границы

Границы литосферы и расположение ее плит до конца не изучены. Современная геология располагает лишь ограниченным количеством данных о внутреннем устройстве земного шара. Известно, что литосферные блоки имеют границы с гидросферой и атмосферным пространством планеты. Они находятся в тесной взаимосвязи друг с другом и соприкасаются между собой. Непосредственно структура состоит из следующих элементов:

  1. Астеносфера. Слой с пониженной твердостью, который располагается в верхней части планеты по отношению к атмосфере. Местами имеет очень низкую прочность, склонен к разломам и вязкости, особенно если внутри астеносферы протекают грунтовые воды.
  2. Мантия. Это часть Земли под названием геосфера, находящаяся между астеносферой и внутренним ядром планеты. Имеет полужидкую структуру, а ее границы начинаются на глубине 70–90 км. Характеризуется высокими сейсмическими скоростями, а ее движение непосредственно влияет на мощность литосферы и активность ее плит.
  3. Ядро. Центр земного шара, который имеет жидкую этиологию, а от передвижения его минеральных компонентов и молекулярной структуры расплавленных металлов зависит сохранение магнитной полярности планеты и ее вращение вокруг своей оси. Основная составляющая земного ядра – это сплав железа и никеля.

Это интересно! Урок географии: сколько на Земле всего океанов

Что такое литосфера? Фактически это твердая оболочка Земли, которая выступает в качестве промежуточного слоя между плодородным грунтом, минеральными отложениями, рудами и мантией. На равнине толщина литосферы составляет 35–40 км.

Важно! В горных районах этот показатель может достигать 70 км. В области таких геологических высот, как Гималайские или Кавказские горы, глубина данного слоя доходит до 90 км.

ЛитосфераСтроение Земли

Слои литосферы

Если рассматривать структуру литосферных плит более подробно, то их классифицируют на несколько прослоек, которые и формируют геологические особенности того или иного региона Земли. Они образуют основные свойства литосферы. Исходя из этого выделяют следующие слои твердой оболочки земного шара:

  1. Осадочный. Покрывает большую часть верхнего слоя всех земных блоков. В основном он состоит из вулканических горных пород, а также остатков органических веществ, которые за многие тысячелетия разложились на гумус. Плодородные почвы также входят в состав осадочного слоя.
  2. Гранитный. Это литосферные плиты, находящиеся в постоянном движении. Преимущественно состоят из сверхпрочного гранита и гнейса. Последний компонент представляет собой метаморфическую горную породу, подавляющая часть которой заполнена минералами из числа калиевого шпата, кварца и плагиоклаза. Сейсмическая активность данного слоя твердой оболочки находится на уровне 6,4 км/сек.
  3. Базальтовый. Преимущественно сложен из базальтовых отложений. Эта часть твердой оболочки Земли сформировалась под воздействием вулканической активности еще в древние времена, когда происходило формирование планеты и зарождались первые условия для развития жизни.

Это интересно! Урок географии: какая самая высокая гора в мире

Что такое литосфера и ее многослойная структура? Исходя из вышеизложенного, можно сделать вывод, что это твердая часть земного шара, которая имеет неоднородный состав. Ее формирование происходило на протяжении нескольких тысячелетий, а качественный состав зависит от того, какие метафизические и геологические процессы протекали в конкретном регионе планеты. Влияние данных факторов отражается на мощности литосферных плит, их сейсмической активности по отношению к структуре Земли.

ЛитосфераСлои литосферы

Океаническая литосфера

Данная разновидность земной оболочки существенно отличается от ее материковой части. Связано это с тем, что тесно переплетаются границы литосферных блоков и гидросферы, а в некоторых ее частях водное пространство распространено за пределы поверхностного слоя литосферных плит. Это касается донных разломов, впадин, пещеристых образований различной этиологии.

ЛитосфераОкеаническая кора

Именно поэтому плиты океанического типа имеют свою структуру и состоят из следующих слоев:

  • морские осадки, которые имеют общую толщину не менее 1 км (в глубоководных участках океана могут отсутствовать вовсе),
  • вторичный слой (отвечает за распространение средних и продольных волн, движущихся со скоростью до 6 км/сек., принимает активное участие в передвижении плит, чем провоцирует землетрясения различной мощности),
  • нижний слой твердой оболочки земного шара в области расположения океанического дна, который в основном сложен из габбро и граничит с мантией (средняя активность сейсмических волн составляет от 6 до 7 км/сек.).

Также выделяют переходный тип литосферы, расположенный в области океанической почвы. Он характерен для островных зон, сформировавшихся дугообразно. В большинстве случаев их появление связано с геологическим процессом движения литосферных плит, которые наслаивались друг на друга, образовывая такого рода неровности.

Важно! Подобную структуру литосферы можно встретить на окраинах Тихого океана, а также в некоторых частях Черного моря.

Полезное видео: литосферные плиты и современный рельеф

Химический состав

По наполнению органическими и минеральными соединениями литосфера не отличается разнообразием и в основном представлена в виде 8 элементов.

Химический состав литосферыХимический состав литосферы

В большинстве своем это горные породы, которые образовались в период активного извержения вулканической магмы и движения плит. Химический состав литосферы выглядит следующим образом:

  1. Кислород. Занимает не менее 50 % всей структуры твердой оболочки, заполняя ее разломы, впадины и полости, формирующиеся во время передвижения плит. Играет ключевую роль в балансе компрессионного давления во время течения геологических процессов.
  2. Магний. Это 2,35 % процента твердой оболочки Земли. Его появление в составе литосферы связывают с магматической активностью в ранние периоды формирования планеты. Встречается на всей материковой, морской и океанической части планеты.
  3. Железо. Горная порода, являющаяся основным минералом литосферных плит (4,20 %). Ее основная концентрация это горные регионы земного шара. Именно в этой части планеты наибольшая плотность данного химического элемента. Не представлен в чистой форме, а находится в составе литосферных плит в перемешанном виде вместе с другими минеральными отложениями.

Это интересно! Почему растет и что это такое урбанизация

Полезное видео: литосфера и литосферные плиты

Источник: tvercult.ru

Литосфера и земная кора — 2 в 1

Эти два понятия так часто встречаются в прессе и литературе, что вошли повседневный словарь современного человека. Оба слова используются для обозначения поверхности Земли или другой планеты — однако между понятиями есть разница, базирующаяся на двух принципиальных подходах: химическом и механическом.

Химический аспект — земная кора

Если разделять Землю на слои, руководствуясь различиями в химическом составе, верхним слоем планеты будет земная кора. Это относительно тонкая оболочка, заканчивающаяся на глубине от 5 до 130 километров под уровнем моря — океаническая кора тоньше, а континентальная, в районах гор, толще всего. Хотя 75% массы коры приходится только на кремний и кислород (не чистые, связанные в составе разных веществ), она отличается наибольшим химическим разнообразием среди всех слоев Земли.

Строение земной коры

Играет роль и богатство минералов — различных веществ и смесей, созданных за миллиарды лет истории планеты. Земная кора содержит не только «родные» минералы, которые были созданы геологическими процессами, но и массивное органическое наследие, вроде нефти и угля, а также инопланетные, метеоритные включения.

Физический аспект — литосфера

Опираясь на физические характеристики Земли, такие как твердость или упругость, мы получим несколько иную картину — внутренности планеты будет укутывать литосфера (от др. греческого lithos, «скалистый, твердый» и «sphaira» сфера). Она намного толще земной коры: литосфера простирается до 280 километров вглубь и даже захватывает верхнюю твердую часть мантии!

Характеристики этой оболочки полностью соответствуют названию — это единственный, кроме внутреннего ядра, твердый слой Земли. Прочность, правда, относительная — литосфера Земли является одной из самых подвижных в Солнечной системе, из-за чего планета уже не раз изменяла свой внешний вид. Но для значительного сжатия, искривления и прочих эластических изменений требуются тысячи лет, если не больше.

Последствия смещения литосферных плит. Самое известное такое место — разлом Сан-Андреас в Калифорнии
  • Интересный факт — планета может и не обладать поверхностной корой. Так, поверхность Меркурия — это его затвердевшая мантия; кору ближайшая к Солнцу планета потеряла давным-давно в результате многочисленных столкновений.

Подводя итог, земная кора — это верхняя, химически разнообразная часть литосферы, твердой оболочки Земли. Первоначально они обладали практически одинаковым составом. Но когда на глубины воздействовала только нижележащая астеносфера и высокие температуры, в формировании минералов на поверхности активно участвовали гидросфера, атмосфера, метеоритные остатки и живые организмы.

Литосферные плиты

Еще одна черта, которая отличает Землю от других планет — это разнообразие на ней разнотипных ландшафтов. Конечно, свою невероятно большую роль сыграли воздух и вода, о чем мы расскажем немного позже. Но даже основные формы планетарного ландшафта нашей планеты отличаются от той же Луны. Моря и горы нашего спутника — это котлованы от бомбардировки метеоритами. А на Земле они образовались в результате сотен и тысяч миллионов лет движения литосферных плит.

Смещения литосферы

О плитах вы уже наверняка слышали — это громадные устойчивые фрагменты литосферы, которые дрейфуют по текучей астеносфере, словно битый лед по реке. Однако между литосферой и льдом есть два главных отличия:

  • Прорехи между плитами небольшие, и быстро затягиваются за счет извергающегося с них расплавленного вещества, а сами плиты не разрушаются от столкновений.
  • В отличие от воды, в мантии отсутствует постоянное течение, которое могло бы задавать постоянное направление движения материкам.

Так, движущей силой дрейфа литосферных плит является конвекция астеносферы, основной части мантии — более горячие потоки от земного ядра поднимаются к поверхности, когда холодные опускаются обратно вниз. Учитывая то, что материки различаются в размерах, и рельеф их нижней стороны зеркально отражает неровности верхней, движутся они также неравномерно и непостоянно.

Динамическая схема Земли. Смотреть в полном размере.

Главные плиты

За миллиарды лет движения литосферных плит они неоднократно сливались в суперконтиненты, после чего снова разделялись. В ближайшем будущем, через 200– 300 миллионов лет, тоже ожидается образование суперконтинента под именем Пангея Ультима. Рекомендуем посмотреть видео в конце статьи — там наглядно показано, как мигрировали литосферные плиты за последние несколько сотен миллионов лет. Кроме того, силу и активность движения материков определяет внутренний нагрев Земли — чем он выше, тем сильнее расширяется планета, и тем быстрее и свободнее движутся литосферные плиты. Однако с начала истории Земли ее температура и радиус постепенно снижаются.

  • Интересный факт — дрейф плит и геологическая активность не обязательно должны питаться от внутреннего самонагрева планеты. К примеру, Ио, спутник Юпитера, обладает множеством активных вулканов. Но энергию для этого дает не ядро спутника, а гравитационное трение с Юпитером, из-за которого недра Ио разогреваются.

Границы литосферных плит весьма условны — одни части литосферы тонут под другими, а некоторые, как Тихоокеанская плита, вообще скрыты под водой. Геологи сегодня насчитывают 8 основных плит, которые покрывают 90 процентов всей площади Земли:

  • Австралийская
  • Антарктическая
  • Африканская
  • Евразийская
  • Индостанская
  • Тихоокеанская
  • Северо-Американская
  • Южно-Американская
Карта литосферных плит

Такое разделение появилось недавно — так, Евразийская плита еще 350 миллионов лет назад состояла из отдельных частей, во время слияния которых образовались Уральские горы, одни из самых древних на Земле. Ученые по сей день продолжают исследование разломов и дна океанов, открывая новые плиты и уточняя границы старых.

Геологическая активность

Литосферные плиты движутся очень медленно — они наползают друг друга со скоростью 1–6 см/год, и отдаляются максимально на 10-18 см/год. Но именно взаимодействие между материками создает геологическую активность Земли, ощутимую на поверхности — извержения вулканов, землетрясения и образование гор всегда происходят в зонах контакта литосферных плит.

Однако есть исключения — так называемые горячие точки, которые могут существовать и в глубине литосферных плит. В них расплавленные потоки вещества астеносферы прорываются наверх, проплавляя литосферу, что приводит к повышенной вулканической активности и регулярным землетрясениям. Чаще всего это происходит неподалеку от тех мест, где одна литосферная плита наползает на другую — нижняя, вдавленная часть плиты погружается в мантию Земли, повышая тем самым давление магмы на верхнюю плиту. Однако сейчас ученые склоняются к той версии, что «утонувшие» части литосферы расплавляются, повышая давление в глубинах мантии и создавая тем самым восходящие потоки. Так можно объяснить аномальную отдаленность некоторых горячих точек от тектонических разломов.

Динамика мантии
  • Интересный факт — в горячих точках часто образуются щитовые вулканы, характерные своей пологой формой. Они извергаются много раз, разрастаясь за счет текучей лавы. Также это типичный формат инопланетных вулканов. Самый известный из них вулкан Олимп на Марсе, самая высокая точка планеты — высота его достигает 27 километров!

Океаническая и континентальная кора Земли

Взаимодействие плит также приводит к формированию двух различных типов земной коры — океанической и континентальной. Поскольку в океанах, как правило, находятся стыки различных литосферных плит, их кора постоянно изменяется — разламывается или поглощается другими плитами. На месте разломов возникает непосредственный контакт с мантией, откуда поднимается раскаленная магма. Остывая под воздействием воды, она создает тонкий слой из базальтов — основной вулканической породы. Таким образом, океаническая кора полностью обновляется раз в 100 миллионов лет — самые старые участки, которые находятся в Тихом океане, достигают максимального возраста в 156–160 млн лет.

Важно! Океаническая кора — это не вся та земная кора, что находится под водой, а лишь ее молодые участки на стыке материков. Часть континентальной коры находится под водой, в зоне стабильных литосферных плит.

Возраст океанической коры (красный соответствует молодой коре, синий — старой). Смотреть в полном размере.

Континентальная кора, напротив, находится на стабильных участках литосферы — ее возраст на отдельных участках превышает 2 миллиарда лет, а некоторые минералы зародились вместе с Землей! Отсутствие активных разрушительных процессов позволило развиться мощному слою осадочных пород, а также сохранить прослойки разных эпох развития планеты. Это позволило также создать метаморфические вещества — минералы, сформированные за счет попадания осадочных или магматических пород в непривычные условия. Яркими примерами таких минералов являются алмазы.

Литосфера и кора Земли в астрономии

Изучение Земли редко когда происходят просто так — часто поиски ученых имеют вполне четкую практическую цель. Это особенно актуально в изучении литосферы: на стыках литосферных плит выходят наружу целые россыпи руд и ценных минералов, для добычи которых в ином месте пришлось бы бурить многокилометровую скважину. Многие данные о земной коре были получены благодаря нефтепромыслу — в поисках месторождений нефти и газа ученые немало узнали о внутренних механизмах нашей планеты.

Вулканы Марса

Поэтому астрономы не просто так стремятся к подробному изучению коры других планет — ее очертания и внешний вид раскрывают все внутреннее устройство космического объекта. Например, на Марсе вулканы очень высокие и многократно извергаются, когда на Земле они постоянно мигрируют, возникая периодически в новых местах. Это свидетельствует о том, что на Марсе отсутствует такое активное движение литосферных плит, как на Земле. Вместе с отсутствием магнитного поля, стабильность литосферы стала главным доказательством остановки ядра красной планеты и постепенного остывания ее недр.

Полная версия: https://spacegid.com/litosfera-i-zemnaya-kora.html

Источник: zen.yandex.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.