Функция планка


Что такое Закон Планка 

Формула закона Планка имеет вид:

(varepsilon_{nu_1T}=frac{2pinu^2}{c^2}frac{hnu}{expleft({displaystylefrac{hnu}{kT}}right)-1})

Где h — постоянная Планка, k — постоянная Больцмана, c — скорость света, T — температура.

Это выражение бы­ло вы­ве­де­но Максом Планком в 1900-ом году. Это случилось после того, как он рассмотрел баланс об­ме­на энер­ги­ей ме­ж­ду дву­мя разными ос­цил­ля­то­рами: час­ти­ца­ми ве­ще­ст­ва, которые поглощали и испускали из­лу­че­ние на час­то­те ωω, и ос­цил­ля­то­ра­ми, которые представляли элек­тро­маг­нит­ное по­ле этой же частоты.

Ученый сделал предположение, что данные ос­цил­ля­то­ры мо­гут на­хо­дить­ся лишь в со­стоя­ни­ях с дискретной энергией. Они отдают друг другу кван­ты энер­гии со значением ( Delta E=ℏomegaDelta E=ℏomega.)


Величину ко­эффициента про­пор­цио­наль­но­сти ℏℏ ме­ж­ду час­то­той электронного генератора и ве­ли­чи­ной кван­та энергии Планк ус­та­но­вил с помощью экс­пе­риментальных дан­ных: ℏℏ=1,054·10–34 Дж·с.

Что описывает формула

Данная формула описывает излучение абсолютного черного тела.

Расчеты, которые проводят с ее помощью, совпадают с экспериментальными показателями для любых частот. В качестве частного случая в данном выражении присутствует формула Рэлея – Джинса (если (hnu<kT)).

В области больших частот (при (hnu>kT)) эта формула переходит в:

(varepsilon_{nu_1T}=frac{2pi hnu^3}{c^2}expleft(-frac{hnu}{kT}right). )

Из ФП следуют:

  • закон смещения Вина;
  • закон Стефана – Больцмана.

Количественное значение постоянной Планка можно найти, зная из эксперимента величины постоянных:

  • k (постоянную Больцмана);
  • σ (постоянную Стефана – Больцмана);
  • с (скорость света в вакууме).

Таким образом, мы получим выражение:


(h=sqrt[3]{frac{2pi^5k^4}{10sigma c^2}}.)

Хо­тя ФП была создана, чтобы определять рав­но­вес­но­е из­лу­че­ние внутри на­гре­то­го ве­ще­ст­ва, она пригодна и для описания спек­траль­но­го рас­пре­де­ле­ния лу­чи­стой энер­гии, которая выпускается те­ла­ми в ок­ру­жаю­щее пространство.

Этим же методом мож­но из­ме­рять температуру тел, нагретых в зем­ных ус­ло­ви­ях. Эта формула незаменима для раска­лен­ных ме­тал­лов и ке­ра­мики, где невозможно использовать традиционные датчики теплового измерения. ФП применяют и для опи­са­ния по­то­ков лу­чи­стой энер­гии в эта­ло­нах яр­ко­сти из­лу­че­ния, которые нужны для аб­со­лют­ной ка­либ­ров­ки при­ём­ни­ков све­та.

Вид формулы Планка через длину волны (λ)

ФП, записанная через длину волны, выглядит следующим образом:

(varepsilon_{lambda_1T}=frac{2pi с^2}{lambda^5}frac h{expleft({displaystylefrac{hc}{klambda T}}right)-1}.)

Зависимость спек­траль­ной плот­но­сти энер­гии от дли­ны вол­ны пред­став­ле­на на графике:

Источник: wiki.fenix.help

М. Планк указал выход из создавшегося положения, выдвинув гипотезу, что электромагнитная энергия испускается и поглощается не непрерывно, а отдельными порциями (квантами)


Функция планка

Коэффициент пропорциональности в соотношении между энергией  Функция планка и частотой света Функция планка в СИ измеряется в Джс и называется теперь постоянной Планка. Впоследствии было установлено ее численное значение:

Функция планка

В соответствии с гипотезой Планка, энергия Функция планка рассмотренной выше стоячей волны в резонаторе может принимать лишь дискретный набор значений


Функция планка

кратных частоте волны.

Функция планка 

Рис. 1.12. Планк Макс Карл Эрнст Людвиг (1858–1947)

Используя это соотношение, Планк получил аналитическое выражение для испускательной способности черного тела. Для излучения в состоянии термодинамического равновесия по-прежнему справедливо распределение Больцмана. Соответственно, вероятность Рn того, что энергия стоячей волны с частотой Функция планка равна

Функция планка

определяется формулой

Сумма всех вероятностей равна единице, откуда мы находим нормировочный коэффициент С:

Средняя энергия колебания с частотой w равна

Метод расчета таких сумм основан на выражении для суммы членов геометрической прогрессии и формулы, получаемой из нее дифференцированием:

Подставляя сюда


Функция планка

находим выражение для средней энергии стоячей волны

Умножая число стоячих волн в единице объема и с частотой в интервале Функция планка на их среднюю энергию (1.25), получаем формулу Планка для спектральной плотности энергии теплового излучения

Испускательная способность абсолютно черного тела с учетом формулы (1.6) описывается законом Планка

При высоких температурах (малых частотах)

Функция планка

экспоненту в знаменателе формул (1.25) и (1.27) можно разложить в ряд:

Функция планка

откуда получаем классическое выражение для средней энергии осциллятора


Функция планка

и формулу Рэлея — Джинса (1.19). Для спектральной плотности энергии и испускательной способности абсолютно черного тела в зависимости от длины волны Функция планка  имеем

Оказалось, что закон Планка точно согласуется с экспериментальными данными во всем интервале длин волн, в то время как формула Рэлея — Джинса, как уже говорилось, соответствует данным опыта только при больших длинах волн (рис. 1.13).

Функция планка

Рис. 1.13. Сравнение испускательной способности черного тела Функция планка ,
согласно закону Планка и эксперименту (1) и формуле Рэлея — Джинса (2)

Более того, из закона Планка непосредственно получается закон Стефана — Больцмана:

Введем безразмерную переменную интегрирования

Функция планка

В результате этого получаем

Используя значение интеграла


Функция планка

находим аналитическое выражение для постоянной Стефана — Больцмана:

величина которой согласуется с приведенными экспериментальными данными.

Из закона Планка следует также закон смещения Вина. Если продифференцировать функцию Планка (1.28) по Функция планка, и приравнять нулю производную, то можно найти положение максимума функции Функция планка. Действительно, приравнивая нулю функцию Функция планка, получаем

Введя безразмерную переменную

Функция планка

приходим к уравнению

Корень этого уравнения


Функция планка

позволяет получить закон смещения Вина:

Функция планка 

Рис. 1.14. Распределение Планка для испускательной способности абсолютно чёрного тела при разных температурах. С ростом температуры максимум спектров сдвигается вдоль пунктирной линии в строну коротких длин волн в соответствии с законом Вина

Таким образом, формула Планка не только хорошо согласуется с экспериментальными данными, но и содержит в себе все эмпирические законы теплового излучения, а также позволяет вычислить константы в этих законах.

Мы искали максимум функции Функция планка по длинам волн. Но излучение черного тела можно характеризовать также и распределением (1.27) Функция планка по частотам. Найдем для сравнения максимум этого распределения. Для этого надо найти экстремум функции (1.27):

Вводя безразмерную переменную


Функция планка

получаем уравнение для точки максимума распределения Функция планка:

которое имеет корень

Функция планка

Отсюда следует, что максимум интенсивности Функция планка приходится на частоту

Этой частоте соответствует длина волны

которая, конечно, не определяет максимум функции (1.28) и поэтому не совпадает с выражением (1.34) для Функция планка из закона смещения Вина:

Пример 1. Принимая, что Солнце излучает как абсолютно черное тело, вычислим его энергетическую светимость и температуру поверхности. Солнечный диск виден с Земли под углом
Функция планка рад. Поток солнечной энергии на земной орбите (так называемая солнечная постоянная) равен С = 1.4 кВт/м2.

Пусть радиус Солнца равен r, а расстояние до Земли есть lЗ . Их отношение связано с угловым диаметром Солнца:

Если энергетическая светимость Солнца есть R, то полная энергия, излучаемая Солнцем в единицу времени, равна произведению R на площадь поверхности Солнца:

Эта энергия достигает орбиты Земли, где она распределяется по большей площади Функция планка. Отсюда находим солнечную постоянную

В итоге получаем

По формуле Стефана — Больцмана находим температуру верхних слоев Солнца

Пример 2. В пророчестве Исайи (Ис. 30, 26) сказано:

«И свет луны будет, как свет солнца, а свет солнца будет светлее всемеро, как свет семи дней, в тот день, когда Господь обвяжет рану народа Своего и исцелит нанесенные ему язвы».

Оценим температуру окружающей среды в этот день.

Поток солнечного излучения, падающий на Землю, компенсируется энергией, излучаемой Землей. Из условия задачи следует, что в указанный день поток энергии (с учетом света Луны) в восемь раз превысит нынешний поток солнечного излучения. В состоянии теплового равновесия во столько же раз должен увеличиться поток тепловой энергии с Земли. Из закона Стефана — Больцмана следует, что температура на Земле должна возрасти в

Функция планка

Если нынешняя средняя температура составляет 17° С = 290 К, то при увеличении потока энергии в 8 раз она составит Т = 1,68 ·290 = 487 К = 214 °С. Жарко будет!

Пример 3. Исходя из данных примера 1, найдем длину волны, на которую приходится максимум энергии солнечного излучения.

Выше была найдена температура верхних слоев Солнца. По закону смещения Вина получаем

Функция планка

Видео 1.4. Существуют ли лучи холода?

Источник: online.mephi.ru

Идея Планка

В 1900 г. М. Планк предложил интерполяционную формулу для спектральной плотности энергии равновесного излучения. Формула была получена Планком полуэмпирическим путем, позднее он доказал ее теоретически. День, в который Планк сделал доклад на заседании немецкого физического Общества, о теоретическом доказательстве своей формулы, считается днем рождения квантовой физики. Новшество идеи Планка состояло в том, что излучение и поглощение света происходит порциями, квантами света (квантами энергии). При выводе своей формулы Планк пользовался понятием гармонического осциллятора, понимая под ним не только частицу, которая совершает гармонические колебания, но и, например, стоячую волну, определенной частоты в полости тела, которое принимают как модель абсолютно черного тела. И при этом Планк считал, что энергия осциллятора с собственной частотой $nu $ может принимать дискретные значения, которые отличаются от элементарной порции энергии (кванта) на целое число. Энергия кванта равна:

где $h=6,625cdot {10}^{-34}Джcdot с$ — постоянная Планка (квант действия). Средняя энергия радиационного осциллятора получилась у Планка равной:

Источник: spravochnick.ru

Лекция 3.10.

Тепловое излучение и люминесценция

Излучение телами электромагнитных волн (свечение тел) может осуществляться за счет различных видов энергии. Самым распространенным является тепловое излучение, т. е. испускание электромагнитных волн за счет внутренней энергии тел. Все остальные виды свечения, возбуждаемые за счет любого вида энергии, кроме внутренней (тепловой), объединяются под общим названием «люминесценция».

Окисляющийся на воздухе фосфор светится за счет энергии, выделяемой при химическом превращении. Такой вид свечения называется хемилюминесценцией. Свечение, возникающее в газах и твердых телах под воздействием электрического поля, называется электролюминесценцией. Свечение твердых тел, вызванное бомбардировкой их электронами, называют катодолюминесценцией. Свечение, возбуждаемое поглощаемым телом электромагнитным излучением, называется фотолюминесценцией.

Тепловое излучение имеет место при любой температуре, однако при невысоких температурах излучаются практически лишь длинные (инфракрасные) электромагнитные волны.

Функция планкаОкружим излучающее тело оболочкой с идеально отражающей поверхностью (рис. 3.10.1). Воздух из оболочки удалим. Отраженное оболочкой излучение, упав на тело, поглотится им (частично или полностью). Следовательно, будет происходить непрерывный обмен энергией между телом и заполняющим оболочку излучением. Если распределение энергии между телом и излучением остается неизменным для каждой длины волны, состояние системы тело — излучение будет равновесным. Опыт показывает, что единственным видом излучения, которое может находиться Рис.3.10.1.

в равновесии с излучающими телами, является тепловое

излучение. Все остальные виды излучения оказываются неравновесными.

Способность теплового излучения находиться в равновесии с излучающими телами обусловлена тем, что его интенсивность возрастает при повышении температуры. Допустим, что равновесие между телом и излучением нарушено и тело излучает энергии больше, чем поглощает. Тогда внутренняя энергия тела будет убывать, что приведет к понижению температуры. Это в свою очередь обусловит уменьшение количества излучаемой телом энергии. Температура тела будет понижаться до тех пор, пока количество излучаемой телом энергии не станет равным количеству поглощаемой энергии. Если равновесие нарушится в другую сторону, т. е. количество излучаемой энергии окажется меньше, чем поглощаемой, температура тела будет возрастать до тех пор, пока снова не установится равновесие. Таким образом, нарушение равновесия в системе тело — излучение вызывает возникновение процессов, восстанавливающих равновесие.



Иначе обстоит дело в случае люминесценции. Покажем это на примере хемилюминесценции. Пока протекает обусловливающая излучение химическая реакция, излучающее тело все больше и больше удаляется от первоначального состояния. Поглощение телом излучения не изменит направления реакции, а наоборот, приведет к более быстрому (вследствие нагревания) протеканию реакции в первоначальном направлении. Равновесие установится лишь тогда, когда будет израсходован весь запас реагирующих веществ и свечение, обусловленное химическими процессами, заменится тепловым излучением.

Итак, из всех видов излучения равновесным может быть только тепловое излучение. К равновесным состояниям и процессам применимы законы термодинамики. Поэтому тепловое излучение должно подчиняться некоторым общим закономерностям, вытекающим из принципов термодинамики. К рассмотрению этих закономерностей мы и перейдем.

 

Характеристики излучения и излучающего тела.

Обозначим через u плотность энергии излучения, т.е. количество энергии в единице объема. Излучение представляет собой совокупность волн различных частот (бегущих или стоячих). Поскольку плотность энергии излучения разной частоты различна, обозначим Функция планкаобъемную плотность лучистой энергии, приходящийся на интервал частот Функция планка. Очевидно, что

Функция планка. (3.10.1)

Интенсивность теплового излучения мы будем характеризовать величиной потока энергии, измеряемой в ваттах. Энергия излучения связана с излучающим телом. Поток энергии, испускаемый единицей поверхности излучающего тела по всем направлениям (в пределах телесного угла 2π), называют энергетической светимостью тела. Мы будем обозначать эту величину буквой R. Энергетическая светимость является функцией температуры.

Излучение состоит из волн различных частот ω (или длин Функция планка). Обозначим поток энергии, испускаемый единицей поверхности тела в интервале частот dω, через dRω. При малом интервале dω поток dRω будет пропорционален dω:

Функция планка. (3.10.2) Функция планка

Величина rω называется испускательной способностью тела. Как и энергетическая светимость, испускательная способность сильно зависит от температуры тела. Таким образом, rω есть функция частоты и температуры. Испускательная способность это поток энергии, излучаемый единицей поверхности тела во всех направлениях в единичном интервале частот вблизи Функция планка.

Энергетическая светимость связана с испускательной способностью формулой

Функция планка (3.10.3)

(чтобы подчеркнуть, что энергетическая светимость и испускательная способность зависят от температуры, мы их снабдили индексом Т).

Излучение можно характеризовать вместо частоты ω длиной волны. Участку спектра dω будет соответствовать интервал длин волн dλ. Определяющие один и тот же участок величины dω и dλ связаны простым соотношением, вытекающим из формулы λ=2πc/ω. Дифференцирование дает:

Функция планка. (3.10.4)

Знак минус в этом выражении не имеет существенного значения, он лишь указывает на то, что с возрастанием одной из величин, ω или λ, другая величина убывает. Поэтому минус в дальнейшем мы не будем писать.

Доля энергетической светимости, приходящаяся на интервал dλ, может быть по аналогии с (3.10.2) представлена в виде:

Функция планка. (3.10.5)

Если интервалы dω и dλ, входящие в выражения (3.10.2) и (3.10.5), связаны соотношением (3.10.4), т. е. относятся к одному и тому же участку спектра, то величины dRω и dRλ должны совпадать:

Функция планка

Заменив в последнем равенстве dλ согласно (3.10.4), получим

Функция планка

откуда

Функция планка. (3.10.6)

С помощью формулы (3.10.6) можно перейти от rλ к rω и наоборот.

Пусть на элементарную площадку поверхности тела падает поток лучистой энергии dФω, обусловленный электромагнитными волнами, частота которых заключена в интервале dω. Часть этого потока dԒω будет поглощена телом, Безразмерная величина

Функция планка (3.10.7)

называется поглощательной способностью тела. Поглощательная способность тела есть функция частоты и температуры. Поглощательная способность это доля энергии, поглощенная телом из падающего на него потока.

По определению aωT не может быть больше единицы. Для тела, полностью поглощающего упавшее на него излучение всех частот, aωT = 1. Такое тело называется абсолютно черным. Будем в дальнейшем обозначать испускательную и поглощательную способность абсолютно черного тела Функция планкаи Функция планка. Тело, для которого aωT aT =const<1, называют серым. Если Функция планка= 0, это или абсолютно прозрачное тело или абсолютно зеркальное.

 

 

Закон Кирхгофа.

Между испускательной и поглощательной способностями любого тела имеется связь. В этом можно убедиться, рассмотрев следующий эксперимент. Пусть внутри замкнутой оболочки, поддерживаемой при постоянной температуре Т, помещены несколько тел (рис.3.10.2). Полость внутри оболочки эвакуирована

Функция планка(там отсутствуют молекулы какого-либо вещества), так что тела могут обмениваться энергией между собой и с оболочкой лишь путем испускания и поглощения электромагнитных волн. Опыт показывает, что такая система через некоторое время придет в состояние теплового равновесия — все тела примут одну и ту же температуру, равную температуре оболочки Т. В Рис.3.10.2.

таком состоянии тело, обладающее бóльшей испускательной

способностью rωT, теряет в единицу времени с единицы поверхности больше энергии, чем тело, обладающее меньшей rωT. Поскольку температура (а, следовательно, и энергия) тел не меняется, то тело, испускающее больше энергии, должно и больше поглощать, т. е. обладать большей aωT. Таким образом, чем больше испускательная способность тела rωT, тем больше и его поглощательная способность aωT. Отсюда вытекает соотношение

Функция планка, (3.10.8)

где индексы 1, 2, 3 и т. д. относятся к разным телам.

Соотношение (3.10.8) выражает установленный Кирхгофом закон, который формулируется следующим образом: отношение испускательной и поглощательной способностей не зависит от природы тела, оно является для всех тел одной и той же (универсальной) функцией частоты (длины волны) и температуры:

Функция планка. (3.10.9)

Сами величины rωT и aωT могут меняться чрезвычайно сильно при переходе от одного тела к другому. Отношение же их оказывается одинаковым для всех тел. Это означает, что тело, сильнее поглощающее какие-либо лучи, будет эти лучи сильнее и испускать (не следует смешивать испускание лучей с их отражением). Функция называется функцией Кирхгофа.

Для абсолютно черного тела по определению aωT = 1. Следовательно, из формулы (3.10.9) вытекает, что rωT для такого тела равна f(ω, Т). Таким образом, универсальная функция Кирхгофа f(ω, Т) есть не что иное, как испускательная способность абсолютно черного тела Функция планка

При теоретических исследованиях для характеристики спектрального состава равновесного теплового излучения удобнее пользоваться функцией частоты f(ω,Т). В экспериментальных работах удобнее пользоваться функцией длины волны φ(λ, Т). Обе функции связаны друг с другом формулой

Функция планка (3.10.10)

аналогичной формуле (3.10.6). Согласно (3.10.10) для того, чтобы по известной функции f(ω, Т) найти φ(λ, Т), нужно заменить в f(ω, Т) частоту ω через 2πс/λ и получившееся выражение умножить на 2πс2:

Функция планка (3.10.11)

Для нахождения f(ω, Т) по известной φ(λ, Т) нужно воспользоваться соотношением

Функция планка (3.10.12)

Абсолютно черных тел в природе не существует. Сажа или платиновая чернь имеют поглощательную способность aωT, близкую к единице, лишь в ограниченном интервале частот; в далекой инфракрасной области их поглощательная способность заметно меньше единицы. Однако можно создать устройство, сколь угодно близкое по своим свойствам к абсолютно черному телу. Такое устройство представляет собой почти замкнутую полость, снабженную малым отверстием (рис. 3.10.3). Излучение, проникшее внутрь через отверстие, прежде чем выйти обратно из отверстия, претерпевает многократные отражения. При каждом отражении часть энергии поглощается, в результате Рис.3.10.3.

чего практически все излучение любой частоты поглощается

Функция планкатакой полостью. Согласно закону Кирхгофа испускательная способность такого устройства очень близка к f(ω, Т), причем Т означает температуру стенок полости. Таким образом, если стенки полости поддерживать при некоторой температуре Т, то из отверстия выходит излучение, весьма близкое по спектральному составу к излучению абсолютно черного тела при той же температуре. Проводя эксперимент и разлагая это излучение в спектр с помощью дифракционной решетки можно измерить интенсивность различных участков спектра. Такой эксперимент дает вид функции f(ω,Т) или φ(λ,Т). Результаты таких опытов приведены на рис.3.10.4. Разные кривые относятся к различным значениям температуры Т абсолютно черного тела. Площадь, охватываемая кривой, дает энергетическую светимость абсолютно черного тела при соответствующей температуре.

Из рис.3.10.4 следует, что энергетическая светимость абсолютно черного тела сильно возрастает с температурой. Максимум испускательной способности с увеличением темпера- Рис.3.10.4.

туры сдвигается в сторону более коротких волн.

 

Равновесная плотность энергии излучения

Рассмотрим излучение, находящееся в равновесии с веществом. Для этого представим себе эвакуированную полость, стенки которой поддерживаются при постоянной температуре Т. В равновесном состоянии энергия излучения будет распределена в объеме полости с определенной плотностью u = u(T). Спектральное распределение этой энергии можно охарактеризовать функцией u(ω,T), определяемой условием duω= u(ω,T) d, где duω — доля плотности энергии, приходящаяся на интервал частот dω. Полная плотность энергии u(T) связана с функцией u(ω,T) формулой (3.10.1).

Функция планкаИз термодинамических соображений следует, что равновесная плотность энергии излучения u(T) зависит только от температуры и не зависит от свойств стенок полости. Рассмотрим две полости, стенки которых изготовлены из разных материалов и имеют первоначально одинаковую температуру. Допустим, что равновесная плотность энергии в обеих полостях различна и, скажем, u1(T)>u2(T). Соединим полости с помощью небольшого отверстия (рис.3.10.5) и тем самым позволим стенкам полостей вступить в теплообмен через излучение. Так как по предположению u1>u2, поток энергии из первой полости во вторую должен быть больше, чем поток, текущий во встречном Рис.3.10.5

направлении. В результате стенки второй полости станут

поглощать больше энергии, чем излучать, и температура их начнет повышаться. Стенки же первой полости станут поглощать меньше энергии, чем излучать, так что они будут охлаждаться. Однако два тела с первоначально одинаковой температурой не могут вследствие теплообмена друг с другом приобрести различные температуры — это запрещено вторым началом термодинамики. Поэтому наше допущение о неодинаковости u1 и u2 должно быть признано неправомерным. Вывод о равенстве u1(T) и u2(T) распространяется на каждую спектральную составляющую u(ω, T).

Функция планкаНезависимость равновесного излучения от природы стенок полости можно пояснить следующими соображениями. Абсолютно черные стенки поглощали бы всю упавшую на них энергию Фэ и испускали бы такой же поток энергии Фэ. Стенки с поглощательной способностью а поглотят долю aФэ упавшего на них потока Фэ и отразят поток, равный (1-aэ. Кроме того, они излучат поток aФэ (равный поглощенному потоку). В итоге стенки полости вернут излучению такой же поток энергии Фэ = (1-aэ + aФэ, какой возвращали бы излучению абсолютно черные стенки.

Равновесная плотность энергии излучения u связана с энергетической светимостью абсолютно черного тела R* простым соотношением, которое мы сейчас выведем.

Рассмотрим эвакуированную полость с абсолютно черными стенками. В случае равновесия через каждую точку внутри полости будет проходить в любом направлении поток излуче- Рис 3.10.6.

 

ния одинаковой плотности. Если бы излучение распространялось в одном заданном направлении (т. е. через данную точку проходил только один луч), плотность потока энергии в рассматриваемой точке была бы равна произведению плотности энергии u на скорость электромагнитной волны c. Однако через каждую точку проходит множество лучей, направления которых равномерно распределены в пределах телесного угла 4π. Поток энергии равномерно распределен в пределах этого телесного угла. Следовательно, в каждой точке в пределах телесного угла Функция планкабудет течь поток энергии, плотность которого равна

Функция планка

Возьмем на поверхности полости элементарную площадку ΔS (рис.3.10.6). Эта площадка посылает в пределах телесного угла dΩ=sinυdυdφ в направлении, образующем с нормалью угол υ, поток энергии

Функция планка

По всем направлениям, заключенным в пределах телесного угла 2π, площадка ΔS посылает поток энергии

Функция планка (3.10.13)

Вместе с тем поток энергии, испускаемый площадкой, можно найти, умножив энергетическую светимость R* на ΔS: ΔФэ=R*ΔS. Сравнение с (3.10.13) дает, что

Функция планка (3.10.14)

Равенство (3.10.14) должно выполняться для каждой спектральной составляющей излучения. Отсюда вытекает, что

Функция планка (3.10.15)

Эта формула связывает испускательную способность абсолютно черного тела с равновесной плотностью энергии теплового излучения.

Закон Стефана — Больцмана и закон Вина.

Теоретическое объяснение законов излучения абсолютно черного тела имело огромное значение в истории физики – оно привело к понятию квантов энергии.

Долгое время попытки получить теоретически вид функции f(ω, Т) не давали общего решения задачи.Австрийский физик Й.Стефан (1879), анализируя экспериментальные данные, пришел к выводу, что энергетическая светимость R любого тела пропорциональна четвертой степени абсолютной температуры. Однако последующие более точные измерения показали ошибочность его выводов. Австрийский физик Л.Больцман (1884), исходя из термодинамических соображений, получил теоретически для энергетической светимости абсолютно черного тела следующее значение:

Функция планка (3.10.16)

где σ – постоянная величина, Т – абсолютная температура. Таким образом, заключение, к которому Стефан пришел для нечерных тел (с абсолютно черными телами он не экспериментировал), оказалось справедливым лишь для абсолютно черных тел.

Соотношение (3.10.16) между энергетической светимостью абсолютно черного тела и его абсолютной температурой получило название закона Стефана – Больцмана. Константу σ называют постоянной Стефана – Больцмана. Ее экспериментальное значение равно Функция планка

Вин (1893), воспользовавшись, кроме термодинамики, электромагнитной теорией, показал, что функция спектрального распределения должна иметь вид

Функция планка (3.10.17)

где F — некоторая функция отношения частоты к температуре.

Согласно формуле (3.10.11) для функции φ(λ, Т) получается выражение

Функция планка (3.10.17)

где ψ(λ, Т) некоторая функция произведения λТ.

Соотношение (3.10.17) позволяет установить зависимость между длиной волны λm, на которую приходится максимум функции φ(λ, Т) и температурой. Продифференцируем это соотношение по λ:

Функция планка (3.10.18)

Выражение в квадратных скобках представляет собой некоторую функцию Ψ(λ, Т). При длине волны λm, соответствующей максимуму функции φ(λ, Т), выражение (3.10.18) должно обращаться в нуль:

Функция планка

Из опыта известно, что λm конечно (λm ≠ ∞). Поэтому должно выполняться условие: Ψ(λmТ) = 0. Решение последнего уравнения относительно неизвестного λmТ дает для этого неизвестного некоторое число, которое мы обозначим буквой b. Таким образом, получается соотношение

Функция планка

которое носит название закона смещения Вина: длина волны, на которую приходится максимум излучательной способности абсолютно черного тела, обратно пропорциональна его абсолютной температуре

Функция планка. (3.10.19)

Экспериментальное значение константы b равно

Функция планка

 

Формула Рэлея — Джинса.

Английские физики Дж.У.Рэлей и Дж.Джинс сделали попытку определить равновесную плотность излучения u(ω, Т), исходя из теоремы классической статистики о равнораспределении энергии по степеням свободы. Они предположили, что на каждое электромагнитное колебание приходится в среднем энергия, равная двум половинкам kT – одна половинка на электрическую, вторая — на магнитную энергию волны (напомним, что по классическим представлениям на каждую колебательную степень свободы приходится в среднем энергия, равная двум половинкам ).

Равновесное излучение в полости представляет собой систему стоячих волн. С учетом возможных видов поляризации количество стоячих волн, отнесенное к единице объема полости, определяется формулой

Функция планка (3.10.20)

Как мы уже отмечали, Рэлей и Джинс, исходя из закона равнораспределения энергии по степеням свободы, приписали каждому колебанию энергию ‹ε›, равную kT. Умножив (3.10.20) на ‹ε›, получим плотность энергии, приходящуюся на интервал частот dω:

Функция планка

Отсюда

Функция планка (3.10.21)

Перейдя от u(ω, Т) к f(ω, Т), получим выражение для испускательной способности абсолютно черного тела:

Функция планка (3.10.22)

Функция планкаВыражения (3.10.21) и (3.10.22) называются формулой Рэлея — Джинса. Эта формула удовлетворительно согласуется с экспериментальными данными лишь при больших длинах волн и резко расходится с опытом для малых длин волн (см. рис.3.10.7, на котором сплошной линией изображена экспериментальная кривая, пунктиром кривая, построенная по формуле Рэлея — Джинса).

Интегрирование выражения (3.10.22) по ω в пределах от 0 до ∞ дает для равновесной плотности энергии u(Т) бесконечно большое значение. Этот результат, получивший название ультрафиолетовой катастрофы, также находится в противоречии с опытом. Равновесие между излучением и излучающим Рис.3.10.7.

телом устанавливается при конечных значениях u(Т).

 

Формула Планка.

С классической точки зрения вывод формулы Рэлея—Джинса является безупречным. Поэтому расхождение этой формулы с опытом указывало на существование каких-то закономерностей, несовместимых с представлениями классической физики.

В 1900г.немецкому физику Максу Планку удалось найти вид функции u(ω, Т), в точности соответствующий опытным данным:

Функция планка (3.10.23)

Для этого ему пришлось сделать предположение совершенно чуждое классическим представлениям, а именно допустить, что электромагнитное излучение испускается в виде отдельных порций энергии (квантов), величина которых пропорциональна частоте излучения:

Функция планка (3.10.24)

Коэффициент пропорциональности Функция планкаполучил впоследствии название постоянная Планка.

Исходя из выдвинутого предположения, Планк получил значение средней энергии излучения частоты :

Функция планка, (3.10.25)

откуда с учетом (3.10.20) (3.10.15) и следует формула Планка.

Заметим в конце, что для малых частот, когда Функция планка« kT , выражение (3.10.25) дает классическое Функция планка.

 

 

Источник: studopedia.su


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.