Иоганн кеплер философия


15 ноября 1630 года умер выдающийся ученый Иоганн Кеплер. За свою жизнь он сделал открытия во многих областях: физике, математике, астрономии, механике, оптике. Эйнштейн называл его «несравненным человеком». Мы сделали подборку великих открытий Кеплера.

Астрономия

Кеплер был первооткрывателем трех законов движения планет. Они полностью и с превосходной точностью объяснили видимую неравномерность этих движений. Вместо многочисленных надуманных эпициклов модель Кеплера включает только одну кривую — эллипс. Второй закон, открытый ученым, установил, как изменяется скорость планеты, когда она удаляется от Солнца или приближается к нему. Третий же позволяет рассчитать эту скорость и период обращения вокруг Солнца. Кеплеровская система основана на модели Коперника, но в ней очень много нового. Например, исчезли круговые движения сфер, несущих на себе планеты, было введено понятие планетной орбиты. Если у Коперника центром была Земля, а точнее — центр земной орбиты, то у Кеплера она — рядовая планета, движение которой подчинено общим трём законам. Общим же фокусом орбит планет Кепплер назвал солнце.


Математика

В этой области Кеплер открыл математический анализ. А предшествовало этому то, что ученый нашел способ определения объемов разнообразных тел вращения, который описал в книге «Новая стереометрия винных бочек». Метод содержал первые элементы интегрального исчисления. К заслугам Кеплера также относится составление одной из первых таблиц логарифмов. Кроме того, у него впервые встречается такое понятие, как «среднее арифметическое».

Механика и физика

Кеплер ввел в физику понятие инерции — прирожденного свойства тел сопротивляться приложенной внешней силе. Ученый вплотную подошел к открытию закона тяготения, хотя и не пытался выразить его математически. Он был первым, кто выдвинул гипотезу о том, что причиной приливов является воздействие Луны на верхние слои океанов. Это произошло почти на сто лет раньше Ньютона.

Источник: www.vologda.kp.ru

Искусство астрономии и математики

В те далёкие годы такие серьёзные науки как математика и астрономия считались искусствами – в умах людей безраздельно господствовали философия и алхимия. Способности к таким псевдонаукам Кеплер проявлял с детства, после окончания монастырской школы Майльбонна. В 1591 году он – студент знаменитого Тюбингенского университета. Конечно же, на факультет искусств. Позже, выбрав для дальнейшего обучения геологию, молодой человек впервые прочитал постулаты гелиоцентрической теории построения мира, автором которой был Николай Коперник. Монография великого поляка стала жизненным путеводителем Кеплера на долгие годы научных изысканий.

Тайна Кеплера


После окончания университета Кеплер шесть лет читал лекции по математике в университете Граца. На этот период приходится первая научная работа молодого исследователя, названная им «Тайна мироздания». Впоследствии более весомые открытия отодвинули эту работу на второй план.

По достоинству оценив стремления молодого учёного к познанию истины, выдающиеся астрономы Галилей и Браге, тем не менее, отвергли основные её постулаты.

Позже Иоганн Кеплер и Тихо Браге встретились в Праге. Период с 1600 по 1610 годы они провели в тесном научном содружестве, что не мешало по-разному смотреть на теорию мироздания.

Астрономические наблюдения Кеплера тех лет классифицированы в труд о вспыхнувшей в 1604 году сверхновой. Сегодня в астрофизике она названа его именем. Немец шел по стопам прекрасного астронома-наблюдателя Тихо Браге. Изучая результаты его работ, Кеплер делал свои выводы.

Так, критически оценивая результаты звёздных наблюдений Браге, он предсказал эллиптический характер орбиты Марса. В фокусе орбиты красной планеты немец абсолютно точно расположил центр системы – Солнце. Так появился на свет Первый закон Кеплера. Последовательное изучение проблемы еще раньше привело к появлению Второго закона, доказывающего замедление скорости движения планеты при удалении от Солнца. В 1609 году Кеплер сформулировал эти законы в изданной монографии под названием «Новая астрономия».


Третий закон своего имени Кеплер сформулировал в 1618 году в книге «Гармония мира» — отношение куба среднего удаления планеты от Солнца к удвоенному периоду обращения вокруг центра системы является константой.

Простота формулировки и приложения законов Кеплера сделали их незаменимым инструментом для потомков в астрономических исследованиях. Окончательно раскрыл глубочайший смысл открытий Кеплера его великий последователь Исаак Ньютон.

Любимец цензоров

В 1613-1615 годах протестантское сообщество принимает, не в последнюю очередь благодаря усилиям Кеплера, григорианскую систему летосчисления и календарь.

В конце жизни, с 1617 по 1622 год Кеплер упорно трудился над унификацией астрономического учения Коперника в современном изложении. В книгу вошли все постулаты кеплеровской астрономии.  Средневековая научная цензура, так называемый «Индекс запрещенных книг», с величайшим удовольствием внесла этот труд Кеплера в свои анналы.

В 1627 году Кеплер издает совершенно новые, рассчитанные с учетом последних научных открытий, астрономические «Рудольфовы таблицы». При их подготовке талантливый математик Иоганн Кеплер первым из европейских деятелей науки применил логарифмирование.

Кроме астрономических трудов Кеплера, в средневековом научном мире очень известные его работы по математике, оптике, механике, физике:


  • Автор первых интегральных математических исчислений в работе «Новая стереометрия винных бочек».
  • Ввёл в математический лексикон термин «среднее арифметическое».
  • Впервые исследовал явление сопротивления тел внешнему воздействию, названное инерцией.
  • Исследовал свойства и роль глазного хрусталика, установил причины близорукости и дальнозоркости.

Иоганн Кеплер скончался от простуды 15 ноября 1630 года в Регенсбурге. Творческое наследие — 27 рукописей, вышедших в свет, огромное количество трудов, изданных после его смерти в 22-томном собрании сочинений. Примечательно, что во времена правления императрицы Екатерины II  была куплена и вывезена в Россию часть работ Кеплера. С тех пор она хранится в архиве Российской академии наук в Санкт-Петербурге.

comments powered by HyperComments

Источник: SpaceGid.com

(27 декабря 1571, Вейль-дерШтадт — 15 ноября 1630, Регенсбург) — немецкий астроном и математик. В поисках математической гармонии мира, созданного Богом, предпринял математическую систематизацию идей Коперника.
ился в Тюбингенском университете, преподавал математику и этику в Граце, составлял календари и астрологические прогнозы. В сочинении «Предвестник, или Космографическая тайна» (Prodromus sive Mysterium cosmographicum, 1596) излагал божественный математический порядок небес: шесть планет определяют пять промежутков, соответствующих пяти «платоновским» многогранникам. Был придворным математиком в Праге, помощником Тихо Браге; обрабатывая его точные наблюдения над движениями Марса, установил первые два закона обращения планет: планеты движутся не по круговым орбитам, но по эллипсам, в одном из фокусов которых находится Солнце; планеты движутся со скоростью, при которой радиусы-векторы описывают одинаковые площади в равные времена («Новая астрономия» — Astronomia nova, Pragae, 1609). Позже эти законы были распространены на все планеты и спутники. Третий закон — квадраты периодов обращения планет относятся как кубы их средних расстояний от Солнца — изложен в навеянной пифагореизмом «Гармонии мира» (Harmonices mundi, 1619). Для математики особое значение имело исследование «Стереометрия винных бочек» (1615), в котором Кеплер вычислял объемы тел, получающиеся при вращении конических сечений вокруг оси, лежащей с ними в одной плоскости. Он также применил логарифмы к построению новых таблиц движений планет (1627). Его «Краткий очерк коперниканской астрономии» (Epitome astronomiae Copenucanae, 1621) был лучшим учебником астрономии той эпохи. Открытия Кеплера имели громадное значение для философского и научного развития Нового времени.


Соч.: Gesammelte Wrke, Bd. 1—18, hrsg. W. Van Dyck und M. Caspar. Munch., 1937—63; в рус. пер.: Новая стереометрия винных бочек. М.—Л„ 1935; О шестиугольных снежинках. М., 1982.

Лит.: Кирсанов В. С. Научная революция 17 века. М., 1987; Реале Дж., АнтисериД. Западная философия от истоков до наших дней, т. 3. Новое время. СПб., 1996.

Л. А. Микешша

Источник: www.xn--80aacc4bir7b.xn--p1ai

КЕПЛЕР Иоганн

(27 дек. 1571 – 15 нояб. 1630) – нем. астроном, математик, физик и философ. Род. в Вейль-дер-Штадте (близ Штутгарта) в бедной семье. С 1589 учился в Тюбингенском ун-те, к-рый и окончил (1593), но не был допущен к богословской деятельности, как вольнодумец. В 1594–1600 – проф. математики в Граце, затем до 1612 – ассистент дат. астронома Тихо Браге в Праге. Вынужденный переезжать с места на место, гл. обр. ввиду преследований со стороны католич. церкви, К. в дальнейшем вел науч. работу в разных городах. Жил и умер в нищете. Для Маркса К. был одним из двух «любимых героев» (другой – Спартак) (см.


Маркс и Ф. Энгельс об искусстве, т. 2, 1957, с. 577). В своем первом астрономич. соч. «Предвестник космографических сочинений, содержащий космографическую тайну об удивительном соотношении пропорциональности небесных кругов…» («Prodromus dissertationum cosmographicarum…», 1596) К. принял гелио-центрич. теорию Коперника, однако пытался обосновать ее с помощью платоновско-пифагорейских идей, усматривая в неизменности числа планет и их расстояний от Солнца скрытую гармонию, а движение планет вокруг Солнца объяснял действием своеобразных интеллектуальных сил, или душ. В дальнейшем, вступив в переписку с Галилеем, К. испытал его влияние. Для прогресса материалистич. мировоззрения и углубления теории познания большое значение имело открытие К. (использовавшего наблюдения Тихо Браге) трех законов движения планет вокруг Солнца, известных с тех пор под назв. «законов К.»: 1) каждая планета движется по эллипсу, в одном из фокусов к-рого находится Солнце; 2) каждая планета движется в плоскости, проходящей через центр Солнца, причем площадь сектора орбиты, описанная радиусом – вектором планеты, изменяется пропорционально времени; 3) квадраты времен обращения планет вокруг Солнца относятся как кубы их средних расстояний от Солнца. Первые два закона были сформулированы в «Новой астрономии» («Astronomia nova…», 1609), а последний – в соч. «Гармонии мира» («Harmonices mundi…», 1619).
лос. значение открытых К. законов движения планет вокруг Солнца определяется прежде всего тем, что важнейшая филос. категория естеств. закономерности получала теперь строго науч. конкретизацию, выраженную посредством математич. формул. Открытие К. способствовало освобождению понятия естеств. закономерности от антропоморфизма и субъективизма. Подчеркивая объективный характер открытых им законов, К. решительно выступал (в частности, в соч. «Апология Тихо…» – «Apologia Tychonis…») против субъективно-идеалистич. представления об астрономич. теориях (в частности о теории Коперника) как лишь гипотетических. К. сознательно противопоставлял метод тщательного наблюдения явлений природы и их строго научного, рационального осмысления, метод, вскрывавший реальные причины явлений, методам алхимиков и астрологов. Показательна в этом отношении полемика К. с Флуддом. В своем соч. «Новая стереометрия винных бочек» («Nova Stereometria doliorum vinariorum», 1615, рус. пер. 1935) К. решал задачи, рассмотрение к-рых подводило к открытию интегрального исчисления. В ряде соч. рассмотрел проблемы оптики, в т.ч. и физиологической, развив по существу материалистич. представления в области теории зрения. Соч.: Opera omnia, v. 1–8, ed. Chr. Frisch, Fr./M., 1858– 1871 ; Gesammelte Werke, Bd 1–4, 6, 13–17, Hrsg. von w. van Dych und M. Caspar, M?nch., 1937–55; в рус. пер.: Новая стереометрия винных бочек, вступит.
. М. Я. Выгодского, М.–Л., 1935. Лит.: Предтеченский ?. ?., И. Кеплер. Его жизнь и научная деятельность, СПБ, 1891; Базилевская Е. В., Рукописное наследие Иоганна Кеплера, в кн.: Архив АН СССР. Обозрение архивных материалов, т. 2, М.–Л., 1946, с. 297–312; Баев К. Л., Создатели новой астрономии, М., 1948; Коперник. Бруно. Кеплер. Галилей, М., 1955; Надор Д., Мировоззрение Кеплера и его роль в развитии понимания законов природы, в кн.: Историко-астрономические исследования, вып. 1, М., 1955, с. 119–32; ?rantl С., Galilei und Kepler, als Logiker, в сб.: Sitzungsberichte der Bayerischen Akademie der Wissenschaften. Philosophisch-historische Klasse [Bd ] 2, M?nch., 1875; Schmidt J., Keplers Erkenntniss- und Methodenlehre, Jena, 1903; G?nther L., Kepler und die Theologie, Giessen, 1905; Кassirer E., Kepler, в кн.: Das Erkenntnisproblem in der Philosophie und Wissenschaft der neueren Zeit, 2 Aufl., Bd 1, В., 1911; Rо?nagel P., J. Keplers Weltbild und Erdenwandel, Lpz., [1930 ]; J. Kepler der Kaiserliche Mathematiker, Kepler – Festschrift, Tl 1, Regensburg, 1930; Struik D. J., Kepler as a mathematician, в сб.: History of science and society. Johann Kepler. 1571–1630, Balt., 1931; Zaiser H., Kepler als Philosoph, Basel, 1932; Hildebrandt К., Kopernikus und Kepler, in der deutschen Geistesgeschichte, Halle, 1944; Gaspar M., J. Kepler, 2 Aufl., Stuttg., [1950 ]; его же, Bibliographia Kepleriana, M?nch., 1936. В. Соколов. Москва.

Источник: Философская Энциклопедия. В 5-х т.

Источник: terme.ru

 

Вслед за Н. Кузанским великий польский астроном Николай Коперник (1473 – 1543) пользуясь принципом относительности основал новую астрономическую систему – гелиоцентрическую систему мира – одно из поистине выдающихся научных открытий того времени. В связи с практической задачей усовершенствования календаря возникла необходимость создать новую методику выполнения астрономических расчётов. Будучи широко образованным математиком и астрономом, Коперник понимал, что эту задачу не решить традиционными способами. Знакомство с философией неоплатонизма и пифагореизма, убеждение в том, что Бог создал мир в соответствии с простыми правилами математической гармонии, побудили Коперника предположить, единообразие кругового движения небесных тел и совершенно новый, с точки зрения привычных представлений, порядок их взаимного расположения и движения.

Главное и почти единственное сочинение Коперника, плод более чем 40-летней его работы – «О вращении небесных сфер». Гелиоцентрическая система в варианте Коперника может быть сформулирована в семи утверждениях:

1) орбиты и небесные сферы не имеют общего центра;

2) центр Земли — не центр Вселенной, но только центр масс и орбиты Луны;

3) все планеты движутся по орбитам, центром которых является Солнце, и поэтому Солнце является центром мира;

4) расстояние между Землёй и Солнцем очень мало по сравнению с расстоянием между Землёй и неподвижными звёздами;

5) суточное движение Солнца — воображаемо, и вызвано эффектом вращения Земли, которая поворачивается один раз за 24 часа вокруг своей оси, которая всегда остаётся параллельной самой себе;

6) Земля (вместе с Луной, как и другие планеты), обращается вокруг Солнца, и поэтому те перемещения, которые, как кажется, делает Солнце (суточное движение, а также годичное движение, когда Солнце перемещается по Зодиаку) — не более чем эффект движения Земли;

7) это движение Земли и других планет объясняет их расположение и конкретные характеристики движения планет.

С принятием этой гипотезы отпадало множество прежних затруднений, картина мира приобрела изящные, стройные и весьма убедительные очертания. Понимая радикальность своего учения, Коперник долго не публиковал его, ссылаясь на пример последователей Пифагора, таивших истину от профанов. Работа всё же была опубликована, скандал не замедлил разразиться, но начало было положено. Началась великая научная революция.

Дело Коперника продолжил немецкий учёный Иоганн Кеплер (1571 – 1630). Иоганн Кеплер родился в имперском городе Вайль-дер-Штадте. Его отец служил наёмником в Испанских Нидерландах. Когда юноше было 18 лет, отец отправился в очередной поход и исчез навсегда. Мать Кеплера, Катарина Кеплер, содержала трактир, подрабатывала гаданием и траволечением. Интерес к астрономии появился у Кеплера ещё в детские годы, когда его мать показала впечатлительному мальчику яркую комету (1577), а позднее – лунное затмение (1580). В 1589 г. Кеплер закончил школу при монастыре Маульбронн, обнаружив выдающиеся способности. Городские власти назначили ему стипендию для помощи в дальнейшем обучении. В 1591 году поступил в университет в Тюбингене – сначала на факультет искусств, к которым тогда причисляли и математику с астрономией, затем переходит на теологический факультет. Первоначально Кеплер планировал стать протестантским священником, но благодаря незаурядным математическим способностям был приглашён в 1594 г. читать лекции по математике в университете города Граца (ныне в Австрии).

Основываясь на весьма точных астрономических наблюдениях, Кеплер установил, что движения планет вокруг Солнца, сообразно с предложенной Коперником структурой солнечной системы, не являются строго круговыми. Кеплер показал, что каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце. Таков был первый закон Кеплера. В соответствии со вторым законом Кеплера скорость движения планеты по орбите замедляется по мере удаления от Солнца. Подлинной вершиной виртуозных математических расчётов Кеплера, явилось установление знаменитого третьего закона Кеплера, утверждавшего, что квадрат орбитального периода движения каждой планеты равен кубу среднего расстояния её до Солнца.

Эти удивительные и загадочные соотношения блестяще подтверждали мысль о том, что устройство космоса подчинено строгим и простым математическим правилам.

Выдающийся итальянский исследователь Галилео Галилей (1564 – 1642), как и многие его предшественники, считал, что книга природы написана языком математики, и для объяснения природных явлений необходимо установить их свойства, поддающиеся точным измерениям. Отправным пунктом научного познания признавался опыт, осуществляемый путём планомерного экспериментирования с использованием приборов и инструментов, расширяющих возможности наших органов чувств.

Основные научные открытия Галилея:

Ø В 1609 г. Галилей самостоятельно построил свой первый телескоп. Труба давала приблизительно трёхкратное увеличение. Вскоре ему удалось построить телескоп, дающий увеличение в 32 раза.

Ø С помощью телескопа увидел, что Луна, подобно Земле, имеет сложный рельеф – покрыта горами и кратерами. Галилей открыл также солнечные пятна. Существование пятен и их постоянная изменчивость опровергали тезис Аристотеля о совершенстве небес. По результатам их наблюдений Галилей сделал вывод, что Солнце вращается вокруг своей оси, оценил период этого вращения и положение оси Солнца.

Ø Галилей установил, что Венера меняет фазы. Это доказывало, что она светит отражённым светом Солнца.

Ø Подтвердил вращение планет вокруг Солнца, а не вокруг Земли.

Ø Открыл спутники Юпитера и кольца Сатурна.

Ø Млечный путь, который невооружённым глазом выглядит как сплошное сияние, на самом деле представляет собой громадное скопление звёзд.

В 1632 году вышла в свет его книга «Диалог о двух главнейших системах мира – птолемеевой и коперниковой», в которой Галилей говорит о неправильности взглядов Аристотеля и Птолемея. Санкции последовали незамедлительно. Галилея вызвали в Рим на суд. Следствие тянулось с апреля по июнь 1633 года. Церковь обвиняет учёного в ереси, и для сохранения своей жизни он вынужден признать гелиоцентрическую систему строения мира ложной. 22 июня Галилей, стоя на коленях, произнёс предложенный ему текст отречения: «Я, Галилей, сын Винченцо Галилея из Флоренции, в возрасте семидесяти лет, лично представши пред судом, будучи коленопреклонённым перед вами, высокочтимые и достопочтенные кардиналы, главные Инквизиторы во всей Христианской республике, имея перед моими глазами священное Евангелие и касаясь его руками, клянусь, что всегда верил, верю сейчас и с Божьей помощью буду верить в будущем во всё то, что содержит, проповедует, чему учит Святая Соборная и Апостольская Церковь. Поэтому, желая освободить Ваши Высокопреосвященства и всякого верного христианина от тяжкого подозрения, справедливо мною заслуженного, я с открытым сердцем и искренней верой проклинаю и презираю вышеупомянутые заблуждения и ересь и вообще всякое другое заблуждение, ересь и секту, противоречащие Святой Церкви; и клянусь, что в будущем никогда больше не стану говорить и утверждать ни устно, ни письменно того, что могло бы навлечь на меня подобные подозрения; и если я узнаю какого-либо еретика или подозреваемого в ереси, то сообщу о нём в Священную канцелярию, или же местному инквизитору, или представителю там, где я буду находиться…».

В последние годы жизни он находился под домашним арестом под надзором инквизиции. Галилео Галилей умер 8 января 1642 года в Арчетри. Только в ноябре 1979 года папа римский Иоанн-Павел II официально признал, что инквизиция в 1633 году совершила ошибку, силой вынудив отречься учёного от теории Коперника.

Завершает научную революцию английский учёный Исаак Ньютон (1642 – 1727). В 1687 г. Ньютон издаёт «Математические начала натуральной философии». Связав воедино законы движения планет, установленные Кеплером, и законы механического движения земных тел, открытые Галилеем, Ньютон осуществил грандиозный теоретический синтез. Движение планет получило объяснение, исходя из закона всемирного тяготения и трёх основных законов механики, сведённых Ньютоном в целостную систему.

Вот три ньютоновских закона движения, которые представляют собой классическое выражение основ динамики.

Первый – закон инерции, над которым работали Галилей и Декарт. Ньютон пишет: «Всякое тело пребывает в состоянии покоя или равномерного прямолинейного движения до тех пор, пока действующие на него силы не изменят это состояние». Ньютон иллюстрирует этот фундаментальный принцип следующим образом: «Пуля летит, пока её не остановит сопротивление воздуха или пока не упадёт под действием силы тяготения. Юла не прекратит своего вращения, пока её не остановит сопротивление воздуха. Более крупные тела планет и комет, находясь в пространствах более свободных и с меньшим сопротивлением, сохраняют свои движения вперёд и одновременно по кругу на гораздо более продолжительное время».

Второй закон, сформулированный уже Галилеем, гласит: «Произведение массы тела на его ускорение равно действующей силе, а направление ускорения совпадает с направлением силы».

Третий закон, сформулированный Ньютоном, утверждает, что «действию всегда соответствует равное противодействие», или: действия двух тел друг на друга всегда равны по величине и направлены в противоположные стороны. Этот принцип равенства между действием и противодействием Ньютон иллюстрирует так: «Любая вещь, которая давит на другую вещь или тянет её, испытывает в равной мере давление или притягивание со стороны этой другой вещи. Если надавить на камень пальцем, то и палец будет испытывать давление камня. Если лошадь тянет за веревку камень, то и лошадь испытывает притягивание назад, в направлении камня».

Поставив задачу изучения различных сил, Исаак Ньютон сам же дал первый блистательный пример её решения, сформулировав закон всемирного тяготения, который гласит, что сила гравитационного притяжения между двумя материальными точками массы m1 и m2, разделёнными расстоянием R, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними – то есть: F = G ∙ где, G – гравитационная постоянная.

Теория Ньютона не объясняла сущности и происхождения силы всемирного тяготения, и сам создатель этой теории сознательно отказывался выдвигать произвольные умозрительные объяснения, заявив, что гипотез он не измышляет. Вместе с тем он, будучи ревностным христианином, безоговорочно признавал существование премудрого и могущественного Бога, по проекту которого устроена величественная система мироздания, работающая как точные и бесконечно сложные часы.

Ньютон завершил научную революцию, и с его системой мира обретает лицо классическая физика. Механика Ньютона стала одной из наиболее мощных и плодотворных исследовательских программ в истории науки.

Источник: studopedia.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.