Формула земного притяжения


Сила гравитации или тяготения – это одна из важнейших в природе сил. Впервые к выводу, что она все же существует, пришел Исаак Ньютон, когда изучал, как движутся планеты вокруг Солнца и Луна вокруг Земли. Существует легенда, что свой закон всемирного тяготения он открыл, когда вечером гулял по саду и на его голову упало яблоко. Правда это или вымысел – неважно. Главное, что ученому удалось создать формулу, позволяющую производить расчет силы гравитационного воздействия.

  • Задача движения
  • Закон всемирного тяготения Ньютона
  • Вес и гравитация
  • Первая космическая скорость
  • Вторая космическая скорость

Все во Вселенной движется. Гравитация – привычное явление для всех людей с самого детства, мы родились в гравитационном поле нашей планеты, это физическое явление воспринимается нами на самом глубоком интуитивном уровне и, казалось бы, даже не требует изучения.


Исаак Ньютон

Быть может, изучение этого явления стало началом натуральной философии (науки о понимании сути вещей), быть может, натуральная философия породила вопрос о его сущности, но, так или иначе, вопросом притяжения объектов заинтересовались еще в Древней Греции, задолго до того момента, когда Ньютон открыл свой закон всемирного тяготения.

Движение понималось как суть чувственной характеристики объекта, а точнее, объект двигался, пока наблюдатель это видит. Если мы не можем явление измерить, взвесить, ощутить, значит ли это, что этого явления не существует? Естественно, не значит. И с тех пор, как Аристотель понял это, начались размышления о сути притяжения.

Как оказалось в наши дни, спустя многие десятки веков, гравитация является основой не только земного притяжения и притяжения нашей планеты к Солнцу, но и основой зарождения Вселенной, почти всех имеющихся элементарных частиц. Именно поэтому так важен закон всемирного тяготения.

Задача движения


Перед тем, как заняться непосредственно изучением закона всемирно тяготения, необходимо определить некоторые важные моменты. В этому поможет небольшой эксперимент. Возьмем в левую руку небольшой шарик. В правую возьмем такой же. Отпустим правый — он начнет падать вниз. Левый при этом остается в руке, он по-прежнему недвижим.

Остановим мысленно ход времени. Падающий правый шарик «зависает» в воздухе, левый все также остается в руке. Правый наделен «энергией» движения, левый – нет. Но в чем глубокая, осмысленная разница между ними?

Где, в какой части падающего шарика прописано, что он должен двигаться? У него такой же вес, такой же объем. Он обладает такими же атомами, они ничем не отличаются от атомов покоящегося шарика. Он обладает потенциальной энергией? Да, это правильный ответ, но откуда ему известно, что обладает потенциальной энергией, где это зафиксировано в нем?

Именно эту задачу ставили перед собой Аристотель, Ньютон, Альберт Эйнштейн. Все три гениальных мыслителя отчасти решили для себя эту проблему, но на сегодняшний день существует ряд вопросов, требующих разрешения.

Закон всемирного тяготения Ньютона

В 1666 году величайшим английским физиком И. Ньютоном открыт закон всемирного тяготения, способный количественно посчитать силу, благодаря которой вся материя во Вселенной стремится друг к другу.


Существует красивая легенда, что закон всемирного тяготения был открыт ученым во время прогулки по вечернему саду. Ньютон размышлял о строении Вселенной, движении небесных тел, когда ему на голову упало яблоко. Его сразу посетила гениальная идея. Так родился закон всемирного тяготения. По другой версии яблоко просто упало рядом, что не помешало ученому сделать открытие. Сейчас же многие «светлые» умы современность опровергают то, что такая история могла произойти на самом деле. Но факт остается фактом — закон всемирного тяготения был открыт Исааком Ньютоном.

В законе всемирного тяготения Ньютона используется термин «расстояние». Под этим термином следует понимать не дистанцию между поверхностями объектов, а расстояние между их центрами тяжести. К примеру, если два шара радиусами r1 и r2 лежат друг на друге, то дистанция между их поверхностями равна нулю, однако сила притяжения есть. Все дело в том, что расстояние между их центрами r1+r2 отлично от нуля. В космических масштабах это уточнение не суть важно, но для спутника на орбите данная дистанция равна высоте над поверхностью плюс радиус нашей планеты. Расстояние между нашей планетой и Луной также измеряется как расстояние между их центрами, а не поверхностями.

Для закона всемирного тяготения формула выглядит следующим образом:

где:

  • F – сила притяжения;
  • m1, m2– массы;
  • r – расстояние;
  • G – гравитационная постоянная, равная 6,67·10−11 м³/(кг·с²).

F является векторной величиной, однако в законе всемирного тяготения она традиционно записана как скаляр. В векторной картине закон всемирного тяготения Ньютона будет выглядеть таким образом:

Но это не означает, что F обратно пропорциональна кубу дистанции между центрами. Отношение следует воспринимать как единичный вектор, направленный от одного центра к другому:

Закон гравитационного взаимодействия

Вес и гравитация

Рассмотрев закон всемирного тяготения, можно понять, что нет ничего удивительного в том, что лично мы ощущаем притяжение Солнца намного слабее, чем земное. Массивное Солнце имеет большую массу, однако оно очень далеко от нас. Земля тоже далеко от него, однако она притягивается к нему, так как обладает большой массой.


Сила тяжести равна: P = mg, где m – наша масса, а g – ускорение свободного падения планеты (9,81 м/с2).

Если m – наша масса, M – масса планеты, R – ее радиус, то, опираясь на закон всемирного тяготения, можно рассчитать гравитационную силу, которая равна:

Таким образом, поскольку F = mg:

Массы m сокращаются, остается выражение для ускорения свободного падения:

Ускорение свободного падения – действительно постоянная величина, поскольку в ее формулу входят величины постоянные — радиус, масса, гравитационная постоянная. Подставив значения этих констант, мы убедимся, что ускорение свободного падения равно 9,81 м/с2.

На разных широтах радиус планеты несколько отличается, поскольку она все-таки не идеальный шар. Из-за этого ускорение свободного падения в отдельных точках на поверхности разное.

Вернемся к притяжению Земли и Солнца. Постараемся на примере доказать, что земной шар притягивает нас с вами сильнее, чем Солнце (опираясь на закон всемирного тяготения).

Примем для удобства массу человека: m = 100 кг. Тогда:


  • Расстояние человек-земной шар равно радиусу планеты: R = 6,4∙106 м.
  • Масса Земли равна: M ≈ 6∙1024 кг.
  • Масса Солнца равна: Mc ≈ 2∙1030 кг.
  • Дистанция от планеты до Солнца: r=15∙1010 м.

Гравитационное притяжение между человеком и Землей:

Гравитационное притяжение между человеком и Землей

Данный результат довольно очевиден из более простого выражения для веса (P = mg).

Сила гравитационного притяжения между человеком и Солнцем:

Гравитационное притяжение между человеком и Солнцем

Как видим, наша планета притягивает нас почти в 2000 раз сильнее.

Как найти силу притяжения между Землей и Солнцем? Следующим образом:


Сила притяжения между Землей и Солнцем

Теперь мы видим, что Солнце притягивает нашу планету более чем в миллиард миллиардов раз сильнее, чем она притягивает нас с вами. И все это удалось определить благодаря закону всемирного тяготения.

Первая космическая скорость

После того как Исаак Ньютон открыл закон всемирного тяготения, ему стало интересно, с какой скоростью нужно бросить объект, чтобы он, преодолев гравитационное поле, навсегда покинул земной шар.

Правда, он представлял себе это несколько иначе, в его понимании была не вертикально стоящая ракета, устремленная в небо, а тело, которое горизонтально совершает прыжок с вершины горы. Это была логичная иллюстрация, поскольку на вершине горы сила гравитации немного меньше.

Так, на вершине Эвереста ускорение свободного падения будет равно не привычные 9,8 м/с2, а 9,77 м/с2. Именно по этой причине там настолько разряженный воздух, частицы воздуха уже не так привязаны к гравитации, как те, которые «упали» к поверхности. Постараемся узнать, что такое космическая скорость.


Первая космическая скорость v1 (КС) – это такая скорость, при которой тело (объект) покинет поверхность Земли (или другого небесного тела), после чего перейдет на круговую орбиту.

Узнаем численной значение этой величины для нашей планеты. Запишем второй закон Ньютона для тела, которое вращается по круговой орбите:

где h — высота тела над поверхностью, R — радиус Земли.

На орбите на объект действует центробежное ускорение:

Таким образом:

Формула земного притяжения

Массы сокращаются, получаем:

Формула земного притяжения,

.

Данная скорость называется первой космической скоростью:


Первая космическая скорость

Как можно заметить, она абсолютно не зависит от массы объекта. Таким образом, любой предмет, разогнанный до скорости 7,9 км/с, покинет нашу планету, после чего перейдет на ее орбиту.

Источник: uchim.guru

Закон всемирного тяготения

Гравитационную закономерность, найденную Ньютоном, математически можно сформулировать как

$F = G cdot frac{m_1 cdot m_2}{r^2}$,

где $m_1, m_2$ — массы притягивающихся с силой $F$ тел, $r$ — расстояние между ними, $G$ — т.н. гравитационная постоянная, констнта, равная 6,67.

Важно отметить, что

  1. сила гравитационного взаимодействия ослабевает по мере удаления тел друг от друга пропорционально не просто расстаянию, а расстоянию в квадрате;
  2. под расстоянием понимается не расстояние между поверхностями, а расстояние между центрами тяжести тел.

Квадратичная зависимость силы притяжения от расстояния позволяет понять, почему Солнце, масса которого в миллион раз больше земной, практически не притягивает нас, когда мы находимся на поверхности нашей планеты. Расстояние от Земли до центра Солнечной системы составляет около 150 млн. км. На такой большой дистанции солнечная гравитация практически не ощущается, хотя с помощью высокоточных приборов ее можно зарегистрировать.


В условиях планеты Земля силу, с которой она притягивает к себе близлежащие предметы (иными словами, их вес) можно подсчитать как

$P = mg$,

где $m$ – масса притягиваемого объекта, $g$ – ускорение свободного падения близ Земли (для других планет значение будет отличаться). Ускорение свободного падения несколько колеблется в зависимости от географической широты, но в среднем его можно принимать как константу, равную $9,81 frac{м}{с^2}$.

Первая и вторая космические скорости

Гравитационную силу можно преодолеть с помощью противодействия других сил (например, реактивной), что делает возможными авиационные и космические полеты.

Можно провести мысленный эксперимент, представив пушку, стреляющую горизонтально с вершины высокой горы. Такую систему удобно выбрать еще и потому, что воздух тоже подчиняется законам гравитации, и вблизи поверхности планеты он плотнее, чем, скажем, на высоте 8000 м. над уровнем моря. Таким образом, снаряду, вылетающему из «высокогорной» пушки, вязкость атмосферы будет оказывать меньшее сопротивление.

Если выстрел из такой пушки будет относительно слабым, вылетевшее из нее тело упадет где-нибудь неподалеку под действием гравитации Земли, совершив полет по искривленной гравитацией траектории. Чем больше будет начальная скорость снаряда, тем дальше он пролетит, огибая земной шар. Наконец, сила выстрела может достигнуть такого значения, что кривизна траектории снаряда совпадет с окружностью радиусом от центра Земли до пушки, и снаряд начнет вращаться вокруг планеты по круговой орбите. Скорость, на которой это произойдет, называется первой космической. Ее можно вычислить как

$V_1 = sqrt{G cdot frac{M}{R}}$,

где $G$ – гравитационная постоянная, $M$ – масса планеты, $R$ – ее радиус.

Продолжая наращивать интенсивность выстрела, мы можем превратить траекторию сначала в эллиптическую (снаряд будет вращаться вокруг Земли по вытянутой орбите), а затем и в гиперболическую (он начнет удаляться от планеты, не возвращаясь к ней). Последнее будет означать, что снаряд достиг второй космической скорости, которую можно посчитать как

$V_2 = sqrt{2 cdot G frac{M}{R}} = sqrt{2} cdot V_1 = 1,41 cdot 7,9 approx 11,17 км/с $

Источник: spravochnick.ru

На склоне своих дней Исаак Ньютон рассказал, как это произошло: он гулял по яблоневому саду в поместье своих родителей и вдруг увидел луну в дневном небе. И тут же на его глазах с ветки оторвалось и упало на землю яблоко. Поскольку Ньютон в это самое время работал над законами движения (см. Законы механики Ньютона), он уже знал, что яблоко упало под воздействием гравитационного поля Земли. Знал он и о том, что Луна не просто висит в небе, а вращается по орбите вокруг Земли, и, следовательно, на нее воздействует какая-то сила, которая удерживает ее от того, чтобы сорваться с орбиты и улететь по прямой прочь, в открытый космос. Тут ему и пришло в голову, что, возможно, это одна и та же сила заставляет и яблоко падать на землю, и Луну оставаться на околоземной орбите.

Чтобы в полной мере оценить весь блеск этого прозрения, давайте ненадолго вернемся к его предыстории. Когда великие предшественники Ньютона, в частности Галилей, изучали равноускоренное движение тел, падающих на поверхность Земли, они были уверены, что наблюдают явление чисто земной природы — существующее только недалеко от поверхности нашей планеты. Когда другие ученые, например Иоганн Кеплер (см. Законы Кеплера), изучали движение небесных тел, они полагали что в небесных сферах действуют совсем иные законы движения, нежели законы, управляющие движением здесь, на Земле. История науки свидетельствует, что практически все аргументы, касающиеся движения небесных тел, до Ньютона сводились в основном к тому, что небесные тела, будучи совершенными, движутся по круговым орбитам в силу своего совершенства, поскольку окружность — суть идеальная геометрическая фигура. Таким образом, выражаясь современным языком, считалось, что имеются два типа гравитации, и это представление устойчиво закрепилось в сознании людей того времени. Все считали, что есть земная гравитация, действующая на несовершенной Земле, и есть гравитация небесная, действующая на совершенных небесах.

Прозрение же Ньютона как раз и заключалось в том, что он объединил эти два типа гравитации в своем сознании. С этого исторического момента искусственное и ложное разделение Земли и остальной Вселенной прекратило свое существование.

Результаты ньютоновских расчетов теперь называют законом всемирного тяготения Ньютона. Согласно этому закону между любой парой тел во Вселенной действует сила взаимного притяжения. Как и все физические законы, он облечен в форму математического уравнения. Если M и m — массы двух тел, а D — расстояние между ними, тогда сила F взаимного гравитационного притяжения между ними равна:

= GMm/D2

где G — гравитационная константа, определяемая экспериментально. В единицах СИ ее значение составляет приблизительно 6,67 × 10–11.

Относительно этого закона нужно сделать несколько важных замечаний. Во-первых, его действие в явной форме распространяется на все без исключения физические материальные тела во Вселенной. В частности, сейчас вы и эта книга испытываете равные по величине и противоположные по направлению силы взаимного гравитационного притяжения. Конечно же, эти силы настолько малы, что их не зафиксируют даже самые точные из современных приборов, — но они реально существуют, и их можно рассчитать. Точно так же вы испытываете взаимное притяжение и с далеким квазаром, удаленным от вас на десятки миллиардов световых лет. Опять же, силы этого притяжения слишком малы, чтобы их инструментально зарегистрировать и измерить.

Второй момент заключается в том, что сила притяжения Земли у ее поверхности в равной мере воздействует на все материальные тела, находящиеся в любой точке земного шара. Прямо сейчас на вас действует сила земного притяжения, рассчитываемая по вышеприведенной формуле, и вы ее реально ощущаете как свой вес. Если вы что-нибудь уроните, оно под действием всё той же силы равноускоренно устремится к земле. Галилею первому удалось экспериментально измерить приблизительную величину ускорения свободного падения (см. Уравнения равноускоренного движения) вблизи поверхности Земли. Это ускорение обозначают буквой g.

Для Галилея g было просто экспериментально измеряемой константой. По Ньютону же ускорение свободного падения можно вычислить, подставив в формулу закона всемирного тяготения массу Земли M и радиус Земли D, помня при этом, что, согласно второму закону механики Ньютона, сила, действующая на тело, равняется его массе, умноженной на ускорение. Тем самым то, что для Галилея было просто предметом измерения, для Ньютона становится предметом математических расчетов или прогнозов.

Наконец, закон всемирного тяготения объясняет механическое устройство Солнечной системы, и законы Кеплера, описывающие траектории движения планет, могут быть выведены из него. Для Кеплера его законы носили чисто описательный характер — ученый просто обобщил свои наблюдения в математической форме, не подведя под формулы никаких теоретических оснований. В великой же системе мироустройства по Ньютону законы Кеплера становятся прямым следствием универсальных законов механики и закона всемирного тяготения. То есть мы опять наблюдаем, как эмпирические заключения, полученные на одном уровне, превращаются в строго обоснованные логические выводы при переходе на следующую ступень углубления наших знаний о мире.

Картину устройства солнечной системы, вытекающую из этих уравнений и объединяющую земную и небесную гравитацию, можно понять на простом примере. Предположим, вы стоите у края отвесной скалы, рядом с вами пушка и горка пушечных ядер. Если просто сбросить ядро с края обрыва по вертикали, оно начнет падать вниз отвесно и равноускоренно. Его движение будет описываться законами Ньютона для равноускоренного движения тела с ускорением g. Если теперь выпустить ядро из пушки в направлении горизонта, оно полетит — и будет падать по дуге. И в этом случае его движение будет описываться законами Ньютона, только теперь они применяются к телу, движущемуся под воздействием силы тяжести и обладающему некой начальной скоростью в горизонтальной плоскости. Теперь, раз за разом заряжая в пушку всё более тяжелое ядро и стреляя, вы обнаружите, что, поскольку каждое следующее ядро вылетает из ствола с большей начальной скоростью, ядра падают всё дальше и дальше от подножия скалы.

Теперь представьте, что вы забили в пушку столько пороха, что скорости ядра хватает, чтобы облететь вокруг земного шара. Если пренебречь сопротивлением воздуха, ядро, облетев вокруг Земли, вернется в исходную точку точно с той же скоростью, с какой оно изначально вылетело из пушки. Что будет дальше, понятно: ядро на этом не остановится и будет и продолжать наматывать круг за кругом вокруг планеты. Иными словами, мы получим искусственный спутник, обращающийся вокруг Земли по орбите, подобно естественному спутнику — Луне. Так мы поэтапно перешли от описания движения тела, падающего исключительно под воздействием «земной» гравитации (ньютоновского яблока), к описанию движения спутника (Луны) по орбите, не изменяя при этом природы гравитационного воздействия с «земной» на «небесную». Вот это-то прозрение и позволило Ньютону связать воедино считавшиеся до него различными по своей природе две силы гравитационного притяжения.

Остается последний вопрос: правду ли рассказывал на склоне своих дней Ньютон? Действительно ли всё произошло именно так? Никаких документальных свидетельств того, что Ньютон действительно занимался проблемой гравитации в тот период, к которому он сам относит свое открытие, сегодня нет, но документам свойственно теряться. С другой стороны, общеизвестно, что Ньютон был человеком малоприятным и крайне дотошным во всем, что касалось закрепления за ним приоритетов в науке, и это было бы очень в его характере — затемнить истину, если он вдруг почувствовал, что его научному приоритету хоть что-то угрожает. Датируя это открытие 1666-м годом, в то время как реально ученый сформулировал, записал и опубликовал этот закон лишь в 1687 году, Ньютон, с точки зрения приоритета, выгадал для себя преимущество больше чем в два десятка лет.

Я допускаю, что кого-то из историков от моей версии хватит удар, но на самом деле меня этот вопрос мало беспокоит. Как бы то ни было, яблоко Ньютона остается красивой притчей и блестящей метафорой, описывающей непредсказуемость и таинство творческого познания природы человеком. А является ли этот рассказ исторически достоверным — это уже вопрос вторичный.

Источник: elementy.ru

Формулировка закона

Закон всемирного тяготения позволяет описывать не только падение тел на землю, но и движение планет, звезд, приливы, отливы и множество других универсальных явлений, которые протекают в природе. Попробуем восстановить ход рассуждений Ньютона, а он получил математическую формулу, описывая движение Луны вокруг Земли, и тоже получить закон всемирного тяготения.

Если Земля сообщает любому телу, находящемуся на ее поверхности, ускорение свободного падения g, которое, как мы знаем, по модулю равно g = 9,8 , то Луне притяжение Земли сообщает центростремительное ускорение. Запишем некоторые характеристики.

Радиус Земли (он нам понадобится в расчетах) R3 = 6370 км, орбиты Луны RЛ = 384000 км, период обращения Луны вокруг Земли, так называемый лунный месяц Т = 27,3 суток.

Воспользуемся этими данными и рассуждениями для дальнейших выводов.

Ньютон предположил, что сила, с которой Земля притягивает те или иные объекты, зависит от расстояния между объектом и центром Земли. Известно, что расстояние от Луны до центра Земли примерно в 60 раз больше чем радиус Земли, т. е. расстояние от любого тела находящегося на поверхности Земли.

А во сколько же раз отличается ускорение, приобретаемое телами в результате такого притяжения? Для начала рассчитаем ускорение, которое приобретает Луна в результате своего притяжения Землей. Ускорение, которым обладает любое тело, находящееся на поверхности Земли, вы и так хорошо знаете, это ускорение свободного падения.

Переходим к расчетам.Центростремительное ускорение Луны, вызванное притяжением Земли, может быть рассчитано по формуле:

Угловая скорость нам не известна, но мы прекрасно знаем, что угловая скорость связана с периодом вращения таким соотношением:

Получим:

Формула земного притяжения

Само по себе это значение может ничего нам не говорить, но сравним его с величиной ускорения свободного падения g = 9,8  и тоже вызванной земным притяжением. Итак, находим отношение:

Почему выделяем именно 602? Дело в том, что Луна по отношению к поверхности Земли расположена как раз на расстоянии приблизительно в 60 раз больше, чем сам радиус Земли.

На тот момент из исследований Галилео Галилея было хорошо известно, что ускорение, приобретаемое телами в результате притяжения Землей, не зависит от их массы, т. е. если яблоко у поверхности Земли обладает ускорением 9,8, вызванным земным притяжением:

то, помещенное на орбиту Луны, оно будет обладать точно таким же ускорением, как и Луна, т. е. в 3600 раз меньшим, чем ускорение свободного падения у поверхности Земли:

Исходя из наших расчетов, мы с вами получаем, что сила, с которой Земля притягивает Луну, обратно пропорциональна квадрату расстояния между центрами этих объектов:

Кроме этого, из второго закона Ньютона мы знаем, что сила прямо пропорциональна массе объекта. Т. е. в данном случае сила прямо пропорциональна массе Луны или другого небесного тела:

Формула земного притяжения

Из третьего закона Ньютона мы знаем, что сила действия вызывает аналогичное противодействие, направленное в противоположную сторону, значит, сила взаимодействия между Землей и Луной будет пропорциональна не только массе Луны, но и массе Земли тоже:

Формула земного притяжения

Объединяя все это в одну пропорциональность, мы можем получить, что сила, с которой взаимодействуют Земля и Луна, пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними:

А если обобщать и говорить не только о Земле и Луне, то запишем аналогичную пропорциональность, но уже для двух произвольных масс. Итак, сила взаимодействия между ними пропорциональна произведению этих масс и обратно пропорциональна квадрату расстояния между этими телами:

Если же перейти к строгому равенству, то мы получаем ту самую формулировку, которая впервые появилась в знаменитом труде Ньютона «Математические начала натуральной философии» (1687) и носит название закона всемирного тяготения.

Формулировка

Закон всемирного тяготения: тела притягиваются друг к другу с силой, модуль которой пропорционален произведению их масс и обратно пропорционален квадрату расстояния между ними. Сила направлена вдоль прямой, соединяющей центры тел.

Математическая запись этой формулы

 


Как Луна влияет на Землю

Несмотря на то, что Луна расположена от Земли достаточно далеко, расстояние составляет порядка 400 000 км, ее влияние на Землю все-таки весьма ощутимо. Итак, поговорим о том, как Луна влияет на вес тел, находящихся на Земле. Сразу оговоримся: мы не будем учитывать влияние Солнца и других небесных тел, так как оно по сравнению с влиянием Луны значительно меньше.

Мы не будем сейчас вдаваться в детальные подробности того, как мы получили те данные, о которых сейчас поговорим, а остановимся лишь на результате. Если подсчитать, воспользовавшись законом всемирного тяготения, влияние Луны на вес тел на Земле, то окажется что в наиболее близкой к Луне и в наиболее удаленной от Луны точках земной поверхности вес тела несколько уменьшается, а в точке, лежащей на средней линии, вес тела немного увеличивается. При этом изменение веса, показанное на рисунке 4 красным цветом, в два раза меньше, чем изменение веса, показанное на рисунке 5 также красным цветом, для точек наиболее близкой и наиболее удаленной.

Формула земного притяжения

Рис. 4. Изменение веса в зависимости от расстояния до Луны

Формула земного притяжения

Рис. 5. Изменение веса в зависимости от расстояния до Луны

Если бы Луны вообще не было на земной орбите, то вес тела уменьшился бы совершенно незначительно. Если перейти от ньютонов к единицам ускорения , то эта величина составляла бы всего лишь 0,0001 . По сравнению, например, с ускорением свободного падения 10  (мы здесь его округлили от 9,8 до 10), вы видите, что разница составляет порядка одной стомиллионной доли. Немного? Да, немного, но если сравнивать с радиусом Земли те изменения, которые привносит такое небольшое измерение ускорения в результате отсутствия Луны, то мы получим, что Rз = 6400 км. И эти стомиллионные доли изменения приводят к тому, что высота уровня воды в точках, показанных на рис. 4, поднимается на 54 см, в точках, показанных на рис. 5, она падает на 27 см (см. рис. 3).

Речь идет о явлении приливов и отливов. Именно Луна определяет наличие приливов и отливов на Земле.

Благодаря вращению Земли места подъемов и опусканий уровня воды постоянно перемещаются. Именно такие постоянные перемещения мы и ощущаем в виде приливов и отливов. Конечно же, приливы и отливы зависят и от географического места на Земле, например, на Черном море или на Каспийском море приливы практически не наблюдаются, однако в Охотском море есть бухта, в которой высота приливных волн достигает нескольких метров.

Еще одно интересное влияние Луны на Землю – в результате приливов и отливов, волна, которая бежит вдоль земли трется о поверхность земли и, значит, несколько замедляет вращение Земли. Интересно, что тот факт, что мы всегда видим Луну повернутой к нам одним боком, тоже предопределил теперь уже влияние Земли на Луну.

Границы применимости

А сейчас поговорим об ограничениях, о границах применимости той формулировки закона всемирного тяготения, которую мы записали. В каких случаях он справедлив? К примеру, есть два тела А и В. Они, согласно закону всемирного тяготения, притягиваются друг к другу. Если эти тела притягиваются и, например, находятся на расстоянии, показанном на рисунке 6, то какую величину брать в качестве r (расстояния между ними) – либо самое маленькое между ними, либо расстояние между наиболее дальними краями, или же расстояние между серединками? А где взять эту серединку? Итак, возникает вопрос: применима ли формула закона всемирного тяготения для тел неправильной формы, находящихся на таком расстоянии друг от друга?

Формула земного притяжения

Рис. 6. Положение тел А и В

Ответ мы можем получить, для этого увеличим расстояние между телами. Когда мы их разнесли достаточно далеко друг от друга, нужно ли учитывать их размеры? Нет, ведь их размеры по сравнению с расстоянием между ними очень малы, поэтому в данном случаи мы их можем полагать материальными точками. Итак, первое ограничение:

1. Закон всемирного тяготения применим для тел, размеры которых несущественны по сравнению с расстоянием между ними. Такие тела мы называем материальными точками. Это первое условие.

Однако есть ситуации, когда можно рассматривать тела, обладающие реальными размерами и находящиеся на небольшом расстоянии друг от друга. Это тела примерно такой формы, как показано на рисунке 7.

Формула земного притяжения

Рис. 7. Положение тел сферической формы

Представьте себе, что это идеальные сферы. Если тела, обладающие сферической формой, или, говорят, сферической симметрией, находятся даже на небольшом расстоянии друг от друга, мы можем пользоваться формулой закона всемирного тяготения в качестве расстояния r. В этом случае мы берем расстояние между центрами тел, именно в такой форме мы пользуемся законом всемирного тяготения, когда рассматриваем наше притяжение к центру Земли.

Второе условие, при котором можно применять закон всемирного тяготения в той форме, которую мы записали:

2. Тела должны обладать сферической симметрией.

Гравитационная постоянная

Поняв, в каких случаях можно применять формулу для закона всемирного тяготения, вернемся к величине G (коэффициенту пропорциональности):

Эта величина носит название гравитационной постоянной. Выясним какой смысл у гравитационной постоянной G. Запишем еще раз закон всемирного тяготения:

Отсюда несложно получить, что гравитационная постоянная G может быть вычислена по формуле:

Итак, отсюда мы получаем физический смысл гравитационной постоянной. В самом деле, если мы возьмем две материальные точки, расположенные на расстоянии 1 м друг от друга, а масса этих материальных точек равна 1 кг, то гравитационная постоянная будет численно равна силе, с которой притягиваются эти две точки. Физический смысл гравитационной постоянной: она численно равна силе, с которой мысленно притягиваются две материальные точки массами по 1 кг, расположенные в вакууме на расстоянии 1 м друг от друга.

Поговорим о том, как вычислить гравитационную постоянную. Из курса физики 9 класса вы знаете, что эта же формула для гравитационной постоянной для закона всемирного тяготения в случае притяжения к Земле может быть заменена формулой для силы тяжести:

Где м – это масса тела, а g – ускорение свободного падения. Отсюда несложно получить фомулу для гравитационной постоянной:

Можно оценить гравитационную постоянную. Получилось следующее значение гравитационной постоянной:

Эта величина и носит название гравитационной постоянной и является так называемой универсальной физической постоянной, т. е. одинаковой в любой точке Вселенной.

 


Модельное представление опыта Кавендиша

Величину гравитационного взаимодействия определяет величина гравитационной постоянной, одной из фундаментальных физических констант. Она составляет:

Как видите, это сравнительно небольшая, даже маленькая величина. Как же ее измерить? Впервые она была измерена несколько сотен лет назад английским ученым Генри Кавендишем. Если говорить об этом человеке, то он был нетипичным ученым, он задолго до Кулона определил закон взаимодействия электрических зарядов, первым в истории науки определил среднюю плотность Земли с достаточно большой точностью. Однако он практически не занимался публикацией своих открытий, они стали известны уже после его смерти.

Для определения гравитационной постоянной Кавендиш сконструировал так называемые крутильные весы, принципиальная схема которых показана на рисунке 8.

Формула земного притяжения

Рис. 8. Принципиальная схема крутильных весов

Обратите внимание: на деревянном коромысле подвешены сравнительно небольшие свинцовые шары одинаковой массы. Само деревянное коромысло подвешено на тончайшей посеребренной медной проволочке длиной порядка 1 м. Если к этим шарам подносить массивные также свинцовые шары, то вследствие гравитационного притяжения нить будет немного закручиваться и шарики массы m будут притягиваться к шарикам массы М. В какой-то момент сила гравитационного взаимодействия уравновесится с силой упругости закрученной нити и система придет в равновесие. Сравнивая эти две силы, Кавендиш и определял гравитационную постоянную.

Вы понимаете, что значение гравитационной постоянной очень мало, поэтому углы на которые отклонялась нить также очень малы, он их регистрировал при помощи сложных оптических приборов. Также для того, чтобы избежать конвекционных потоков, т. е. влияния потоков воздуха, вся система была помещена в воздушный колпак, показанный на рисунке 9.

Формула земного притяжения

Рис. 9. Воздушный колпак

Интересно, что Кавендиш в своих опытах не измерял напрямую значение гравитационной постоянной, он ставил своей целью как раз определить значение средней плотности Земли, и он определили его как:

Тогда эта величина была неизвестна, и он сказал, что плотность Земли в 5,48 раз больше, чем плотность воды. Современное значение плотности, измеренное более точными приборами, составляет:

Отличие всего в 0,04, менее чем в 1 %. Настолько точно несколько сотен лет назад ученому удалось поставить эксперимент. Какой вывод сделал Кавендиш из значения, которое он получил? Дело в том, что средняя плотность поверхностных слоев Земли составляет порядка:

Отсюда вывод: раз средняя плотность значительно выше, значит где-то в глубине Земли, глубоко, находятся плотные породы, например железо или какие-то другие плотные металлы.

Сама гравитационная постоянная, по всей видимости, впервые в науку была введена французским ученым Пуассоном в трактате по механике в 1811 году, и вычислил он ее как раз из результатов опыта Генри Кавендиша.

Выводы

Подводим итоги.

1. Взаимодействие, свойственное всем телам во Вселенной и проявляющееся в их взаимном притяжении друг к другу, называют гравитационным, а само явление – всемирным тяготением или гравитацией.

2. Закон всемирного тяготения имеет следующий вид:

Сила взаимодействия между двумя телами массами , находящимися на расстоянии  друг от друга, прямо пропорционально произведению масс этих тел и обратно пропорционально квадрату расстояния между ними.

Направление силы вдоль прямой, соединяющей центры тел, представлено на рисунке 10.

Формула земного притяжения

Рис. 10. Направление силы вдоль прямой, соединяющей центры тел

3. Справедлив этот закон в таком виде для:

а) если тела можно положить материальными точками, т. е. их размерами можно пренебречь по сравнению с расстоянием между телами;

б) если тела обладают сферической симметрией.

Напомним, что мы с вами записали и поняли, чему равна гравитационная постоянная и обсудили ее универсальный характер:

Именно гравитационное взаимодействие как одно из четырех универсальных физических взаимодействий является наиболее ответственным за движение крупных небесных тел – планет, звезд, целых галактик.

 


Законы движение небесных тел (законы Кеплера)

Вам хорошо известно, что к появлению законов всемирного тяготения привело наблюдение за телами космических масштабов, за планетами, за солнцем, за кометами, за метеоритами и т. д. Именно о том, какие закономерности появились при наблюдении за такими телами, мы и поговорим, а точнее, мы поговорим о законах, которые впервые получил Иоганн Кеплер. На основаниях наблюдений своего учителя, датского астронома Тихо Браге, и собственных наблюдений он провел огромную аналитическую работу и получил три закона движения космических тел. Именно из этих законов и благодаря этим законам в свое время Ньютон и получил закон всемирного тяготения.

Первый закон Кеплера: все планеты Солнечной системы движутся по эллиптическим орбитам, в одном из фокусов эллипса находится Солнце.

Эллипс – это одна из геометрических фигур, условно его можно представить ка вытянутую окружность. Обратите внимание на иллюстрацию (рис. 10) первого закона Кеплера. В одном из фокусов эллипса находится Солнце, обратите внимание на расположение нашей планеты, наиболее ближняя к солнцу точка называется перигелий, она обозначена буквой Р, наиболее далекая точка называется афелий, это точка А. Расстояние a, показанное на рисунке 11, называется полуось.

Формула земного притяжения

Рис. 11. Иллюстрация первого закона Кеплера

Возможно, вам сложно представить, что такое эллипс или его фокус, вас должен успокаивать тот факт, что в реальности орбиты, по которым вращаются планеты вокруг Солнца, практически неотличимы от круговых, круг – это частный случай эллипса. Единственная планета, у которой эллипсоидальная траектория, – это Плутон, но совсем недавно Плутон был вынесен из списка планет, и он является, по современной астрономической классификации, небесным телом. Итак, траектория движения практически всех планет Солнечной системы – это окружность.

Второй закон Кеплера: радиус-вектор планеты, планета движется по траектории (внешняя окружность) которая показана на рисунке 12, и за одинаковые промежутки времени описывает одинаковые площадки, т. е. площадь, заштрихованная горизонтально (рис. 12), равна площади заштрихованной вертикально (рис. 12), если время движения планет в эти два отрезка одинаковое.

Формула земного притяжения

Рис. 12. Иллюстрация второго закона Кеплера

Третий закон Кеплера:

T – это период вращения планеты вокруг Солнца (на рис. 13 эта область закрашена), a – это половина или большая полуось, т. е. квадраты периодов вращения планет относятся как кубы больших полуосей.

Формула земного притяжения

Рис. 13. Иллюстрация третьего закона Кеплера

Несмотря на то что законы Кеплера практически полностью описывали движение небесных тел (а следует сказать, что по современным воззрениям точность действия законов Кеплера составляет практически порядка одного процента, это очень хорошая точность, т. е. на 99 % они правильно описывают движение небесных объектов) они остаются лишь обобщением некоторых эмпирических наблюдений, которые проводили астрономы. Фундамент под эти законы как раз и подвел Исаак Ньютон, выведя закон всемирного тяготения. Тем не менее отдадим должное трудам астрономов того времени: Тихо Праге, Иоганна Кеплера и других, ведь им было неизмеримо сложнее, чем современным астрономам, с точки зрения техники, которая у них была, и с точки зрения математического аппарата и устройств для обработки наблюдений.

Кроме этого, гравитационное взаимодействие обуславливает наличие приливов, отливов, а также множества других физических явлений.


 

Закон всемирного тяготения Ньютона в 2007 г. был проверен и на расстояниях, меньших одного сантиметра (от 55 мкм до 9,35 мм). С учетом погрешностей эксперимента в исследованном диапазоне расстояний отклонений от закона Ньютона не обнаружено.

А как формула для закона всемирного тяготения превращается в формулу для силы тяжести, которую вы уже хорошо знаете, мы обсудим на следующем уроке.

 

Список литературы

1. Касьянов В.А. Физика 10 класс. – М.: Дрофа, 2010.

2. А.В. Перышкин, Е.М. Гутник. Физика 9. – М. Дрофа 2009.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Интернет-портал All-Физика (Источник)

2. Интернет-портал emto.com.ua (Источник)

 

Домашнее задание

1. Что такое гравитационная постоянная и каков физический смысл этой постоянной?

2. Сформулируйте закон всемирного тяготения.

3. Как и во сколько раз изменится сила тяготения, если при неизменном расстоянии массы тел возрастут вдвое?

Источник: interneturok.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.