Гравитационная постоянная определение в физике


Эксперименты по измерению гравитационной постоянной G, проведенные в последние годы несколькими группами, демонстрируют поразительное несовпадение друг с другом. Опубликованное на днях новое измерение, выполненное в Международном бюро мер и весов, отличается от всех них и только усугубляет проблему. Гравитационная постоянная остается на редкость неподатливой для точного измерения величиной.

Измерения гравитационной постоянной

Гравитационная постоянная G, она же постоянная Ньютона, — одна из самых важных фундаментальных констант природы. Это та константа, которая входит в закон всемирного тяготения Ньютона; она не зависит ни от свойств притягивающихся тел, ни от окружающих условий, а характеризует интенсивность самой силы гравитации. Естественно, что такая фундаментальная характеристика нашего мира важна для физики, и она должна быть аккуратно измерена.

Однако ситуация с измерением G до сих пор остается очень необычной.


nbsp;отличие от многих других фундаментальных констант, гравитационная постоянная с большим трудом поддается измерению. Дело в том, что аккуратный результат можно получить только в лабораторных экспериментах, через измерение силы притяжения двух тел известной массы. Например, в классическом опыте Генри Кавендиша (рис. 2) на тонкой нити подвешивается гантелька из двух тяжелых шаров, и когда сбоку к этим шарам пододвигают другое массивное тело, то сила гравитации стремится повернуть эту гантельку на некоторый угол, пока вращательный момент сил слегка закрученной нити не скомпенсирует гравитацию. Измеряя угол поворота гантельки и зная упругие свойства нити, можно вычислить силу гравитации, а значит, и гравитационную постоянную.

Это устройство (оно называется «крутильные весы») в разных модификациях используется и в современных экспериментах. Такое измерение очень просто по сути, но трудно по исполнению, поскольку оно требует точного знания не только всех масс и всех расстояний, но и упругих свойств нити, а также обязывает минимизировать все побочные воздействия, как механические, так и температурные. Недавно, правда, появились и первые измерения гравитационной постоянной другими, атомно-интерферометрическими методами, которые используют квантовую природу вещества. Однако точность этих измерений пока сильно уступает механическим установкам, хотя, возможно, за ними будущее (см. подробности в новости Гравитационная постоянная измерена новыми методами, «Элементы», 22.01.2007).


Так или иначе, но, несмотря на более чем двухсотлетнюю историю, точность измерений остается очень скромной. Нынешнее «официальное» значение, рекомендованное американским Национальным институтом стандартизации (NIST), составляет (6,67384 ± 0,00080)·10–11 м3·кг–1·с–2. Относительная погрешность тут составляет 0,012%, или 1,2·10–4, или, в еще более привычных для физиков обозначениях, 120 ppm (миллионных долей), и это на несколько порядков хуже, чем точность измерения других столь же важных величин. Более того, вот уже несколько десятилетий измерение гравитационной постоянной не перестает быть источником головной боли для физиков-экспериментаторов. Несмотря на десятки проведенных экспериментов и усовершенствование самой измерительной техники, точность измерения так и осталась невысокой. Относительная погрешность на уровне 10–4 была достигнута еще 30 лет назад, и никакого улучшения с тех пор нет.

Ситуация по состоянию на 2010 год

В последние несколько лет ситуация стала еще более драматичной. В 2008–2010 годах три группы обнародовали новые результаты измерения G. Над каждым из них команда экспериментаторов работала годами, причем не только непосредственно измеряла величину G, но и тщательно искала и перепроверяла всевозможные источники погрешностей.


ждое из этих трех измерений обладало высокой точностью: погрешности составляли 20–30 ppm. По идее, эти три измерения должны были существенно улучшить наше знание численной величины G. Беда лишь в том, что все они отличались друг от друга аж на 200–400 ppm, то есть на целый десяток заявленных погрешностей! Эта ситуация по состоянию на 2010 год показана на рис. 3 и кратко описана в заметке Неловкая ситуация с гравитационной постоянной.

Совершенно ясно, что сама гравитационная постоянная тут не виновата; она действительно обязана быть одной и той же всегда и везде. Например, есть спутниковые данные, которые хоть и не позволяют хорошо измерить численное значение константы G, зато позволяют убедиться в ее неизменности — если бы G изменилась за год хоть на одну триллионную долю (то есть на 10–12), это уже было бы заметно. Поэтому единственный вытекающий отсюда вывод таков: в каком-то (или в каких-то) из этих трех экспериментов есть неучтенные источники погрешностей. Но вот в каком?

Единственный способ попытаться разобраться, это повторять измерения на других установках, и желательно разными методами. К сожалению, особенного разнообразия методик здесь пока достичь не удается, поскольку во всех экспериментах используется то или иное механическое устройство. Но всё же разные реализации могут обладать разными инструментальными погрешностями, и сравнение их результатов позволит разобраться в ситуации.

Источник: elementy.ru

Для объяснения наблюдаемой эволюции Вселенной в рамках существующих теорий, приходится допустить, что одни фундаментальные постоянные более постоянны, чем другие


 


Легенду об упавшем яблоке Ньютон сочинил для своей племянницы Катерины Кондуит, рассказывая, как открыл свой закон всемирного тяготения. После того как эта история попала в первую опубликованную в 1728 году биографию великого ученого, яблоко стало неразрывно ассоциироваться с этим законом. Однако суть открытия заключалось в том, что замкнутые эллиптические орбиты планет Солнечной системы возможны в единственном случае — когда сила притяжения их к Солнцу обратно пропорциональна квадрату расстояния до него. Фото (
SXC licence ): irene123

В ряду фундаментальных физических констант — скорость света, постоянная Планка, заряд и масса электрона — гравитационная постоянная стоит как-то особняком. Даже история её измерения изложена в знаменитых энциклопедиях Britannica и Larousse, не говоря уж о «Физической энциклопедии», с ошибками. Из соответствующих статей в них читатель узнает, что её численное значение впервые определил в прецизионных экспериментах 1797–1798 годов знаменитый английский физик и химик Генри Кавендиш (Henry Cavendish, 1731–1810), герцог Девонширский. В действительности Кавендиш измерял среднюю плотность Земли (его данные, кстати, всего лишь на полпроцента отличаются от результатов современных исследований). Располагая же информацией о плотности Земли, мы легко можем вычислить её массу, а зная массу, определить гравитационную постоянную.


Интрига состоит в том, что во времена Кавендиша понятия гравитационной постоянной ещё не существовало, и закон всемирного тяготения не принято было записывать в привычном для нас виде. Напомним, что сила тяготения пропорциональна произведению масс тяготеющих тел и обратно пропорциональна квадрату расстояния между этими телами, коэффициентом же пропорциональности как раз и является гравитационная постоянная. Такая форма записи ньютоновского закона появляется только в XIX столетии. А первые опыты, в которых измерялась именно гравитационная постоянная, были выполнены уже в конце столетия — в 1884 году. 

Как отмечает российский историк науки Константин Томилин, гравитационная постоянная отличается от других фундаментальных постоянных ещё и тем, что с ней не связан естественный масштаб какой-либо физической величины. В то же время скорость света определяет предельное значение скорости, а постоянная Планка — минимальное изменение действия. 

И только в отношении гравитационной постоянной была высказана гипотеза о том, что её численное значение, возможно, меняется со временем.


ервые эту идею сформулировал в 1933 году английский астрофизик Эдвард Милн (Edward Arthur Milne, 1896–1950), а в 1937 году знаменитый английский физик-теоретик Поль Дирак (Paul Dirac, 1902–1984), в рамках так называемой «гипотезы больших чисел», предположил, что гравитационная постоянная уменьшается с течением космологического времени. Гипотеза Дирака занимает важное место в истории теоретической физики ХХ века, однако никаких более или менее надежных экспериментальных подтверждений её не известно. 

С гравитационной постоянной непосредственно связана так называемая «космологическая постоянная», впервые появившаяся в уравнениях общей теории относительности Альберта Эйнштейна. Обнаружив, что эти уравнения описывают либо расширяющуюся, либо сжимающуюся вселенную, Эйнштейн искусственно добавил в уравнения «космологический член», обеспечивавший существование стационарных решений. Его физический смысл сводился к существованию силы, компенсирующей силы всемирного тяготения и проявляющейся лишь на очень больших масштабах. Несостоятельность модели стационарной Вселенной стала для Эйнштейна очевидной после выхода в свет работ американского астронома Эдвина Хаббла (Edwin Powell Hubble, 1889–1953) и советского математика Александра Фридмана, доказавших справедливость иной модели, согласно которой Вселенная расширяется во времени. В 1931 году Эйнштейн отказался от космологической постоянной, назвав её в частной беседе «величайшей ошибкой своей жизни».


История, однако, на этом не закончилась. После того как было установлено, что последние пять миллиардов лет расширение Вселенной происходит с ускорением, вопрос о существовании антигравитации вновь стал актуальным; вместе с ним в космологию вернулась и космологическая постоянная. При этом современные космологи связывают антигравитацию с присутствием во Вселенной так называемой «темной энергии».

  


Одна из главных проблем современной физики — связать законы микромира с законами космологии. В основном уже удается добиться хорошего соответствия, но в частностях бывают расхождения в сотни порядков Фото: W.N. Colley and E. Turner (Princeton University), J.A. Tyson (Bell Labs, Lucent Technologies) and NASA

И гравитационная постоянная, и космологическая постоянная, и «темная энергия» были предметом активных дискуссий на недавней конференции в Имперском Колледже Лондона (London Imperial College), посвященной нерешенным проблемам в стандартной модели космологии. Одна из наиболее радикальных гипотез была сформулирована в докладе Филиппа Мангейма (Philip Mannheim) — специалиста по физике элементарных частиц из университета Коннектикута в Шторсе (University of Connecticut in Storrs).


ктически Мангейм предложил лишить гравитационную постоянную статуса универсальной постоянной. Согласно его гипотезе, «табличное значение» гравитационной постоянной определено в лаборатории, находящейся на Земле, и им можно пользоваться только в пределах Солнечной системы. В космологических же масштабах гравитационная постоянная имеет другое, существенно меньшее численное значение, которое можно рассчитать методами физики элементарных частиц. 

Представляя свою гипотезу коллегам, Мангейм прежде всего стремился приблизить решение весьма актуальной для космологии «проблемы космологической постоянной». Суть этой проблемы в следующем. По современным представлениям, космологическая постоянная характеризует скорость расширения Вселенной. Её численное значение, найденное теоретически методами квантовой теории поля, в 10120 раз превышает полученное из наблюдений. Теоретическое значение космологической постоянной столь велико, что при соответствующей скорости расширения Вселенной звезды и галактики просто не успели бы сформироваться.

Свою гипотезу о существовании двух разных гравитационных постоянных — для солнечной системы и для межгалактических масштабов — Мангейм обосновывает следующим образом. По его словам, в наблюдениях на самом деле определяется не сама космологическая постоянная, а некоторая величина, пропорциональная произведению космологической постоянной на гравитационную постоянную.


едположим, что в межгалактических масштабах гравитационная постоянная очень мала, а значение космологической постоянной соответствует расчетному и очень велико. В этом случае произведение двух постоянных вполне может быть малой величиной, что не противоречит наблюдениям. «Возможно, пришло время отказаться считать космологическую постоянную малой величиной, — говорит Мангейм, — просто принять, что она велика, и исходить из этого». В этом случае «проблема космологической постоянной» оказывается решенной.

Предлагаемое Мангеймом решение выглядит простым, но цена, которую придется заплатить за него, очень велика. Как отмечает Зейя Мерали (Zeeya Merali) в статье «Two constants are better than one», опубликованной журналом New scientist 28 апреля 2007 года, вводя два разных численных значения гравитационной постоянной, Мангейм неизбежно должен отказаться от уравнений общей теории относительности Эйнштейна. Кроме того, гипотеза Мангейма делает излишним принятое большинством космологов представление о «темной энергии», поскольку малое значение гравитационной постоянной на космологических масштабах уже само по себе эквивалентно предположению о существовании антигравитации. 

Кейт Хорн (Keith Horne) из британского университета св. Андрея (University of St Andrew) приветствует гипотезу Мангейма, поскольку в ней использованы фундаментальные принципы физики элементарных частиц: «Она очень элегантна, и было бы просто замечательно, если бы она оказалась правильной». По словам Хорн, в этом случае нам удалось бы объединить физику элементарных частиц и теорию гравитации в одну весьма привлекательную теорию.


Но с ней согласны далеко не все. New Scientist приводит и мнение космолога Тома Шэнкса (Tom Shanks), что некоторые явления, очень хорошо укладывающиеся в стандартную модель, — например, недавние измерения реликтового излучения, и движения двойных пульсаров, — вряд ли окажутся так же легко объяснимы в теории Мангейма.

  


Существование вселенной, циклически коллапсирующей и снова раздувающейся из сингулярности, предполагалось найденными Александром Фридманом решениями уравнений ОТО.
Новые модификации этой старой идеи  сильно от нее отличаются: и «схлопывание» происходит не до конца, и прошлое не забывается — в каждом новом цикле космологическая постоянная все меньше и меньше 

Сам Мангейм не отрицает проблем, с которыми сталкивается его гипотеза, замечая при этом, что считает их намного менее значимыми в сравнении с трудностями стандартной космологической модели: «Её разрабатывают сотни космологов, и тем не менее она неудовлетворительна на 120 порядков». 

Надо отметить, что Мангейм нашел некоторое количество сторонников, поддержавших его, дабы исключить худшее. К худшему они отнесли выдвинутую в 2006 году гипотезу Пола Штейнхарда (Paul Steinhardt) из Принстонского университета (Princeton University) и Нила Тьюрока (Neil Turok) из Кембриджа (Cambridge University), согласно которой Вселенная периодически рождается и исчезает, причем в каждом из циклов (длящемся триллион лет) происходит свой Большой Взрыв, и при этом в каждом цикле численное значение космологической постоянной оказывается меньше, нежели в предыдущем. Крайне незначительная величина космологической постоянной, зафиксированная в наблюдениях, означает тогда, что наша Вселенная — очень дальнее звено в очень длинной цепи рождающихся и исчезающих миров…

Борис Булюбаш.

Телеграф «Вокруг Света»: Гравитационная постоянная теряет вес

Источник: MIPT.ru

Гравитацио́нная постоя́нная, постоянная Ньютона (обозначается обычно G, иногда GN или γ)[1] — фундаментальная физическая постоянная, константа гравитационного взаимодействия.

Согласно Ньютоновскому закону всемирного тяготения, сила гравитационного притяжения F между двумя материальными точками с массами [2] m1 и m2, находящимися на расстоянии r, равна:

F=Gfrac{m_1 m_2}{r^2}.
Коэффициент пропорциональности G в этом уравнении называется гравитационной постоянной. Численно она равна модулю силы тяготения, действующей на точечное тело единичной массы со стороны другого такого же тела, находящегося от него на единичном расстоянии.

В единицах Международной системы единиц (СИ) рекомендованное Комитетом данных для науки и техники (CODATA) на 2008 год значение было

G = 6,67428(67)·10−11 м3·с−2·кг−1, или Н·м²·кг−2,
в 2010 году значение было исправлено на:

G = 6,67384(80)·10−11 м3·с−2·кг−1, или Н·м²·кг−2.
В 2014 году значение гравитационной постоянной, рекомендованное CODATA, стало равным [3]:

G = 6,67408(31)·10−11 м3·с−2·кг−1, или Н·м²·кг−2.
В октябре 2010 в журнале Physical Review Letters появилась статья [4], предлагающая уточнённое значение 6,67234(14), что на три стандартных отклонения меньше величины G, рекомендованной в 2008 г. Комитетом данных для науки и техники (CODATA), но соответствует более раннему значению CODATA, представленному в 1986 г. Пересмотр величины G, произошедший в период с 1986 г. по 2008 г., был вызван исследованиями неупругости нитей подвесок в крутильных весах [5]. Гравитационная постоянная является основой для перевода других физических и астрономических величин, таких, например, как массы планет во Вселенной, включая Землю, а также других космических тел, в традиционные единицы измерения, например, килограммы. При этом из-за слабости гравитационного взаимодействия и результирующей малой точности измерений гравитационной постоянной отношения масс космических тел обычно известны намного точнее, чем индивидуальные массы в килограммах.

Источник: otvet.mail.ru

  • Гравитацио́нная постоя́нная, постоянная Ньютона (обозначается обычно G, иногда GN или γ) — фундаментальная физическая постоянная, константа гравитационного взаимодействия.

    Согласно Ньютоновскому закону всемирного тяготения, сила гравитационного притяжения F между двумя материальными точками с массами m1 и m2, находящимися на расстоянии r, равна:

    F

    =

    G

    m

    1

    m

    2

    r

    2

    .

    {displaystyle F=G{frac {m_{1}m_{2}}{r^{2}}}.}

    Коэффициент пропорциональности G в этом уравнении называется гравитационной постоянной. Численно она равна модулю силы тяготения, действующей на точечное тело единичной массы со стороны другого такого же тела, находящегося от него на единичном расстоянии.

    В единицах Международной системы единиц (СИ) рекомендованное Комитетом данных для науки и техники (CODATA) на 2008 год значение было

    G = 6,67428(67)·10−11 м3·с−2·кг−1, или Н·м²·кг−2,

    в 2010 году значение было исправлено на:

    G = 6,67384(80)·10−11 м3·с−2·кг−1, или Н·м²·кг−2.

    В 2014 году значение гравитационной постоянной, рекомендованное CODATA, стало равным:

    G = 6,67408(31)·10−11 м3·с−2·кг−1, или Н·м²·кг−2.

    В октябре 2010 в журнале Physical Review Letters появилась статья, предлагающая уточнённое значение 6,67234(14), что на три стандартных отклонения меньше величины G, рекомендованной в 2008 г. Комитетом данных для науки и техники (CODATA), но соответствует более раннему значению CODATA, представленному в 1986 г. Пересмотр величины G, произошедший в период с 1986 г. по 2008 г., был вызван исследованиями неупругости нитей подвесок в крутильных весах. Гравитационная постоянная является основой для перевода других физических и астрономических величин, таких, например, как массы планет во Вселенной, включая Землю, а также других космических тел, в традиционные единицы измерения, например, килограммы. При этом из-за слабости гравитационного взаимодействия и результирующей малой точности измерений гравитационной постоянной отношения масс космических тел обычно известны намного точнее, чем индивидуальные массы в килограммах.

    Гравитационная постоянная является одной из основных единиц измерения в планковской системе единиц.

Источник: Википедия

Источник: kartaslov.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.