Из чего состоит земное ядро


Внутри каждого космического объекта, который смог приобрести шарообразную форму, находится ядро — причем иногда не простое, а многослойное. 

На громадной глубине даже самые привычные вещества вроде железа приобретают необычные свойства — разрастаются в гигантские кристаллы, становятся жидкими или начинают генерировать электрический ток. Внешнее и внутреннее ядро Земли прекрасно демонстрирует все эти аномалии — а еще оно стало первым в истории защитником жизни на планете.

Из чего состоит земное ядро

Путь к ядру

Изучать ядро достаточно непросто — поверхность Земли и его верхнюю кромку разделяют 2900 километров. Непросто пробуриться на такие глубины — чем ниже опускаться под землю, тем выше растет температура. В Кольской скважине, которая пока остается самой глубокой, на глубине в 12 километров накал достигал 220°C! Уже при таких температурах сложно работать не только электронике, но и самой аппаратуре — ведь ее надо как-то опустить в скважину, а потом вынуть обратно.


Внутреннее и внешнее ядро Земли, как все устроенно? (8 фото)

Кольская сверхглубокая скважина

И даже преодолев литосферу, надо как-то пробиться сквозь раскаленную пластичную мантию. В двухтысячных годах был рассчитан проект, позволяющий зонду размером с небольшую дыню достичь ядра. Правда, в нем есть пара слабых мест — для того, чтобы добраться до ядра, нужно было взорвать несколько ядерных бомб, залить туда море раскаленного металла и изобрести такой материал, который мог бы выдержать температуру в 2–3 тысячи градусов по Цельсию! Но на бумаге все выглядело чудесно: вместе с потоком раскаленного железа зонд мог бы достичь ядра Земли всего за неделю.

Однако в ученых остался метод, позволяющий достаточно точно рассчитать плотность и объем ядра Земли — сейсмография. Колебания, исходящие от поверхностных слоев планеты — вибрации землетрясений или импульсы ядерных взрывов — распространяются не только по поверхности Земли, но и уходят глубоко в недра. Там они преломляются, увеличивая свою скорость прохождения — как преломляются световые волны, проходя через стекло или воду. Именно по тому, как изменяется сейсмическая волна при прохождении через планету, ученые сумели получить точные физические параметры ядра.


Внутреннее и внешнее ядро Земли, как все устроенно? (8 фото)

Схема движения сейсмических волн в теле Земли

Помогают геологам также различные косвенные признаки. Например, наблюдение за магнитным полем Земли позволяет отслеживать динамику вращения ядра. Ценные подсказки порой дает даже то, что совсем не предназначено для исследования глубин. Был случай, когда сбои в работе орбитального телескопа «Хаббл» позволили выявить изменение направления потоков в жидком внешнем ядре Земли, служащих причиной сдвига магнитных полюсов.

Структура и характеристики ядра

Путь к знаниям долгий и тернистый, но плоды их сладки. На сегодняшний день достоверно известны следующие физические характеристики ядра Земли:

Температура ядра Земли в центральной точке может доходить до 6000 градусов Цельсия — это столько же, как на поверхности Солнца! Но в отличие от светила, энергией глубины питают не ядерные реакции, а гравитация. Точнее, ее сжатие — давление в ядре превышает атмосферное в 3,5 миллиона раз, достигая отметки в 360 гигапаскаль. Хотя процессы атомного распада в глубинах Земли происходят, их вклад не столь большой. Да и без громадного сжатия они были бы вялотекущими и не столь продуктивными.


Внутреннее и внешнее ядро Земли, как все устроенно? (8 фото)

Классические основные сферы Земли

Ядро Земли достигает 7000 километров в поперечнике — это больше не только Луны, но и Марса! Оно занимает не так много места внутри нашей планеты — около 15% объема — но зато его масса в 1,932 × 1024 килограмм составляет 30% от всей массы Земли.Оказывается, что разные слои ядра вращаются в разные стороны. Сегодня считается, что внешнее жидкое ядро вращается вокруг своей оси с востока на запад, а внутреннее — с запада на восток, при этом еще и быстрее Земли. Впрочем, разница не очень значительная — за год оно опережает планету всего на четверть градуса

Кроме того, новейшие исследования говорят о том, что внутри внутреннего ядра Земли лежит еще одно — «самое» внутреннее ядро, которое вращается вообще по другой оси. Давайте рассмотрим его и другие составляющие земного ядра подробнее.


Внешнее ядро

Самый первый слой ядра, который непосредственно контактирует с мантией — это внешнее ядро. Его верхняя граница находится на глубине 2,3 тысячи километров под уровнем моря, а нижняя — на глубине 2900 километров. По составу оно ничем не отличается от нижележащих оболочек — давления гравитации попросту недостаточно для того, чтобы раскаленный металл затвердел. Зато его жидкое состояние является главным козырем Земли в сравнении с другими внутренними планетами Солнечной системы.

Внутреннее и внешнее ядро Земли, как все устроенно? (8 фото)

Как работает геодинамо

Дело в том, что именно жидкая часть ядра ответственна за возникновение магнитного поля Земли. Как наверняка известно читателю, магнитосфера служит щитом планеты против заряженных частиц открытого космоса и солнечного ветра. Они даже более опасны, чем излучение — частицы способны вывести из строя не только живые организмы, но и электронику. Биологи считают, что именно активное магнитное поле стало залогом выживания первобытных одноклеточных существ.

Как именно генерируется магнитное поле? Его порождает вращение жидкого железа и никеля в ядре. Магнитные свойства металлов тут ни при чем — это исключительно динамический эффект. А еще внешнее ядро подогревает мантию — причем в отдельных местах настолько сильно, что восходящие потоки магмы достигают даже поверхности, вызывая извержения вулканов.

Внутреннее ядро


Внутри жидкой оболочки находится внутреннее ядро. Это твердая сердцевина Земли, диаметр которой составляет 1220 километров — такой же размер у Харона, спутника-напарника Плутона. Эта часть ядра очень плотная — средняя концентрация вещества достигает 12,8–13г/см3, что в два раза больше густоты железа, и горячая — накал достигает знаменитых 5–6 тысяч градусов по Цельсию.

Высокое давление в центре Земли заставляет металл затвердевать при температурах, превышающих точку его кипения. При этом формируются необычные кристаллы, которые отличаются устойчивостью даже в обычных условиях. Считается, что внутреннее ядро представляет собой лес из многокилометровых кристаллов железа и никеля, которые направлены с юга на север. Для того чтобы проверить эту теорию, японские ученые потратили десять лет на создание особой алмазной наковальни — только в ней можно добиться такого давления и температуры, как в центре нашей планеты.

Внутреннее и внешнее ядро Земли, как все устроенно? (8 фото)


«Внутреннее» внутреннее ядро, или гипотетическая матрешка

Еще во время начальных исследований ядра при помощи сейсмических волн, геологи заметили необычное отклонение колебаний внутри ядра по направлению с востока на запад. Так как из-за своего вращения Земля шире на экваторе, чем на полюсах, сперва на это не обратили внимание. Но последующее изучение выявило, что центральная часть ядра может быть всего лишь очередной оболочкой.

Что представляет собой «внутреннее» внутреннее ядро? Скорее всего, оно состоит из тех же металлических кристаллов — но направленных уже не на север, а на запад. Пока что неясно, что вызывает такое расслоение. Однако ориентация кристаллов указывает на то, что тут не обошлось без гравитационных взаимодействий с Солнцем или Луной.

Внутреннее и внешнее ядро Земли, как все устроенно? (8 фото)

«Внутреннее» внутреннее ядро в строении Земли

Механизм формирования ядра

Ядром обладают все планеты Солнечной системы, как и полноценные, так и карликовые — от величественного газового гиганта Юпитера до отдаленной и холодной Седны. Параметры ядра разнятся от объекта к объекту — так, у Меркурия ядро занимает 60% массы и 80% объема планеты, когда радиус ядра Луны составляет скромные 350 километров от 1735 километров общего радиуса спутника.


Тем не менее создание ядра любого космического тела, даже звезды, обязано одному интересному гравитационному явлению — дифференциации недр. Когда планеты только начинают формироваться из газовых туч вокруг молодой звезды, их вещество собирается вокруг первичных ядер: больших камней, сгустков льда или пыли. Когда молодая планета набирает достаточную массу, в действие вступает гравитация, втягивающая массивные элементы вроде железа к центру объекта — тем самым более легкие вещества, как вот кремний или кислород, выталкиваются на поверхность.

Внутреннее и внешнее ядро Земли, как все устроенно? (8 фото)

Земля во время активной аккреции в представлении художника

Во время этих перемещений выделяется громадное количество энергии, из-за которой планета расплавляется, а гравитация придает ей характерную сферическую форму. Тем самым процесс перемещения тяжелых веществ ускоряется. Астероиды, масса которых недостаточна для плавления, так и остались кучками пыли и камней, сбитыми вместе.

Интересный факт — хотя уран является одним из самых тяжелых элементов в природе, он проигнорировал дифференциацию недр и практически полностью остался на поверхности планеты, в земной коре. Причиной этому является то, что уран встречается лишь в связке с другими, более легкими элементами. Они и послужили ему «спасательным кругом», который удержал радиоактивный металл наверху.


А все тяжелые элементы, которые ушли вглубь — в первую очередь железо и никель — сформировали центр планеты. Ядро Земли прошло весь долгий путь от пыли на орбите новорожденного Солнца до многослойного металлического шара — и сегодня оно греет и защищает нашу планету изнутри.

Источник

Источник: vseonauke.com

Доказательства по составу

Основные физические данные – масса, форма Земли, средняя плотность, момент количества движения – показывают, что по направлению вглубь планеты увеличивается количество материала, масса которого весьма отличается от массы верхних слоев горных пород. Это должна быть материя, которая значительно тяжелее, чем та, которая встречается на поверхности. Даже породы, из которых состоит верхняя мантия, не обладают такой высокой плотностью, какая соответствовала бы физическим свойствам требуемым средней плотностью всего земного шара. Конечно,  состав и строение Солнца как звезды очевидно совсем другое.


Поэтому предположение о наличии тяжелого центра нашей планеты является, с физической точки зрения, в сущности, единственным решением. Возможно есть вырожденное вещество со свободными электронами.  И с космохимической точки зрения, при сравнении количества элементов в метеоритах и состава звезд следует, что Земля должна иметь внутри гораздо больше тяжелых элементов, чем находится на ее поверхности: например, больше железа, чем встречается в верхних горных породах и в породах верхней мантии. Но где-то на планете оно должно быть.

Доказательство о наличии ядра Земли исходит от сейсмологии, из изучения распространения сейсмических волн при прохождении через планету.

Доказательство было получено в начале 20 века. Граница между мантией и внешним ядром лежит на глубине 2900 км. Ее называют разделом Вайхерта-Гуттенберга. Она значительно выразительнее, чем граница между земной корой и мантией (раздел Мохоровичича). Здесь происходит сильное изгибание и отклонение сейсмических волн. А волны одного типа, так называемые S-волны, через эту границу даже не проникают.

Именно это и является доказательством, что внешняя часть ядра Земли находится в жидком состоянии, поскольку S- волны в жидкости не распространяются.

Состав центра планеты

Но это не последнее слово геологов, геофизиков и геохимиков о состоянии и составе ядра.

Лабораторные опыты, во время которых в течение более длительного времени проверялись физические условия, существующие на границе мантии и внешнего ядра, то есть на глубине 2900 км, удалось провести пока лишь в отдельных случаях и на короткий период, поэтому геологи надеются на изучение явлений, имеющих место при крупных взрывах.


Итак, внешнее ядро является жидким, тогда как внутренняя часть – субядро, называемое ядрышком, вероятно, твердое.

Но само железо не имеет соответствующих свойств, поэтому предполагается, что в земном ядре присутствует еще один металл — никель, а некоторые ученые полагают, что там есть еще довольно значительное количество (около 10-20%) металлического кремния. При этом проводится сравнение с металлическими метеоритами, которые, помимо железа, содержат значительное количество никеля.

А поскольку весьма возможно, что железные метеориты являются остатками какой-то небольшой, распавшейся или разбитой в результате столкновения планетки (результат столкновения в Космосе), ученые считают, что центр Земли обладает железно-никелевым составом. температура ядра Земли Однако ответ на эти вопросы ученые смогут получить только в будущем, сначала экспериментальным путем в лаборатории. Может быть, удастся сконструировать и такую аппаратуру, которая проникнет в фантастические глубины мантии или даже в само ядро.

В нынешнее время бурение к центру планеты невозможно технически. Самое глубокое бурение было на глубину в 12 262 метра на Кольском полуострове в СССР и закончилось в далеком уже 1991 году.

В настоящее время нет информации про бурение к центру Земли в каких-либо странах.

Источник: v-nayke.ru

Путь к ядру

Изучать ядро достаточно непросто — поверхность Земли и его верхнюю кромку разделяют 2900 километров. Непросто пробуриться на такие глубины — чем ниже опускаться под землю, тем выше растет температура. В Кольской скважине, которая пока остается самой глубокой, на глубине в 12 километров накал достигал 220°C! Уже при таких температурах сложно работать не только электронике, но и самой аппаратуре — ведь ее надо как-то опустить в скважину, а потом вынуть обратно.

И даже преодолев литосферу, надо как-то пробиться сквозь раскаленную пластичную мантию. В двухтысячных годах был рассчитан проект, позволяющий зонду размером с небольшую дыню достичь ядра. Правда, в нем есть пара слабых мест — для того, чтобы добраться до ядра, нужно было взорвать несколько ядерных бомб, залить туда море раскаленного металла и изобрести такой материал, который мог бы выдержать температуру в 2–3 тысячи градусов по Цельсию! Но на бумаге все выглядело чудесно: вместе с потоком раскаленного железа зонд мог бы достичь ядра Земли всего за неделю.

Однако в ученых остался метод, позволяющий достаточно точно рассчитать плотность и объем ядра Земли — сейсмография. Колебания, исходящие от поверхностных слоев планеты — вибрации землетрясений или импульсы ядерных взрывов — распространяются не только по поверхности Земли, но и уходят глубоко в недра. Там они преломляются, увеличивая свою скорость прохождения — как преломляются световые волны, проходя через стекло или воду. Именно по тому, как изменяется сейсмическая волна при прохождении через планету, ученые сумели получить точные физические параметры ядра.

Помогают геологам также различные косвенные признаки. Например, наблюдение за магнитным полем Земли позволяет отслеживать динамику вращения ядра. Ценные подсказки порой дает даже то, что совсем не предназначено для исследования глубин. Был случай, когда сбои в работе орбитального телескопа «Хаббл» позволили выявить изменение направления потоков в жидком внешнем ядре Земли, служащих причиной сдвига магнитных полюсов.

Структура и характеристики ядра

Путь к знаниям долгий и тернистый, но плоды их сладки. На сегодняшний день достоверно известны следующие физические характеристики ядра Земли:

  • Температура ядра Земли в центральной точке может доходить до 6000 градусов Цельсия — это столько же, как на поверхности Солнца! Но в отличие от светила, энергией глубины питают не ядерные реакции, а гравитация. Точнее, ее сжатие — давление в ядре превышает атмосферное в 3,5 миллиона раз, достигая отметки в 360 гигапаскаль. Хотя процессы атомного распада в глубинах Земли происходят, их вклад не столь большой. Да и без громадного сжатия они были бы вялотекущими и не столь продуктивными.
  • Ядро Земли достигает 7000 километров в поперечнике — это больше не только Луны, но и Марса! Оно занимает не так много места внутри нашей планеты — около 15% объема — но зато его масса в 1,932 × 1024 килограмм составляет 30% от всей массы Земли.
  • Оказывается, что разные слои ядра вращаются в разные стороны. Сегодня считается, что внешнее жидкое ядро вращается вокруг своей оси с востока на запад, а внутреннее — с запада на восток, при этом еще и быстрее Земли. Впрочем, разница не очень значительная — за год оно опережает планету всего на четверть градуса

Кроме того, новейшие исследования говорят о том, что внутри внутреннего ядра Земли лежит еще одно — «самое» внутреннее ядро, которое вращается вообще по другой оси. Давайте рассмотрим его и другие составляющие земного ядра подробнее.

Внешнее ядро

Самый первый слой ядра, который непосредственно контактирует с мантией — это внешнее ядро. Его верхняя граница находится на глубине 2,3 тысячи километров под уровнем моря, а нижняя — на глубине 2900 километров. По составу оно ничем не отличается от нижележащих оболочек — давления гравитации попросту недостаточно для того, чтобы раскаленный металл затвердел. Зато его жидкое состояние является главным козырем Земли в сравнении с другими внутренними планетами Солнечной системы.

Дело в том, что именно жидкая часть ядра ответственна за возникновение магнитного поля Земли. Как наверняка известно читателю, магнитосфера служит щитом планеты против заряженных частиц открытого космоса и солнечного ветра. Они даже более опасны, чем излучение — частицы способны вывести из строя не только живые организмы, но и электронику. Биологи считают, что именно активное магнитное поле стало залогом выживания первобытных одноклеточных существ.

Как именно генерируется магнитное поле? Его порождает вращение жидкого железа и никеля в ядре. Магнитные свойства металлов тут ни при чем — это исключительно динамический эффект. А еще внешнее ядро подогревает мантию — причем в отдельных местах настолько сильно, что восходящие потоки магмы достигают даже поверхности, вызывая извержения вулканов.

Внутреннее ядро

Внутри жидкой оболочки находится внутреннее ядро. Это твердая сердцевина Земли, диаметр которой составляет 1220 километров — такой же размер у Харона, спутника-напарника Плутона. Эта часть ядра очень плотная — средняя концентрация вещества достигает 12,8–13г/см3, что в два раза больше густоты железа, и горячая — накал достигает знаменитых 5–6 тысяч градусов по Цельсию.

Высокое давление в центре Земли заставляет металл затвердевать при температурах, превышающих точку его кипения. При этом формируются необычные кристаллы, которые отличаются устойчивостью даже в обычных условиях. Считается, что внутреннее ядро представляет собой лес из многокилометровых кристаллов железа и никеля, которые направлены с юга на север. Для того чтобы проверить эту теорию, японские ученые потратили десять лет на создание особой алмазной наковальни — только в ней можно добиться такого давления и температуры, как в центре нашей планеты.

Выращенные кристаллы железа — микроскопические копии кристаллов внутреннего ядра

«Внутреннее» внутреннее ядро, или гипотетическая матрешка

Еще во время начальных исследований ядра при помощи сейсмических волн, геологи заметили необычное отклонение колебаний внутри ядра по направлению с востока на запад. Так как из-за своего вращения Земля шире на экваторе, чем на полюсах, сперва на это не обратили внимание. Но последующее изучение выявило, что центральная часть ядра может быть всего лишь очередной оболочкой.

Что представляет собой «внутреннее» внутреннее ядро? Скорее всего, оно состоит из тех же металлических кристаллов — но направленных уже не на север, а на запад. Пока что неясно, что вызывает такое расслоение. Однако ориентация кристаллов указывает на то, что тут не обошлось без гравитационных взаимодействий с Солнцем или Луной.

Источник: SpaceGid.com

То, что ядро Земли состоит из двух слоев, вещество которых по-разному пропускает сейсмические волны, известно давно. Но если по поводу жидкой природы внешнего ядра сомнений не было, то по поводу состояния внутреннего ядра ученые-геофизики спорят уже более 80 лет. Наконец получены убедительные доказательства того, что внутреннее ядро твердое. Но не совсем: оно обладает определенными признаками пластичности.

Несмотря на технический прогресс, в обозримом будущем люди вряд ли смогут физически проникнуть в мантию Земли, а уж тем более — в ее ядро: пока удалось углубиться лишь на 12 километров в земную кору (см. Кольская сверхглубокая скважина) и этот рекорд еще долго не будет побит. Но знания о том, что представляют собой внутренние оболочки планеты, чрезвычайно важны для понимания физических процессов, определяющих развитие Земли. Для изучения глубоких недр используют геофизические методы, в первую очередь — сейсмические. Именно использование сейсмических методов, основанных на изучении скорости распространения объемных сейсмических волн в толще Земли, позволило ученым провести границы между зонами внутренних неоднородностей в теле планеты и определить, что земная толща подразделяется на верхнюю мантию, нижнюю мантию, внешнее ядро и внутреннее ядро (рис. 1).

Объемные сейсмические волны, используемые в геофизических наблюдениях, делятся на продольные P-волны, в которых упругие механические колебания совершаются вдоль направления распространения, и поперечные S-волны, в которых колебания перпендикулярны направлению распространения. Первичным источником сейсмических волн для глубинных исследований обычно служат природные землетрясения, а для фиксации отклика прошедших сквозь недра Земли волн используют сейсмографы. Любой сейсмический импульс «запускает» одновременно оба типа волн — и продольные, и сдвиговые, которые по-разному преломляются (или отражаются) на границах сред с разной плотностью. Если Р-волны проходят через любые материалы, то S-волны, которые еще называют сдвиговыми волнами (так как они являются деформациями сдвига), распространяются только в твердых телах, поскольку модуль сдвига в жидкостях и газах равен нулю.

Предположение о том, что ядро Земли неоднородно, а состоит из двух оболочек — внешней расплавленной и внутренней твердой — было высказано еще в 1936 году датским геофизиком Инге Леманн на основе анализа прохождения сквозь тело Земли сейсмических волн от крупного землетрясения в южной части Тихого океана. Последующие исследования подтвердили, что на глубине около 5100 км от поверхности Земли находится четкая граница, фиксирующаяся по преломлению и отражению продольных сейсмических волн, — она и считается разделом между внешним и внутренним ядром. Верхняя граница внешнего ядра находится на глубине около 2900 км от поверхности.

Тот факт, что сдвиговые волны практически не распространяются во внешнем ядре, свидетельствует о том, что вещество этой оболочки находится в жидком состоянии. Что касается, внутреннего ядра, то неоднозначность интерпретации сейсмических данных, связанных с ним, долгие годы служила поводом для дискуссии о том, твердое оно или нет. С одной стороны, характер преломления и отражения продольных волн от его поверхности говорили в пользу предположения о твердом внутреннем ядре. Да и при тех давлениях, которые существуют на этих глубинах (около 3,8 млн бар), вряд ли можно представить себе другое состояние вещества. Но для однозначного подтверждения этой версии нужно было зафиксировать распространение в нем сдвиговых волн, что было сделать весьма проблематично, так как волны этого типа практически не проходят через окружающую внутреннее ядро жидкую оболочку внешнего ядра.

Волнам от конкретного сейсмического импульса, прошедшим сквозь различные оболочки и зафиксированным сейсмографами на выходе, присваивается определенный код, указывающий на то, какой тип волн преобладал при прохождении через ту или иную оболочку. Например, если и в мантии, и во внешнем ядре больше проявлены продольные колебания, а во внутреннем ядре колебания не фиксируются вообще, такой волне присваивается код PKIKP. Таким образом, для доказательства того, что внутреннее ядро является твердым, необходимо было уверенно зафиксировать волны типа PKJKP (рис. 2).

Ученые-геофизики из Австралийского национального университета (ANU) Хрвое Ткальчич (Hrvoje Tkalčić) и Тхань Сон Фам (Thanh-Son Pham) применили особый прием для обнаружения сверхслабых PKJKP-волн — так называемый метод корреляционных волновых полей, в основе которого лежит принцип сопоставления сигналов, поступающих на пары сейсмографов. При этом анализируются не сами поступающие сигналы, а сходство между сигналами от одного и того же сейсмического события. Сейсмограммы, полученные на различных сейсмографах, сравнивались попарно, а затем с помощью специальной программы строились так называемые глобальные коррелограммы (изображения волновых полей), покрывающие всю поверхность Земли (рис. 3).

Еще одна особенность примененного авторами подхода заключалась в преднамеренном игнорировании сильных волновых сигналов, которые обычно и являются главным предметом изучения. Понимая, что PKJKP-волны можно обнаружить только в области слабых сигналов, авторы отбрасывали первые три часа сейсмограмм, рассматривая только интервал от 3 до 10 часов после землетрясения.

Главной характеристикой сдвиговых волн, позволяющей делать вывод о состоянии среды, в которой они распространяются, является их скорость (Vs). Полученные авторами значения скоростей J-волн во внутреннем ядре (3,42 км/с на границе и 3,58 км/с в центре) подтверждают, что внутренне ядро Земли действительно твердое, но при этом не такое твердое, как считалось ранее. Полученные значения на 2,5% ниже, чем предполагается в принятой на сегодняшний день Предварительной Эталонной модели Земли (Preliminary Reference Earth Model, PREM), построенной на основе анализа собственных колебаний Земли (подробнее о собственных колебаниях планет читайте в материале Планеты на ленте сейсмометра). Это значит, что внутреннее ядро не абсолютно твердое, а обладает определенной пластичностью, как некоторые металлы — например, золото или платина. Хотя пониженные значения скоростей J-волн можно объяснить и другой причиной — наличием во внутреннем ядре небольшого количества расплава, заключенного в пространстве между кристаллами твердого вещества.

Полученные значения Vs позволяют делать определенные выводы и относительно состава внутреннего ядра. В частности, если бы внутренне ядро состояло из чистого железа или сплавов на его основе, скорости Vs были бы значительно выше тех, которые удалось зафиксировать. Наилучшим образом таким скоростям соответствует сплав железа, кремния и углерода.

Авторы считают, что, хотя до полного понимания состава внутреннего ядра и состояния вещества в нем еще очень далеко, если планомерно продолжать изучать параметры J-волн, можно будет не только ответить на эти вопросы, но и лучше понять, как наша планета сформировалась и как она эволюционировала.

Источник: Hrvoje Tkalčić, Thanh-Son Phạm. Shear properties of Earth’s inner core constrained by a detection of J waves in global correlation wavefield // Science. 2018. DOI: 10.1126/science.aau7649.

Владислав Стрекопытов

Источник: elementy.ru

10. Строение и химический состав атмосферы Земли.

Атмосфера (от греческого «атмос» — пар, «сфера» — шар) — это воздушная внешняя газовая оболочка планеты, которая окружает Земной шар, вращается вместе с ним, защищает всё живое на Земле от губительного влияния радиации.

По поводу возникновения атмосферы учёные выделяют две гипотезы.

Согласно первой гипотезе – атмосфера газообразная выплавка первичного материала, когда-то покрывавшему раскалённую Землю. Большинство учёных придерживаются второй гипотезы, которая утверждает, что атмосфера является вторичным образованием, возникшем при образовании газовых химических элементов и соединений из расплавленного вещества.

Первая атмосфера образовалась вокруг Земли во время сгущения пыли и газа, она превосходила нашу нынешнюю в 100 раз. Источниками газообразных веществ, из которых состояла первичная атмосфера, были расплавленные горные породы Земной коры, мантии и ядра. Это говорит о том, что атмосфера возникла уже после того, как Земля разделилась на оболочки.

Крупнейшие учёные предполагают, что ранняя атмосфера состояла из смеси водяного пара, водорода, углекислого газа, угарного газа и серы. Следовательно, первичная атмосфера состояла из лёгких газов, которые удерживались у Земной поверхности силами тяготения. Если сравнить древнейшую атмосферу с современной, то в ней отсутствовали привычные азот и кислород. Эти газы, вместе с парами воды находились тогда в глубоких недрах

Земли. Мало в то время было воды: она в виде гидроксилов входила в состав мантийного вещества. Только после того, как из пород верхней мантии стали интенсивно высвобождаться водяной пар и различные газы, возникла гидросфера, а толщина атмосферы и её состав изменился.

Кстати, эти процессы продолжаются до сих пор.

Например, при извержении вулканов гавайского типа, при температуре 10000 -12000С в газовых выбросах содержится до 80% паров воды и менее 6% углекислого газа. Кроме того, в современную атмосферу выбрасывается большое количество хлора, метана, аммиака, фтора, брома, сероводорода. Можно себе представить, какое огромное количество газов выбрасывалось в глубокой древности во время грандиозных извержений.

Первичная атмосфера была очень агрессивной средой и действовала на горные породы как сильная кислота. Да и температура её была очень высокой. Но как только температура понизилась, произошла конденсация пара. Первичная атмосфера Земли сильно отличалась от современной. Она была значительно более плотной и состояла в основном из углекислого газа. Резкое изменение состава атмосферы произошло 2 – 2,5 млрд. лет назад и связанно с зарождением жизни.

Растения каменноугольного периода в истории Земли поглотили большую часть углекислого газа и насытили атмосферу кислородом. С появлением первоначальной жизни появляются цианобактерии, которые начали перерабатывать компоненты атмосферы, выделяя кислород. При создании атмосферы выделение кислорода произошло из за более масштабного процесса связанного с «перемещением» многочисленных океанических вулканов

из под воды на поверхность Земли. Подводный вулкан выбрасывает магму, которая подвергается охлаждению водой. При этом выделяется сероводород и формируются минералы, в химический состав которых входит кислород.

Земные вулканы выбрасывают продукты, которые не реагируют с атмосферным кислородом, а только пополняют его содержание в воде. Последние 200 млн. лет состав земной атмосферы практически остаётся неизменным.

Источник: studfile.net


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.