Гравитационные волны стрыгин


В каком-то смысле повторилась история с открытием бозона Хиггса: сперва в середине января в научно-популярных ресурсах распространилась молва, что ученые коллаборации LIGO наконец-то обнаружили гравитационные волны. Мы тоже приняли участие в распространении этих слухов. Затем поступила серия официальных опровержений (впрочем, звучавших лукаво и неубедительно, мол, «слухи — они слухи и есть, а мы знать ничего не знаем»). И наконец, вот в эту минуту, когда мы пишем эти строки, ученые LIGO готовятся к пресс-конференции, на которой тайное наконец станет явным. А когда читатели это прочтут, вся правда выйдет наружу.

Из-за чего сыр-бор? Стоят ли гравитационные волны всей этой шумихи? В научно-популярном жанре есть две традиции. Одна — чуждая нам, западная: по возможности раздувать все научные сенсации, потому что только так можно достучаться до заплывшего жиром обывательского мозга. Другая традиция — отечественная. После объявления о важном открытии (сделанном, как вы понимаете, не в России) отечественные специалисты непременно дают комментарий, что, мол, не надо все упрощать, вы неправильно поняли, в науке все так запутанно и скучно, что обывателю с его суконным рылом не стоит беспокоиться. Так было, например, после открытия «девятой планеты»: бесконечно уважаемый мною ресурс «Постнаука» немедленно разъяснил, как там все на самом деле непросто, непонятно, и вообще никакой планеты, может быть, и нету.


Мы пойдем на поводу у этой отечественной традиции и начнем с того, что гравитационные волны никто не открывал. То есть доказательство их существования получено давным-давно, сами они банальны, как репа на блюде, и обыватель может спокойно отправляться читать колонку Ксении Собчак про снос торговых палаток возле метро. Ну а потом мы все же немного объясним, что сделали ученые из LIGO и почему они заслуживают Нобелевской премии.

Что такое гравитационные волны

Всемирное тяготение — очень простая штука: есть здоровенное Солнце, и мы отсюда, за полтораста мильонов километров, чувствуем его массу. Пока Солнце висит там, где оно есть, мы летаем вокруг него по орбите. Если Солнце вдруг — ну представим себе такое — начнет подергиваться, мы (то есть наша орбита) тоже будет подергиваться в такт.

Можно будет даже сделать машинку, которая превратит эти подергивания, к примеру, в электричество. Приделаем к ней лампочку, и лампочка загорится. Откуда энергия? Да от этих солнечных подергиваний. Как эта энергия дошла бы к нам через вакуум? Обычную энергию Солнца несут к нам фотоны, то есть электромагнитное поле. Но гравитация не очень похожа на электромагнитное поле: если верить Эйнштейну, это просто (просто? Ха-ха!) искривление ткани пространства-времени. И если эту ткань дергать и морщить, то по ней побежит рябь. Эта рябь донесет нам энергию, которой, при удачном раскладе, хватило бы на лампочку.


А если не делать машинку с лампочкой? Если вообще нас бы тут не было, а было бы только подергивающееся Солнце — оно бы все равно разбрасывало по сторонам гравитационную энергию? Похожим вопросом в свое время задался Эрнст Мах (тот самый, с которым спорил Владимир Ильич Ленин, не поняв ни слова в его статьях). Мах тогда решил, что если бы во Вселенной ничего не было, то и всякие подергивания и прочие ускорения не имели бы никакого смысла. Именно его сомнительные рассуждения и вдохновили Эйнштейна на Общую теорию относительности. В результате оказалось, что Мах, вообще говоря, не прав. Дергающаяся масса даже в совершенно пустом пространстве будет рассеивать энергию. Если ее не поймать, она просто улетит в бесконечность. И раз энергия сохраняется, она должна от дергающейся массы перейти к чему-то еще, тоже материальному. Вот это «что-то еще» и есть гравитационные волны — странная, но вполне материальная штука. И, если задуматься чуть-чуть, штука вполне естественная, понятная и неизбежная.

Теперь ближе к практике. С чего бы Солнцу подергиваться? Оно могло бы, в принципе, это делать, если бы было двойной звездой: летали бы две половинки Солнца друг вокруг дружки, и тогда мы бы точно дергались в такт этим движениям.
Солнце — не двойная звезда. Самое похожее на вторую звезду, что у нас тут в окрестностях имеется, — это планета Юпитер. И действительно, Солнце и Юпитер немножко дергаются в такт своему орбитальному движению. Можно даже рассчитать, по Эйнштейну, сколько именно энергии рассеивает в космос эта гравитационная парочка. Результат такой: пять киловатт. Это примерно мощность электрического водонагревателя у меня в ванной. В домашнем быту — вполне полезный энергетический приварок, да вот беда: эти пять киловатт рассеиваются по всей Солнечной системе, улетают дальше, в открытый космос, и никак эту энергию не поймать. А все потому, что гравитация — довольно слабенькая сила, по сравнению с электричеством.

Чтобы эта сила стала заметной, надо просто взять массу побольше и дергать ее посильнее. Например, можно взять систему из двух звезд, одна из которых — нейтронная (то есть пульсар). Такую систему (PSR B1913+16) как раз и изучили Рассел Халс и Джозеф Тейлор-младший. Как и следовало ожидать, система теряла энергию за счет гравитационных волн, и за это Халс и Тейлор получили Нобелевскую премию. Потому что тогда казалось, что лучшего доказательства реальности этих волн мы никогда не получим. Можно бы, конечно, взять систему из двух бешено вращающихся и сливающихся черных дыр, там бы эффект был посильнее, да только кто эти дыры видел?


Суммируем вышесказанное: идея гравитационных волн лежит на поверхности, а их существование доказано четверть века назад. В чем же сенсация?

Как поймали гравитационные волны

Сенсация в том, что эти волны, собственно, удалось зарегистрировать. То есть увидеть не убыль энергии в системе из двух дергающихся масс, а прибыль энергии в другом месте. А именно тут, у нас, на земле, в эксперименте LIGO («Лазерно-интерференционная гравитационная обсерватория», как мы когда-то уже приблизительно расшифровали эту аббревиатуру).

Гравитационная волна, по Эйнштейну, это возмущение метрики пространства-времени. Если попроще, то это некое подергивание расстояния между двумя точками. Две точки неподвижны, но расстояние между ними слегка меняется из-за того, что вздрагивает само пространство. Насколько сильно меняется? Амплитуда гравитационной волны измеряется тем, насколько короче стал, например, 1 метр. То есть ее меряют в единицах «метр на метр», то есть безразмерных (если хотите, в процентах). Речь идет об амплитудах порядка 10 в минус 23-й степени (забегая вперед, именно такие волны и зарегистрировали физики).

Давайте прикинем, насколько это много или мало. Поскольку речь о волнах, то для наглядного примера возьмем звуковые волны. В натуральном ладу ноты до и си-диез — не совсем одно и то же, и матерые музыканты слышат эту разницу (а обычные музыканты — не всегда). На самом деле разница между соответствующими длинами волн составляет примерно 1%. То есть десять в минус второй степени. А там — в минус двадцать третьей. Нет никаких шансов уловить на слух разницу колебаний струны, вдруг удлинившейся из-за того, что ее растянуло случайно пролетевшей гравитационной волной.


Но гитаристы знают, что если у вас слух не очень хороший, то две струны можно настроить в унисон по «биениям». Принцип в том, что даже если длины волн (или частоты) различаются очень незначительно, то на большом расстоянии эта разница будет постепенно накапливаться, и в какой-то момент две волны, шедшие вначале бок о бок, сперва немного разойдутся, а когда-то и вовсе окажутся в противофазе. Ушами мы услышим ослабление звука, вернее, волну усилений и ослаблений, те самые «биения». Чем биения медленнее, тем точнее настроены две струны. Именно на этом принципе основан тот самый лазерный интерферометр, успех которого мы сегодня празднуем.

Грубо говоря, интерферометр — это два луча лазера, перпендикулярных друг другу. В точке встречи они могут ослаблять или усиливать друг друга, и если пространство «вздрогнет», то есть чуть-чуть сожмется в одном из этих направлений, картинка наложения лазерных лучей слегка изменится. Это изменение и поймали физики.

Трудность, конечно, в том, что сжатие пространства на одну-триллион-триллионную долю — это чертовски маленькое сжатие. Двум световым волнам из лазера, одна из которых вот настолечко короче другой, надо пробежать огромное расстояние, чтобы накопить заметное расхождение.
енно поэтому сам детектор LIGO имеет размер 4 км, а за счет хитрых инженерных приспособлений путь луча увеличивается еще на пару порядков. Инженерная сложность состоит в том, чтобы уловить изменения базы интерферометра за счет именно гравитационных волн, а не из-за того, к примеру, что отдельные фотоны колошматят своими тушками по зеркалу, отчего вся конструкция трясется. Да немало было и других сложностей: рассказать всю эту историю понятными словами нелегко, но все же гораздо проще, чем сделать реально работающую установку.

Именно эти проблемы и решал один из соавторов работы, наш соотечественник, профессор Физического факультета МГУ Михаил Городецкий. Там, в РКЦ, многое знают про лазеры, и это знание очень даже пригодилось международной коллаборации ученых. Именно эти разработки лежали в основе апгрейда детектора, состоявшегося в 2015 году. В результате, по словам Михаила, прошедшие полгода стали «эквивалентны 20 годам при прежней чувствительности» (первая порция финансирования на проект LIGO была выделена еще в 1992 году, а общая стоимость открытия составила 1 млрд долларов — стоимость примерно 10 км российской автострады, если вы понимаете, о чем я).  

Зачем нужны гравитационные волны

С точки зрения природы вопрос дурацкий: без гравитационных волн все будет нелогично, вплоть до абсурда, а природа это отчего-то ненавидит.


вот с нашей точки зрения вопрос имеет смысл. Так вот, волны эти нам нужны для того, чтобы увидеть Вселенную совершенно по-новому. До сих пор все люди — от девочки, августовской ночью пялящейся на звезды, до рентгеновских астрономов — видели космос с помощью электромагнитных волн. Теперь можно посмотреть на все это в «гравитационном свете». Вернее, в звуке: частота гравитационных волн по удачному совпадению почти равна частоте слышимого звука, то есть от сотни до тысячи герц. «Услышанное» детектором LIGO можно, в принципе, преобразовать в фонограмму и прослушать ушами. Готов ставить деньги, что этот фокус будет показан широкой публике в самое ближайшее время. И, кажется, мы уже писали, что «звук» от сливающихся черных дыр похож на воробьиный щебет, этакий «чвик», быстро меняющийся от низкого тона к высокому.

Впрочем, соавтор открытия заслуживает права сказать об этом своими собственными словами: «У нас появились “уши”, которыми мы можем слушать Вселенную. Частоты гравитационных волн, регистрируемые LIGO, фактически звуковые. Их можно переложить в звук и слушать, как чириканье птиц. Мы сможем фиксировать интересные события во Вселенной, кроме того, мы сможем проверить теорию относительности на таком уровне точности, который недоступен для других методов, проверить новые теории и, возможно, приблизиться к созданию квантовой теории гравитации или даже к теории великого объединения».


Вот какие блестящие перспективы. И даже если вклад наших соотечественников в это человеческое свершение состоял в том, чтобы приладить к интерферометру кварцевые зеркала, с точки зрения прогресса знаний это очень-очень немалый вклад. Поздравляем Михаила, а также всех остальных соавторов открытия. Мы за них искренне рады, потому что мы тоже человечество и нам все это небезразлично.

На этом мы и закончим наше краткое введение в гравитационные волны. А саму историю сейчас рассказывают ученые на пресс-конференции; самым любознательным читателям рекомендуем немедленно туда отправиться и услышать все своими ушами.

* Примечание:

Российские участники исследований были так любезны, что прислали в редакцию разъяснение:

«Россия представлена двумя научными коллективами: группой физического факультета Московского государственного университета имени М.В. Ломоносова и группой Института Прикладной физики РАН (Нижний Новгород).

Московскую группу создал и вплоть до последнего времени возглавлял член-корреспондент РАН Владимир Борисович Брагинский — всемирно известный ученый, один из пионеров гравитационно-волновых исследований в мире. В состав научной группы, включенной в число соавторов научного открытия, также входят профессора кафедры физики колебаний: Валерий Митрофанов (нынешний руководитель коллектива), Игорь Биленко, Сергей Вятчанин, Михаил Городецкий, Фарид Халили, доцент Сергей Стрыгин и ассистент Леонид Прохоров. Неоценимый вклад в исследования внесли студенты, аспиранты и технический персонал кафедры.


Группа Московского университета участвует в проекте с 1992 года. С самого начала основные усилия были направлены на повышение чувствительности гравитационно-волновых детекторов, определение фундаментальных квантовых и термодинамических ограничений чувствительности, на разработку новых методов измерений. Теоретические и экспериментальные исследования российских ученых нашли свое воплощение при создании детекторов нового поколения, позволивших непосредственно наблюдать гравитационные волны от слияния двух черных дыр».

Источник: snob.ru

В каком-то смысле повторилась история с открытием бозона Хиггса: сперва в середине января в научно-популярных ресурсах распространилась молва, что ученые коллаборации LIGO наконец-то обнаружили гравитационные волны. Мы тоже приняли участие в распространении этих слухов. Затем поступила серия официальных опровержений (впрочем, звучавших лукаво и неубедительно, мол, «слухи — они слухи и есть, а мы знать ничего не знаем»). И наконец, вот в эту минуту, когда мы пишем эти строки, ученые LIGO готовятся к пресс-конференции, на которой тайное наконец станет явным. А когда читатели это прочтут, вся правда выйдет наружу.

Из-за чего сыр-бор? Стоят ли гравитационные волны всей этой шумихи? В научно-популярном жанре есть две традиции.
на — чуждая нам, западная: по возможности раздувать все научные сенсации, потому что только так можно достучаться до заплывшего жиром обывательского мозга. Другая традиция — отечественная. После объявления о важном открытии (сделанном, как вы понимаете, не в России) отечественные специалисты непременно дают комментарий, что, мол, не надо все упрощать, вы неправильно поняли, в науке все так запутанно и скучно, что обывателю с его суконным рылом не стоит беспокоиться. Так было, например, после открытия «девятой планеты»: бесконечно уважаемый мною ресурс «Постнаука» немедленно разъяснил, как там все на самом деле непросто, непонятно, и вообще никакой планеты, может быть, и нету.

Мы пойдем на поводу у этой отечественной традиции и начнем с того, что гравитационные волны никто не открывал. То есть доказательство их существования получено давным-давно, сами они банальны, как репа на блюде, и обыватель может спокойно отправляться читать колонку Ксении Собчак про снос торговых палаток возле метро. Ну а потом мы все же немного объясним, что сделали ученые из LIGO и почему они заслуживают Нобелевской премии.

Что такое гравитационные волны

Всемирное тяготение — очень простая штука: есть здоровенное Солнце, и мы отсюда, за полтораста мильонов километров, чувствуем его массу. Пока Солнце висит там, где оно есть, мы летаем вокруг него по орбите. Если Солнце вдруг — ну представим себе такое — начнет подергиваться, мы (то есть наша орбита) тоже будет подергиваться в такт.

Можно будет даже сделать машинку, которая превратит эти подергивания, к примеру, в электричество. Приделаем к ней лампочку, и лампочка загорится. Откуда энергия? Да от этих солнечных подергиваний. Как эта энергия дошла бы к нам через вакуум? Обычную энергию Солнца несут к нам фотоны, то есть электромагнитное поле. Но гравитация не очень похожа на электромагнитное поле: если верить Эйнштейну, это просто (просто? Ха-ха!) искривление ткани пространства-времени. И если эту ткань дергать и морщить, то по ней побежит рябь. Эта рябь донесет нам энергию, которой, при удачном раскладе, хватило бы на лампочку.

А если не делать машинку с лампочкой? Если вообще нас бы тут не было, а было бы только подергивающееся Солнце — оно бы все равно разбрасывало по сторонам гравитационную энергию? Похожим вопросом в свое время задался Эрнст Мах (тот самый, с которым спорил Владимир Ильич Ленин, не поняв ни слова в его статьях). Мах тогда решил, что если бы во Вселенной ничего не было, то и всякие подергивания и прочие ускорения не имели бы никакого смысла. Именно его сомнительные рассуждения и вдохновили Эйнштейна на Общую теорию относительности. В результате оказалось, что Мах, вообще говоря, не прав. Дергающаяся масса даже в совершенно пустом пространстве будет рассеивать энергию. Если ее не поймать, она просто улетит в бесконечность. И раз энергия сохраняется, она должна от дергающейся массы перейти к чему-то еще, тоже материальному. Вот это «что-то еще» и есть гравитационные волны — странная, но вполне материальная штука. И, если задуматься чуть-чуть, штука вполне естественная, понятная и неизбежная.

Теперь ближе к практике. С чего бы Солнцу подергиваться? Оно могло бы, в принципе, это делать, если бы было двойной звездой: летали бы две половинки Солнца друг вокруг дружки, и тогда мы бы точно дергались в такт этим движениям. Но Солнце — не двойная звезда. Самое похожее на вторую звезду, что у нас тут в окрестностях имеется, — это планета Юпитер. И действительно, Солнце и Юпитер немножко дергаются в такт своему орбитальному движению. Можно даже рассчитать, по Эйнштейну, сколько именно энергии рассеивает в космос эта гравитационная парочка. Результат такой: пять киловатт. Это примерно мощность электрического водонагревателя у меня в ванной. В домашнем быту — вполне полезный энергетический приварок, да вот беда: эти пять киловатт рассеиваются по всей Солнечной системе, улетают дальше, в открытый космос, и никак эту энергию не поймать. А все потому, что гравитация — довольно слабенькая сила, по сравнению с электричеством.

Чтобы эта сила стала заметной, надо просто взять массу побольше и дергать ее посильнее. Например, можно взять систему из двух звезд, одна из которых — нейтронная (то есть пульсар). Такую систему (PSR B1913+16) как раз и изучили Рассел Халс и Джозеф Тейлор-младший. Как и следовало ожидать, система теряла энергию за счет гравитационных волн, и за это Халс и Тейлор получили Нобелевскую премию. Потому что тогда казалось, что лучшего доказательства реальности этих волн мы никогда не получим. Можно бы, конечно, взять систему из двух бешено вращающихся и сливающихся черных дыр, там бы эффект был посильнее, да только кто эти дыры видел?

Суммируем вышесказанное: идея гравитационных волн лежит на поверхности, а их существование доказано четверть века назад. В чем же сенсация?

Как поймали гравитационные волны

Сенсация в том, что эти волны, собственно, удалось зарегистрировать. То есть увидеть не убыль энергии в системе из двух дергающихся масс, а прибыль энергии в другом месте. А именно тут, у нас, на земле, в эксперименте LIGO («Лазерно-интерференционная гравитационная обсерватория», как мы когда-то уже приблизительно расшифровали эту аббревиатуру).

Гравитационная волна, по Эйнштейну, это возмущение метрики пространства-времени. Если попроще, то это некое подергивание расстояния между двумя точками. Две точки неподвижны, но расстояние между ними слегка меняется из-за того, что вздрагивает само пространство. Насколько сильно меняется? Амплитуда гравитационной волны измеряется тем, насколько короче стал, например, 1 метр. То есть ее меряют в единицах «метр на метр», то есть безразмерных (если хотите, в процентах). Речь идет об амплитудах порядка 10 в минус 23-й степени (забегая вперед, именно такие волны и зарегистрировали физики).

Давайте прикинем, насколько это много или мало. Поскольку речь о волнах, то для наглядного примера возьмем звуковые волны. В натуральном ладу ноты до и си-диез — не совсем одно и то же, и матерые музыканты слышат эту разницу (а обычные музыканты — не всегда). На самом деле разница между соответствующими длинами волн составляет примерно 1%. То есть десять в минус второй степени. А там — в минус двадцать третьей. Нет никаких шансов уловить на слух разницу колебаний струны, вдруг удлинившейся из-за того, что ее растянуло случайно пролетевшей гравитационной волной.

Но гитаристы знают, что если у вас слух не очень хороший, то две струны можно настроить в унисон по «биениям». Принцип в том, что даже если длины волн (или частоты) различаются очень незначительно, то на большом расстоянии эта разница будет постепенно накапливаться, и в какой-то момент две волны, шедшие вначале бок о бок, сперва немного разойдутся, а когда-то и вовсе окажутся в противофазе. Ушами мы услышим ослабление звука, вернее, волну усилений и ослаблений, те самые «биения». Чем биения медленнее, тем точнее настроены две струны. Именно на этом принципе основан тот самый лазерный интерферометр, успех которого мы сегодня празднуем.

Грубо говоря, интерферометр — это два луча лазера, перпендикулярных друг другу. В точке встречи они могут ослаблять или усиливать друг друга, и если пространство «вздрогнет», то есть чуть-чуть сожмется в одном из этих направлений, картинка наложения лазерных лучей слегка изменится. Это изменение и поймали физики.

Трудность, конечно, в том, что сжатие пространства на одну-триллион-триллионную долю — это чертовски маленькое сжатие. Двум световым волнам из лазера, одна из которых вот настолечко короче другой, надо пробежать огромное расстояние, чтобы накопить заметное расхождение. Именно поэтому сам детектор LIGO имеет размер 4 км, а за счет хитрых инженерных приспособлений путь луча увеличивается еще на пару порядков. Инженерная сложность состоит в том, чтобы уловить изменения базы интерферометра за счет именно гравитационных волн, а не из-за того, к примеру, что отдельные фотоны колошматят своими тушками по зеркалу, отчего вся конструкция трясется. Да немало было и других сложностей: рассказать всю эту историю понятными словами нелегко, но все же гораздо проще, чем сделать реально работающую установку.

Именно эти проблемы и решал один из соавторов работы, наш соотечественник, профессор Физического факультета МГУ Михаил Городецкий. Там, в РКЦ, многое знают про лазеры, и это знание очень даже пригодилось международной коллаборации ученых. Именно эти разработки лежали в основе апгрейда детектора, состоявшегося в 2015 году. В результате, по словам Михаила, прошедшие полгода стали «эквивалентны 20 годам при прежней чувствительности» (первая порция финансирования на проект LIGO была выделена еще в 1992 году, а общая стоимость открытия составила 1 млрд долларов — стоимость примерно 10 км российской автострады, если вы понимаете, о чем я).  

Зачем нужны гравитационные волны

С точки зрения природы вопрос дурацкий: без гравитационных волн все будет нелогично, вплоть до абсурда, а природа это отчего-то ненавидит. А вот с нашей точки зрения вопрос имеет смысл. Так вот, волны эти нам нужны для того, чтобы увидеть Вселенную совершенно по-новому. До сих пор все люди — от девочки, августовской ночью пялящейся на звезды, до рентгеновских астрономов — видели космос с помощью электромагнитных волн. Теперь можно посмотреть на все это в «гравитационном свете». Вернее, в звуке: частота гравитационных волн по удачному совпадению почти равна частоте слышимого звука, то есть от сотни до тысячи герц. «Услышанное» детектором LIGO можно, в принципе, преобразовать в фонограмму и прослушать ушами. Готов ставить деньги, что этот фокус будет показан широкой публике в самое ближайшее время. И, кажется, мы уже писали, что «звук» от сливающихся черных дыр похож на воробьиный щебет, этакий «чвик», быстро меняющийся от низкого тона к высокому.

Впрочем, соавтор открытия заслуживает права сказать об этом своими собственными словами: «У нас появились “уши”, которыми мы можем слушать Вселенную. Частоты гравитационных волн, регистрируемые LIGO, фактически звуковые. Их можно переложить в звук и слушать, как чириканье птиц. Мы сможем фиксировать интересные события во Вселенной, кроме того, мы сможем проверить теорию относительности на таком уровне точности, который недоступен для других методов, проверить новые теории и, возможно, приблизиться к созданию квантовой теории гравитации или даже к теории великого объединения».

Вот какие блестящие перспективы. И даже если вклад наших соотечественников в это человеческое свершение состоял в том, чтобы приладить к интерферометру кварцевые зеркала, с точки зрения прогресса знаний это очень-очень немалый вклад. Поздравляем Михаила, а также всех остальных соавторов открытия. Мы за них искренне рады, потому что мы тоже человечество и нам все это небезразлично.

На этом мы и закончим наше краткое введение в гравитационные волны. А саму историю сейчас рассказывают ученые на пресс-конференции; самым любознательным читателям рекомендуем немедленно туда отправиться и услышать все своими ушами.

* Примечание:

Российские участники исследований были так любезны, что прислали в редакцию разъяснение:

«Россия представлена двумя научными коллективами: группой физического факультета Московского государственного университета имени М.В. Ломоносова и группой Института Прикладной физики РАН (Нижний Новгород).

Московскую группу создал и вплоть до последнего времени возглавлял член-корреспондент РАН Владимир Борисович Брагинский — всемирно известный ученый, один из пионеров гравитационно-волновых исследований в мире. В состав научной группы, включенной в число соавторов научного открытия, также входят профессора кафедры физики колебаний: Валерий Митрофанов (нынешний руководитель коллектива), Игорь Биленко, Сергей Вятчанин, Михаил Городецкий, Фарид Халили, доцент Сергей Стрыгин и ассистент Леонид Прохоров. Неоценимый вклад в исследования внесли студенты, аспиранты и технический персонал кафедры.

Группа Московского университета участвует в проекте с 1992 года. С самого начала основные усилия были направлены на повышение чувствительности гравитационно-волновых детекторов, определение фундаментальных квантовых и термодинамических ограничений чувствительности, на разработку новых методов измерений. Теоретические и экспериментальные исследования российских ученых нашли свое воплощение при создании детекторов нового поколения, позволивших непосредственно наблюдать гравитационные волны от слияния двух черных дыр».

Источник: snob.ru

Группа ученых физического факультета Московского государственного университета имени М.В. Ломоносова в составе международной Научной коллаборации LIGO приняла участие в регистрации гравитационных волн, в третий раз в истории. Гравитационный сигнал был зарегистрирован на двух детекторах LIGO в США. Ученые сообщают, что ни один из экспериментов по детектированию гравитационных волн не опроверг общую теорию относительности Эйнштейна. Особенность слившейся пары черных дыр, зарегистрированной LIGO в третий раз, заключается в том, что по крайней мере у одной черной дыры из пары собственный момент вращения, спин, не совпадает по направлению с полным моментом орбитального движения пары. Это говорит в пользу гипотезы, что черные дыры, составляющие пару, образовались далеко друг от друга. Результаты описаны в новой статье, принятой к публикации в журнале Physical Review Letters 118, 221101 (2017).

Детекторы Лазерной-интерферометрической гравитационно-волновой обсерватории (LIGO) в третий раз зарегистрировали гравитационные волны, подтвердив, что новый канал получения астрофизической информации вступил в действие. Как и в первых двух случаях, волны были порождены столкнувшимися черными дырами, в результате слияния которых образовалась новая черная дыра с массой, составляющей около 49 солнечных масс. В предыдущих двух зарегистрированных событиях массы образовавшихся черных дыр составили 61 и 21 масс Солнца соответственно, которые расположены на расстоянии 1,3 и 1,4 миллиарда световых лет от Земли. В случае третьего события источник находился на расстоянии около 3 миллиардов световых лет. Энергия, выделяющаяся при слиянии этих черных дыр, превышает световую энергию, излучаемую за это же время всеми звездами и галактиками во Вселенной.

«Интересно то, где находились черные дыры во время столкновения, а это было миллиарды лет назад. Если в первых зарегистрированных событиях они находились на расстояниях 1,3 – 1,4 млрд световых лет, то в третьем событии – около 3, примерно в два раза дальше. Два детектора в США зафиксировали сигналы, между которыми есть небольшой временной сдвиг, около 3 миллисекунд, который дает информацию о направлении, откуда пришел этот сигнал. В целом, природа всех трех событий одинаковая: слияние двух черных дыр», — сообщает профессор физического факультета МГУ, доктор физико-математических наук Валерий Митрофанов.

«Масса черной дыры определяется по форме гравитационного сигнала. По частоте вращения возможно оценить расстояние между ними, а значит, и размеры, — комментирует соавтор исследования Сергей Вятчанин, заведующий кафедрой физики колебаний физического факультета МГУ имени М.В. Ломоносова. — Ученые хотят выжать из этих трех сигналов от гравитационных волн максимум возможного. В том числе посмотреть, как соотносятся эти сигналы, нет ли нарушений общей теории относительности по этим событиям».

В результате анализа сигналов, зарегистрированных детекторами обсерватории LIGO, было обнаружено, что с большой вероятностью у вновь обнаруженной пары черных дыр направления собственного вращения (спины) не совпадают, то есть они вращаются в разных направлениях, а значит, эти объекты, по-видимому, сформировались в плотном звездном скоплении отдельно друг от друга, а уже затем образовали двойную систему.

«Теоретики, тоже работающие в коллаборации LIGO, научились более точно говорить о направлении собственного вращения (спине) черных дыр. Они вращаются и вокруг своей оси, и относительно друг друга, около общего центра масс. И в этом третьем событии регистрации гравитационных волн очень внимательно исследовался процесс собственного вращения черных дыр. Было показано, что вообще оси вращения у них не совпадают. Это позволяет говорить в пользу гипотезы образования этих черных дыр, предполагающей, что сначала они были как бы отдельно в звездном скоплении, каждая черная дыра образовалась сама по себе, а потом они подошли близко друг к другу, образовали двойную систему и, наконец, столкнулись и слились. Есть альтернативная гипотеза, говорящая о том, что две черные дыры образовались из двойной системы звезд. Но в этом случае более вероятно, что направления собственного вращения (спина) были бы одинаковые», — объясняет Валерий Митрофанов.

Один из важных вопросов, относящихся к распространению гравитационных волн: проявляют ли они дисперсию, то есть зависит ли их скорость распространения волн от их частоты. Частоты гравитационных волн, зарегистрированных в третьем событии, лежат в диапазоне примерно от 30 до 350 Гц. Ученые сообщают, что гравитационные волны с разными частотами в исследуемом диапазоне распространяются от своего источника до Земли с одной и той же скоростью, скоростью света, и дисперсия отсутствует. Даже небольшого нарушения между разными частотными компонентами ученые не видят. Таким образом, ничто не ставит под сомнение общую теорию относительности.

Исследователи ждут новых событий — регистраций гравитационных волн не только от слияния черных дыр, но и нейтронных звезд, а также от других источников, на которые нацелены детекторы LIGO.

«Детекторы LIGO смотрят на все небо, охватывают практически всю сферу одновременно. Слияния нейтронных звезд зарегистрировано еще не было, потому что считается, что нейтронные звезды поменьше», — говорит Сергей Вятчанин.

Конечно, по мере увеличения чувствительности детекторов, такие события будут происходить чаще. Ученые МГУ участвуют в исследованиях, направленных на увеличение чувствительности гравитационных антенн.

«В настоящее время основные усилия научной группы из МГУ направлены на разработку криогенных гравитационно-волновых детекторов нового поколения, на использование новых методов квантовых измерений, которые позволят значительно улучшить их чувствительность», — говорит Валерий Митрофанов.

Обсерватория LIGO финансируется Национальным научным фондом США (NSF). Она построена и эксплуатируется Калифорнийским и Массачусетским технологическими институтами (Caltech и MIT). Финансовая поддержка проекта Advanced LIGO осуществляется Национальным научным фондом США вместе с Обществом Макса Планка Германии, Советом по обеспечению науки и технологии Великобритании и Австралийским советом по исследованиям, которые вносят значительный вклад в проект. Более 1000 ученых из различных стран участвуют в проекте, объединившись в Научную коллаборацию LIGO – LSC, которая включает в себя коллаборацию GEO. Партнером LIGO является коллаборация Virgo, в которой работают еще 280 европейских ученых, поддерживаемые Национальным центром научных исследований Франции (CNRS), Национальным институтом ядерной физики Италии (INFN), Нидерландским Nikhef, а также основными институтами, входящими в Virgo и Европейскую гравитационную лабораторию. Третья регистрация гравитационных волн двумя детекторами LIGO, расположенными в Ливингстоне, штат Луизиана, и в Хэнфорде, штат Вашингтон, США, произошла 4 января 2017 г. в цикле наблюдений, который начался 30 ноября 2016 г. и продолжается до настоящего времени.

Россия представлена в LSC двумя научными коллективами: группой физического факультета Московского государственного университета имени М.В. Ломоносова и группой Института прикладной физики РАН (Нижний Новгород).

Московскую группу создал и вплоть до последнего времени возглавлял член-корреспондент РАН Владимир Брагинский — всемирно известный ученый, один из пионеров гравитационно-волновых исследований в мире. В состав научной группы, также входят профессора кафедры физики колебаний: Игорь Биленко, Михаил Городецкий, Фарит Халили, доцент Сергей Стрыгин и старший преподаватель Леонид Прохоров.  Неоценимый вклад в исследования вносят студенты, аспиранты и технический персонал кафедры.

Источник: scientificrussia.ru

Гравитационные волны стрыгин

Международная коллаборация LIGO, в состав которой входят российские ученые, официально объявила об открытии гравитационных волн, которые, как считается, были порождены в ходе слияния черных дыр.

В октябре прошлого года среди физиков в интернете начали распространяться слухи о том, что гравитационные волны, «складки» ткани пространства-времени, предсказанные общей теорией относительности Эйнштейна, были обнаружены детектором LIGO. Изначально руководство гравитационной обсерватории отрицало этот факт, и некоторые физики полагали, что найденные волны могут быть фальшивкой, «вбросом» со стороны руководства LIGO для проверки бдительности ученых, передает РИА «Новости».

«О том, что сигнал является не фальшивкой, а настоящим следом гравитационных волн, мы узнали практически сразу, так как он был обнаружен еще в ходе тестового запуска LIGO, когда подобные "инжекты", вбросы, не производятся и их фактически невозможно осуществить», — рассказал российский физик Михаил Городецкий, один из участников коллаборации.

Сегодня представители коллаборации подтвердили эти слухи сразу на трех пресс-конференциях, проведенных в Москве, Вашингтоне и итальянской Пизе. По словам Городецкого, все полученные результаты прошли строгую проверку и являются достоверными с научной точки зрения, что не было характерно для слухов, распространяемых Лоренсом Крауссом, астрофизиком из США, в октябре этого года.

«Я крайне негативно отношусь к тому, как вел себя Лоуренс Краусс, так как все, что он сделал, было сделано абсолютно зря и ученый не должен распространять слухи. Наука должна делаться правильным образом, сначала мы должны получить результаты, проверить их, выждать некоторое время, отправить статью в печать, пройти рецензирование и только тогда объявлять об открытии. Этот процесс мы провели на данный момент», — продолжает российский физик.

Постройка LIGO, начатая в 1992 году, потребовала около миллиарда долларов, и она была закончена лишь в 2000 году. В 2015 году после обновления LIGO физики повторно перезапустили обсерваторию, и за половину прошлого года, как рассказывает российский физик, она набрала столько же данных, сколько LIGO мог бы собрать за 20 лет работы на прежней чувствительности.

Когда гравитационная волна проходит через плечи интерферометра, то лазерные лучи, которые распространяются вдоль них, проходят меняющиеся расстояния, так как волна «растягивает» и «сжимает» эти плечи и пространство рядом с ними. В результате этого, когда ученые «складывают» лучи, полученная картинка не совпадает и возникают особые узоры интерференции, которые указывают на присутствие гравитационных волн.

Воздействие гравитационных волн оказалось настолько слабым, что ученым пришлось проявлять чудеса изобретательности, чтобы поймать его.

«На 4 км регистрируемое отклонение составляет лишь 10 в минус 19 степени метра — это в 10 000 раз меньше диаметра протона, ядра атома водорода», — говорит Городецкий.

По словам российского физика, отечественные ученые работали в рамках LIGO над повышением чувствительности интерферометров, подавляя различные помехи, в том числе и квантовый шум, мешающий вести замеры на самом фундаментальном уровне.

Например, принцип неопределенности Гейзенберга требует, что надо накопить определенное количество квантов, чтобы померить их фазу с определенной точностью. Из этого, казалось бы, следует, что чем мощнее лазеры, тем выше точность. Однако если повышать мощность лазеров, то фотоны начинают сильно бить по зеркалам, растут флуктуации.

«Мы этим и занимались: искали хитрые геометрии антенн, которые обеспечивают квантово-невозмущающие измерения», — продолжает ученый.

Дальнейшие наблюдения за гравитационными волнами, как надеется физик, помогут разрешить многие тайны и проблемы современной физики и космологии, в том числе измерить, с какой скоростью расширяется Вселенная, следя за слияниями нейтронных звезд, а также попытаться проверить теорию струн на практике.

Московскую группу создал и вплоть до последнего времени возглавлял член-корреспондент РАН Владимир Борисович Брагинский — всемирно известный ученый, один из пионеров гравитационно-волновых исследований в мире.

В состав научной группы, включенной в число соавторов научного открытия, входят профессора кафедры физики колебаний: Валерий Митрофанов (нынешний руководитель коллектива), Игорь Биленко, Сергей Вятчанин, Михаил Городецкий, Фарид Халили, Сергей Стрыгин и Леонид Прохоров. Неоценимый вклад в исследования внесли студенты, аспиранты и технический персонал кафедры.

Группа Московского университета участвует в проекте с 1992 года. С самого начала основные усилия были направлены на повышение чувствительности гравитационно-волновых детекторов, определение фундаментальных квантовых и термодинамических ограничений чувствительности, на разработку новых методов измерений. Теоретические и экспериментальные исследования российских ученых нашли свое воплощение при создании детекторов нового поколения, позволивших непосредственно наблюдать гравитационные волны от слияния двух черных дыр.

Источник: moya-planeta.ru

Открытие вселенского масштаба. Сегодня учёные объявили, что они зафиксировали гравитационные волны, существование которых было предсказано Альбертом Эйнштейном ещё сто лет назад. Международная группа астрофизиков обнаружила колебания, вызванные грандиозной космической катастрофой — столкновением двух чёрных дыр. В работе самое активное участие приняли и российские учёные.

Этого момента ученые всего мира ждали ровно столетие. Сегодня во время видеомоста Москва — Вашингтон было объявлено — удалось обнаружить гравитационные волны. Это событие ждали настолько долго, что сегодня, похоже, уставшие ждали его в камерной атмосфере. Возможность их существования предсказывал еще Эйнштейн в общей теории относительности. Но ученым до сих пор не удавалось доказать, что Вселенная буквально раскачивается на этих гравитационных волнах.

Гравитационные волны, которые смогли поймать ученые, создает любое движущееся тело, в том числе каждый человек. Но их колебания настолько малы, что зафиксировать всплеск удалось только от столкновения двух гигантских черных дыр. Перед этим каждая из них вращалась с бешеной скоростью до 10 оборотов в секунду. После чего произошел коллапс — по сути, мгновенное слияние в одну сверхчерную дыру, что всколыхнуло ткань пространства-времени во всей Вселенной. Масса новой черной дыры более чем в 60 раз превышает массу нашего Солнца.

«Большая катастрофа произошла, потому что две черные дыры такой массы — по 30 солнечных масс — это редкое событие. Больше надеялись на кучу мелких событий, а это — счастье», — сказал профессор физического факультета МГУ Сергей Вятчанин.

В интернациональной команде из 1000 человек — физики МГУ и РАН. Ловушку на волны установили в США. Это два сверхчувствительных детектора, расположенных на расстоянии 3000 километров. Гравитационная волна от слияния черных дыр окатила датчики с разницей в тысячные доли секунды.

«По-настоящему ждали через неделю. Они пришли немножко неожиданно. Это — подарок природы. Но с 92 года строили детектор, совершенствовали», — рассказывает профессор физического факультета МГУ, руководитель московской группы коллаборации LIGO Валерий Митрофанов.

Это открытие становится новым и, возможно, важнейшим подтверждением теории Эйнштейна. Теперь ученые, по сути, могут получать самую свежую информацию о событиях даже из неизведанных галактик. Гравитационные волны обладают памятью и о далеком прошлом. То есть каждая пойманная древняя волна способна рассказать о том, как зародилась Вселенная.

«Это открывает совершенно новые возможности по обнаружению объектов во вселенной. Мы все время говорим о черных дырах. То есть подтвердить действительно, что есть черные дыры и они излучают гравитационные волны, составить карты. Может, вообще удастся обнаружить объекты, которые мы раньше не видели, в космосе», — сказал директор Физического института Академии наук (ФИАН) Николай Колачевский.

Слухи о сенсационном открытии появись еще в прошлом году. Но ученые до последнего держали результаты эксперимента в строжайшей тайне, раз за разом перепроверяя данные. Осторожность можно понять. Совсем недавно ведущие умы мира заявили о громком открытии: были обнаружены неизученные всплески в радиодиапазоне. Оказалось, радиотелескоп в Австралии фиксировал эти всплески, когда сотрудники обсерватории разогревали еду в микроволновой печи.

«Нужна верификация, то есть проверить всё. Очень долго ругались: один говорит — вот так, другой — так», — сказал профессор физического факультета МГУ Сергей Вятчанин.

Теперь, когда в достоверности исследований нет сомнений, ученые намерены выйти на новый уровень дешифровки гравитационных колебаний. Через 20 лет в космосе должна быть построена настоящая лаборатория. Ее сверхчувствительные датчики будут удалены друг от друга уже на 5 миллионов километров, что даст физикам еще более точный инструмент, способный стать отмычкой, открывающей сейф тайн мироздания.

Источник: www.1tv.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.