Формула гелия


Не поддается законам классической механики. Ученые пытаются разгадать тайну гелия-4. Это легкий, не радиоактивный изотоп элемента. На него, собственно, приходятся 99,9% гелия на Земле.

Так вот, если 4-ый изотоп охладить до -271-го градуса Цельсия, получится жидкость. Только вот свойства ее для жидкости не типичны. Наблюдается, к примеру, сверхтекучесть.

Гелий-газ-Свойства-добыча-применение-и-цена-гелия-2

Если поместить гелий в сосуд и поставить его вертикально, жидкость нарушит законы гравитации. Через несколько минут содержимое емкости вытечет из нее. Из сего же вытекает, что гелий – элемент любопытный, а любопытство надо удовлетворять. Начнем знакомство со свойств вещества.

Свойства гелия


Не. Это не частица отрицания, а обозначение 2-го элемента периодической системы Менделеева, то есть, гелия. Газ в обычном состоянии, он сгущается лишь при минусовых температурах. Причем, минус этот должен быть в пару сотен градусов Цельсия.

При этом, в свойства газа гелия вписана нерастворимость в воде. То есть, если сам элемент не жидкий, то его молекулы находятся в одной фазе, не переходя в другие. Между тем, именно смена фаз вещества является определением образования раствора.

Гелий – инертный газ. Его инертность проявляется не только в отсутствии «желания» растворяться в воде. Вещество не спешит вступать и в прочие реакции. Причина: — стабильная внешняя оболочка атома.

На ней находятся 2 электрона. Разбить крепкую пару, то есть, удалить одну из частиц с оболочки атома, сложно. Поэтому, открыли гелий не в ходе химических опытов, а при спектроскопическом исследовании протуберанцев Солнца.

Произошло это во второй половине 19-го века. Прочие инертные газы, а их 6, открыли еще позже. Примерно в это же время, то есть, в начале 20-го века, удалось перевести гелий в жидкую форму.

Гелий – одноатомный газ без цвета, вкуса и запаха. Это тоже выражение инертности элемента. Связывается он лишь с тремя «коллегами» по таблице Менделеева, — литием, хлором и фтором. Сама реакция не запустится.

Нужен ультрафиолет, или разряды тока. Зато, чтобы гелий «убежал» из пробирки, или другого объемного и твердого тела, усилий не нужно. У 2-го элемента самая малая адсорбция, то есть, способность концентрироваться на плоскости или в объеме.


Гелий-газ-Свойства-добыча-применение-и-цена-гелия-1

Хранят газ гелий в баллонах. Они должны быть абсолютно герметичными. Иначе, адсорбция сыграет с поставщиками злую шутку. Вещество просочится через малейшие щели. А будь баллоны из пористого материала, гелий уйдет сквозь него.

Плотность газа гелия в 7 раз уступает кислороду. Показатель последнего – 1,3 килограмма на кубический метр. У гелия же плотность равна всего 0,2 кило. Соответственно герой статьи легок. Молярная масса гелия равна 4-ем граммам на моль.

Для сравнения у воздуха в целом показатель равен 29-ти граммам. Становится ясно, почему популярен гелий для шаров. Разница в массах 2-го элемента и воздуха тратится на подъем грузов. Вспомним, что моль равен 22-ум литрам. Получается, что 22 литра гелия способны поднять 25-граммовый груз. Кубометр газа потянет уже более килограмма.

Напоследок заметим, что у гелия отличная электропроводность. По крайней мере, это касается газов. Среди них 2-ой элемент уже не на втором, а на первом месте. А вот по содержанию на Земле гелий – не передовик. В атмосфере планеты героя статьи миллионные доли процента. Так откуда же тогда добывают газ. Выуживать его из атмосферы нецелесообразно.


Добыча гелия

Формула гелия является составной не только атмосферы, но и природного газа. В разных месторождениях разнится и содержание 2-го элемента. В России, к примеру, наиболее богаты гелием залежи Дальнего Востока и востока Сибири.

Однако, месторождения газа в этих регионах плохо освоены. Подстегивает к их разработке 0,2-0,8-процентное содержание гелия. Пока же, его добывают лишь на одном месторождении страны. Оно находится в Оренбурге, признано бедным на гелий. Тем не менее, 5 000 000 кубов газа в год добывают.

Общемировое производство гелия в год равно 175 000 000 кубических метров. При этом, запасы газа – 41 миллиард кубов. Большая часть из них скрыта в недрах Алжира, Катара и США. Россия тоже входит в список.

Из природного газа гелий получают путем низкотемпературной конденсации. Получается концентрат 2-го элемента с его содержанием не менее 80%. Еще 20% приходятся на аргон, неон, метан, водород и азот. Какой газ гелию мешает? Никакой. Но, людям примеси мешают. Поэтому, концентрат очищают, превращая 80% 2-го элемента в 100%.


Гелий-газ-Свойства-добыча-применение-и-цена-гелия-5

Проблема состоит в том, что у экспертов есть так же, 100-процентная уверенность, что планету ждет дефицит гелия. Уже к 2030-му году мировое потребление газа должно достигнуть 300 000 000 кубометров.

Производство гелия через 10 лет не сможет перешагнуть планку в 240 000 000 из-за дефицита сырья. Оно является невосполнимым ресурсом. Второй элемент выделяется по крупицам при распаде радиоактивных пород.

Скорости природного производства не угнаться за нуждами людей. Поэтому, специалисты прочат резкий скачок цен на гелий. Пока, низкую стоимость обесценивает распродажа резервного фонда США, который стране стало невыгодно содержать.

Национальный запас создали в начале прошлого века, дабы наполнять военные дирижабли и коммерческие воздушные суда. Хранилище расположено в штате Техас.

Применение гелия

Найти гелий можно в топливных баках ракет. Там 2-ой элемент соседствует с жидким водородом. Лишь гелий, при этом, способен оставаться газообразным, а значит, создавать в баках двигателей нужное давление.

Наполнение аэростатов, — еще одно дело, в котором пригождается газ гелий. Углекислый, к примеру, не подойдет, поскольку тяжел. Легче гелия лишь один газ, это водород. Только вот, он взрывоопасен.

В начале прошлого века водородом наполнили дирижабль «Гинденбург» и лицезрели, как тот воспламенился во время полета. С тех пор выбор сделан в пользу инертного, хоть и чуть более тяжелого, гелия.


Гелий-газ-Свойства-добыча-применение-и-цена-гелия-4

Популярен гелий и как охлаждающий агент. Применение связано со способностью газа порождать сверхнизкие температуры. Гелий закупают для адронных коллайдеров и спектрометров ядерного магнитного резонанса. Пользуются 2-ым элементом так же, в аппаратах МРТ. Там гелий закачивают в сверхпроводящие магниты.

МРТ проходили многие. Близки массовому потребителя и сканеры на кассах, считывающие штрих-коды. Так вот, в магазинские лазеры закачены гелий и неон. Отдельно гелий помещают в ионные микроскопы. Они дают лучшую картинку, чем электронные, можно сказать, тоже считывают данные.

В системах кондиционирования воздуха 2-ой элемент нужен для диагностики утечек. Пригождается сверхпроницаемость героя статьи. Если он находит куда просочиться, значит, могут «утечь» и прочие компоненты.

Речь о системах кондиционирования автомобилей. Кстати, подушки безопасности тоже заполняются гелием. Он просачивается в спасительные емкости быстрее иных газов.

Цена гелия

Пока, на газ гелий цена равна примерно 1 300 рублям за полтора куба. В них вмещаются 10 литров 2-го элемента. Есть баллоны и по 40 литров. Это почти 6 кубов гелия. Ценник на 40-литровые упаковки равен примерно 4 500 рублей.


Гелий-газ-Свойства-добыча-применение-и-цена-гелия-3

Кстати, для пущей герметичности, на баллоны с газом надевают защитные чехлы. Они тоже стоят денег, обычно, около 300-от рублей для 40-литровой тары и 150-ти рублей для баллонов на 10 литров.

Источник: tvoi-uvelirr.ru

Основная информация об элементе

Уникальное в своем роде вещество считается одним из самых распространенных во всей Вселенной, уступая пальму первенства в своем объеме только водороду, ведь его доля составляет около 23 процентов от общей массы этого безграничного пространства. Близкие к рекордным показатели демонстрируют и другие физические свойства гелия, которые стоит рассмотреть более подробно.


Физические особенности

Химический элемент относят к практически полностью инертным газам, он не является токсичным и не имеет вкуса и запаха. Одиночное строение атома гелия остается таковым при любых условиях, чего не скажешь о других его характеристиках, зависящих от атмосферного давления, температурного режима и многих других параметров. Самый легкий идеальный газ после водорода, гелий обладает следующими физическими свойствами:

  • Молярная масса атома газа составляет 4,002601 грамма на моль. Что касается молярного объема, то этот показатель равен 31,81 сантиметра кубических на моль, тогда как молярная теплоемкость составляет 20,79 Дж/Кмоль.
  • Плотность вещества напрямую зависит от температурного режима, соответствуя 0,147 грамма на сантиметр кубический при падении столбика термометра ниже отметки в минус 270 градусов Цельсия и 0,000117846 градуса при нагревании до плюс 20 градусов и выше.
  • Температура кипения у гелия является наиболее низкой, если сравнивать его с любым другим химическим элементом. Так, вещество имеет свойство закипать при температуре, равной 4,2152 Кельвина, что эквивалентно минус 268,94 градуса Цельсия.
  • Температурный режим плавления соответствует 0,95 Кельвина или минус 272,2 градуса Цельсия при давлении, равном 2,5 МПа. При этом удельная теплота плавления составляет 0,0138 килоДжоуля на моль при удельной теплоте испарения 0, 0829 кДж/моль.

  • Получение вещества в твердом виде становится возможным только при атмосферном давлении выше 25 атмосфер, тогда как при любых других показателях (даже нулевых) он не переходит в эту фазу.
  • Гелий, найденный в природных условиях, всегда состоит из двух изотопов стабильного типа, один из которых имеет высокий процент распространения, близком к сотне, тогда как другой встречается гораздо реже, причем в совершенно разных естественных источниках (до 0,00014%). Помимо прочего, науке известны еще как минимум 6 радиоактивных гелиевых изотопов искусственного происхождения.

Стоит отметить, что для качественного определения вещества сегодня используется анализ эмиссионного спектра излучения, тогда как для количества применимым остается хроматографическое и масс-спектрометрическое тестирование. Кроме того, актуальными являются простейшие методы идентификации, подразумевающие измерение таких основных параметров, как плотность, молярная масса и теплопроводность.

Гелий в своем газообразном состоянии очень тяжело растворяется в воде (гораздо сложнее, чем любой другой газ). Так, в литре воды, температура которой составляет 20 градусов Цельсия, объем растворимого газа составляет не более 8,8 миллилитра из 100. Еще худшую растворимость можно наблюдать в этиловом спирте, так как ее показатель не превышает 2,8 мл/л при 15-градусной температуре и 3,2 мл при нагревании этанола до 25 градусов Цельсия.

А вот скорость диффузии гелия превышает актуальный для воздуха показатель в три раза, опережая даже водород, у которого коэффициент проникаемости ниже на 65%. Абсолютным рекордсменом гелий является и по коэффициенту преломления, максимально приближаясь к единице. Эффект Джоуля — Томсона у гелия имеет отрицательное значение в нормальной среде из-за его слишком быстрого охлаждения.


Что касается остывания в процессе дросселирования, то оно становится возможным только при 40 К и нормальном атмосферном давлении. Если же температура продолжит опускаться, то становится возможным переход гелия из газообразного в жидкое состояние, но только при условии применения охлаждения расширительного типа, обеспечить которое реально только с помощью специального преобразователя относительной потенциальной энергии в механическую.

Химические свойства

Гелий является наименее активным элементом из всех известных, относясь к 18-й группе периодической таблицы и имея общепринятое обозначение He. Такой же является и химическая формула гелия (электронная состоит из двух протонов и такого же количества нейтронов, дающих массовое число 4), который имеет в своей основе кристаллическую решетку гексагонального типа с параметрами 3,570 для показателя a и 5,84 для c, дающих соотношение 1,633. Что касается других химических характеристик вещества, то среди них стоит выделить:


  • Величина ковалентного радиуса равна 28 пм при радиусе иона, соответствующем 93 пм.
  • Уровень электроотрицательности по шкале Полинга соответствует 4,5 баллам.
  • Электродный потенциал, как степени окисления, а следовательно, и валентность элемента имеют нулевые значения.
  • Энергия ионизации первого электрона равна 2361,3 кДж/моль.
  • Показатель теплопроводности элемента соответствует 300 К.
  • Молекулярная ионная энергия равна 58 ккал/моль.
  • Равновесное расстояние между ядрами химически связанных элементов соответствует 1,09 А.

Что касается соединений вещества, то сегодня известной является его связь LiHe. Сам элемент имеет свойство образовывать двухатомные молекулы фторида и хлорида, обозначение первого из которых HeF, а второго HeCl, притом что их получение становится возможным только при воздействии электрического разряда или УФ-излучения на смесь описываемого элемента с фтором или хлором, соответственно.

Совершенно другими свойствами обладает гелий в газообразном состоянии. Не последнюю роль в этом вопросе играет воздействие на газ различного рода физических и химических процессов. К примеру, если пропустить ток через трубочку с гелием, то можно наблюдать его радужное свечение, сила которого будет зависеть от создаваемого давления в закрытом пространстве. Если же не прибегать к подобным приемам, то останется один только желтый спектр, считающийся привычным для гелия в его нормальном состоянии.

Ввиду содержания в веществе нескольких линий спектра по мере уменьшения атмосферного давления происходит изменение его цветового излучения, которое начинает меняться от желтого к оранжевому, розовому и зеленому. Всего же учеными принято выделять два основных спектра — единичный и триплетный, первый из которых свойственен атомам в их нормальном состоянии. Что касается перехода в триплетное состояние, то он становится возможным только при использовании разряда в 19,77 эВ.

Вывести атом из его привычного состояния можно и другими методами воздействия, один из которых заключается в искусственно созданном столкновении с другими атомами вещества с последовательной передачей энергии между ними. А вот обратный переход из триплетного состояния в синглетное естественным путем практически невозможен. Такое состояние называется метастабильным и для того, чтобы перевести газ в стандартное положение вновь, приходится прибегать к различным методам внешнего воздействия.

Интересные факты о гелии

Название элемента происходит от греческого «Гелиос», что означает «Солнце» и латинского «гелиум», притом что второе наименование было выбрано отнюдь не случайно. Так, не секрет, что окончание «ум» применяется по отношению к металлам, к которым и относился гелий на момент своего открытия. И хотя на самом деле вещество является неметаллом, иногда его так и называют по-латыни, что не является ошибкой.

Немного истории

Сегодня уже мало кто вспомнит, что открытие элемента произошло еще 18 августа 1868 года, когда известный французский ученый решил исследовать солнечную хромосферу в момент полного затмения звезды в одном из индийских городов. Примечательно, что всего лишь через 3 месяца такое же открытие было сделано в Англии, правда, тогда о его неактуальности еще никто не знал, ввиду более сложной корреспонденции научных данных.

В 1881 году итальянский вулканолог Луиджи Пальмери, исследовавший Везувий, также идентифицировал это вещество, поспешив сообщить о своей находке общественности. Но самое важное событие в области открытия гелия произошло 27 годами позже, когда он был впервые выявлен в недрах планеты. Тогда газ удалось добыть из такого распространенного минерала, как клевеит, и со временем именно он использовался учеными для того, чтобы установить величину его удельного веса и других физических параметров.

Со временем исследователи научились получать гелий в жидком виде, для чего впервые довелось применить процедуру дросселирования. В отличие от этого попытки добывать твердый гелий долгое время не увенчивались успехом. Ситуация изменилась только в 1926 году, когда вдобавок к охлаждению было применено и критическое понижение атмосферного давления до 35 атм, в результате чего удалось выделить кристаллическую решетку вещества.

Получение и применение

Удивительно, но, несмотря на свое внушительное распространение во всей Вселенной, гелий довольно редко встречается на Земле. Разной является и природа образования этого элемента на Земле и в космосе, так как в первом случае его выделение происходит за счет распада альфа-частиц тяжелых элементов. В итоге часть вещества проходит через земные породы, сливаясь с природным газом и демонстрируя концентрацию от 7 процентов от общего объема и выше.

В настоящее время месторождения, в которых наблюдаются большие залежи гелия, имеются на территории таких стран, как Индия, Бразилия, Россия и Танзания. Естественно, речь идет о гелийсодержащих газах, которые используются в промышленности для выведения чистого элемента или его производных. Для этого применяется процедура охлаждения посредством дросселирования, и в этом случае сложность разжижения элемента в значительной мере облегчает процесс.

На выходе удается получить смесь, состоящую не только из гелия, но и из водорода и неона, после чего производится очистка. В итоге доля сырого гелия будет составлять около 70−90 процентов от общего объема. После финишной фильтрации продукт, который, как известно, не может гореть, а следовательно, и не представляет никакой угрозы, транспортируясь в металлических баллонах, изготовленных в соответствии с ГОСТ 949–73 . Если же стоит вопрос о перевозке сжиженного газа, то в ход идут специальные сосуды марки СТГ-10 и СТГ-25.

Что касается применения, то гелий используется в следующих сферах:

  • Металлургия.
  • Пищевая промышленность.
  • Для изготовления хладагентов для различных агрегатов и рабочих установок.
  • Для наполнения различных судов воздухоплавания и шариков.
  • В дайвинге для приготовления дыхательных смесей, необходимых для погружения.
  • В ракетных установках в качестве одной из составляющих теплоносителя.
  • Для наполнения трубок газорезного типа.
  • В сфере газовой хроматографии.
  • Для поиска утечек в трубопроводах и всевозможных инфраструктурных установках.

Естественно, на этом применение элемента не заканчивается, ввиду чего производство гелия является очень развитым и востребованным в настоящее время.

Среди прочих преимуществ газа — его высокие перспективы в сфере термоядерной энергетики, благо, мировые запасы гелийсодержащих веществ не позволяют отнести его в разряд дефицитного.

Так, современные эксперты называют цифру в 45,6 миллиарда метров кубических, притом что объемы производства перевалили за 110 миллионов еще в 2003 году.

Источник: nauka.club

Свойства гелия

При нормальных условиях гелий — газ без цвета и запаха. Плотность 0,178 кг/м3, t кипения — 268,93° С. Гелий — единственный элемент, который в жидком состоянии не отвердевает при нормальном давлении, как бы глубоко его ни охлаждали. В 1938 советский физик П. Л. Капица открыл у 4He сверхтекучесть — способность течь без вязкости. Наименьшее давление, необходимое для перевода жидкого гелия в твёрдый, 2,5 МПа, при этом t плавления — 272,1°С. Теплопроводность (при 0°С) 2,1•10-2 Вт/м•К. Молекула гелия состоит из одного атома, её радиус от 0,085 (нетинный) до 0,133 нм (Ван-дер-Ваальсов) (0,85-1,33 Е), В 1 литре воды при 20°С растворяется около 8,8 мл гелия Устойчивые химические соединения гелия не получены.

Гелий в природе

По распространённости во Вселенной гелий занимает 2-е место после водорода. На Земле гелия мало: в 1 м3 воздуха содержится 5,24 см3 гелия, среднее содержание в литосфере 3•10-7%. В пластовых флюидах литосферы существуют 3 генетические составляющие гелия — радиогенный, первозданный и атмосферный гелий. Радиогенный гелий образуется повсеместно при радиоактивных превращениях тяжёлых элементов и различных ядерных реакциях, первозданный — поступает в литосферу как из глубинных пород мантии, окклюдировавших первозданный гелий и сохранивших его со времени формирования планеты, так и из космоса вместе с космической пылью, метеоритами и т.п. Атмосферный гелий попадает в осадки из воздуха, при процессах седиментогенеза, а также с инфильтрующимися поверхностными водами.

Величина отношения 3He/4He в радиогенном гелии земной коры составляет п•10-8, в гелии мантии (смеси первозданного и радиогенного) (3±1)•10-5, в космическом гелии 10-3-10-4, в атмосферном воздухе 1,4•10-6. В земном гелии абсолютно преобладает изотоп 4He. Основное количество 4He образовалось при а-распаде естественных радиоактивных элементов (радиоизотопы урана, актиноурана и тория). Незначительные источники образования 4He и 3He в литосфере — ядерные реакции (нейтронное расщепление лития и т.п.), распад трития и др. На древних стабильных участках земной коры преобладает радиогенный 4He3He/4He = = (2±1)•10-8. Для тектонически нарушенной земной коры (зон рифтов, глубинных разломов, эруптивных аппаратов, с тектономагматической или сейсмической активностью и т.п.) характерно повышенное количество 3He 3He/4He = n•10-5. Для остальных геологических структур отношение 3He/4He в пластовых газах и флюидах изменяется в пределах 10-8-10-7. Различие в величинах изотопно-гелиевых отношений 3He/4He в мантийном и коровом гелии является индикатором современной связи глубинных флюидов с мантией. В силу лёгкости, инертности и высокой проницаемости гелия большинство породообразующих минералов его не удерживает, и гелий мигрирует по трещинно-поровым пространствам пород, растворяясь в заполняющих их флюидах, иногда далеко отрываясь от основных зон образования.

Гелий — обязательная примесь во всех газах, образующих самостоятельные скопления в земной коре или выходящих наружу в виде естественных газовых струй. Обычно гелий составляет ничтожную примесь к другим газам; в редких случаях его количество доходит до нескольких % (по объёму); максимальные концентрации гелия выявлены в подземных газовых скоплениях (8-10%), газах урановых шахт (10-13%) и водорастворённых газах (18-20%).

Получение гелия

В промышленности гелий получают из гелийсодержащих газов методом глубокого охлаждения (до -190°С), незначительное количество — при работе воздухоразделительных установок. Основные газовые компоненты при этом конденсируются (вымораживаются), а оставшийся гелиевый концентрат очищается от водорода и неона. Разрабатываются также диффузные методы извлечения гелия.

Транспортировка и хранение гелия — в высокогерметизированных ёмкостях. Гелий 1-2-го сортов обычно перевозят в стальных баллонах разной ёмкости, чаще до 40 л, под давлением до 15 МПа. Хранилища гелия устраивают также в подземных соляных камерах, а гелий-сырец (около 60% He и 40% N2) хранят в выработанных подземных газовых структурах. На дальние расстояния гелий поставляется в сжатом и жидком виде с помощью специально оборудованного транспорта, а также газопроводом (например, в США).

Использование гелия

Применение гелия основано на таких его уникальных свойствах, как полная инертность (сварка в атмосфере гелия, производство сверхчистых и полупроводниковых материалов, хроматография, добавка в дыхательные смеси и пр.), высокая проницаемость (течеискатели в аппаратах высокого и низкого давлений). гелий — единственный из химических элементов, который позволяет получать сверхнизкие температуры, необходимые для всех типов сверхпроводящих систем и установок (криоэнергетика). Жидкий гелий — хладоагент при проведении научных исследований.

Источник: www.mining-enc.ru

История открытия Гелия

18 августа 1868 года французский учёный Пьер Жансен, находясь во время полного солнечного затмения в индийском городе Гунтур, впервые исследовал хромосферу Солнца. Жансену удалось настроить спектроскоп таким образом, чтобы спектр короны Солнца можно было наблюдать не только при затмении, но и в обычные дни. На следующий же день спектроскопия солнечных протуберанцев наряду с линиями водорода — синей, зелено-голубой и красной — выявила очень яркую жёлтую линию, первоначально принятую Жансеном и другими наблюдавшими её астрономами за линию D натрия. Жансен немедленно написал об этом во Французскую Академию наук. Впоследствии было установлено, что ярко-жёлтая линия в солнечном спектре не совпадает с линией натрия и не принадлежит ни одному из ранее известных химических элементов.

Спустя два месяца 20 октября английский астроном Норман Локьер, не зная о разработках французского коллеги, также провёл исследования солнечного спектра. Обнаружив неизвестную жёлтую линию с длиной волны 588 нм (более точно 587,56 нм), он обозначил её D3, так как она была очень близко расположена к Фраунгоферовым линиям D1 (589,59 нм) и D2 (588,99 нм) натрия. Спустя два года Локьер, совместно с английским химиком Эдвардом Франкландом, в сотрудничестве с которым он работал, предложил дать новому элементу название «гелий» ( ήλιος — «солнце»).

Интересно, что письма Жансена и Локьера пришли во Французскую Академию наук в один день — 24 октября 1868 года, однако письмо Локьера, написанное им четырьмя днями ранее, пришло на несколько часов раньше. На следующий день оба письма были зачитаны на заседании Академии. В честь нового метода исследования протуберанцев Французская академия решила отчеканить медаль. На одной строне медали были выбиты портреты Жансена и Локьера над скрещенными ветвями лавра, а на другой — изображение мифического бога Солнца Аполлона, правящего в колеснице четверкой коней, скачущей во весь опор

В 1881 году итальянец Луиджи Пальмиери опубликовал сообщение об открытии им гелия в вулканических газах (фумаролах). Он исследовал светло-желтое маслянистое вещество, оседавшее из газовых струй на краях кратера Везувия. Пальмиери прокаливал этот вулканический продукт в пламени бунзеновской горелки и наблюдал спектр выделявшихся при этом газов. Ученые круги встретили это сообщение с недоверием, так как свой опыт Пальмиери описал неясно. Спустя многие годы в составе фумарол действительно были найдены небольшие количества гелия и аргона

Только через 27 лет после своего первоначального открытия гелий был обнаружен на Земле — в 1895 году шотландский химик Уильям Рамзай, исследуя образец газа, полученного при разложении минерала клевеита, обнаружил в его спектре ту же ярко-жёлтую линию, найденную ранее в солнечном спектре. Образец был направлен для дополнительного исследования известному английскому ученому-спектроскописту Уильяму Круксу, который подтвердил, что наблюдаемая в спектре образца жёлтая линия совпадает с линией D3 гелия. 23 марта 1895 года Рамзай отправил сообщение об открытии им гелия на Земле в Лондонское королевское общество, а также во Французскую академию через известного химика Марселена Бертло.

Шведские химики П. Клеве и Н. Ленгле смогли выделить из клевеита достаточно газа, чтобы установить атомный вес нового элемента.

В 1896 году Генрих Кайзер, Зигберт Фридлендер, а еще через два года Эдвард Бэли окончательно доказали присутствие гелия в атмосфере.

Еще до Рамзая гелий выделил также американский химик Фрэнсис Хиллебранд, однако он ошибочно полагал, что получил азот и в письме Рамзаю признал за ним приоритет открытия.

Исследуя различные вещества и минералы, Рамзай обнаружил, что гелий в них сопутствует урану и торию. Но только значительно позже, в 1906 году, Резерфорд и Ройдс установили, что альфа-частицы радиоактивных элементов представляют собой ядра гелия. Эти исследования положили начало современной теории строения атома.

Только в 1908 году нидерландскому физику Хейке Камерлинг-Оннесу удалось получить жидкий гелий дросселированием (Эффект Джоуля — Томсона), после того как как газ был предварительно охлажден в кипевшем под вакуумом жидком водороде. Попытки получить твёрдый гелий еще долго оставались безуспешными даже при температуре в 0,71 K, которых достиг ученик Камерлинг-Оннеса — немецкий физик Виллем Хендрик Кеезом. Лишь в 1926 году, применив давление выше 35 атм и охладив сжатый гелий в кипящем под разрежением жидком гелии, ему удалось выделить кристаллы.

В 1932 году Кеезом исследовал характер изменения теплоёмкости жидкого гелия с температурой. Он обнаружил, что около 2,19 K медленный и плавный подъём теплоёмкости сменяется резким падением и кривая теплоёмкости приобретает форму греческой буквы λ (лямбда). Отсюда температуре, при которой происходит скачок теплоёмкости, присвоено условное название «λ-точка». Более точное значение температуры в этой точке, установленное позднее — 2,172 K. В λ-точке происходят глубокие и скачкообразные изменения фундаментальных свойств жидкого гелия — одна фаза жидкого гелия сменяется в этой точке на другую, причем без выделения скрытой теплоты; имеет место фазовый переход II рода. Выше температуры λ-точки существует так называемый гелий-I, а ниже её — гелий-II.

В 1938 году советский физик Пётр Леонидович Капица открыл явление сверхтекучести жидкого гелия-II, которое заключается в резком снижении коэффициента вязкости, вследствие чего гелий течёт практически без трения. Вот что он писал в одном из своих докладов про открытие этого явления:
… такое количество тепла, которое фактически переносилось, лежит за пределами физических возможностей, что тело ни по каким физическим законам не может переносить больше тепла, чем его тепловая энергия, помноженная на скорость звука. С помощью обычного механизма теплопроводности тепло не могло переноситься в таком масштабе, как это наблюдалось. Надо было искать другое объяснение.
И вместо того, чтобы объяснить перенос тепла теплопроводностью, то есть передачей энергии от одного атома к другому, можно было объяснить его более тривиально — конвекцией, переносом тепла в самой материи. Не происходит ли дело так, что нагретый гелий движется вверх, а холодный опускается вниз, благодаря разности скоростей возникают конвекционные токи, и таким образом происходит перенос тепла. Но для этого надо было предположить, что гелий при своем движении течет без всякого сопротивления. У нас уже был случай, когда электричество двигалось без всякого сопротивления по проводнику. И я решил, что гелий так же движется без всякого сопротивления, что он является не сверхтеплопроводным веществом, а сверхтекучим. …
… Если вязкость воды равняется 10−2 П, то это в миллиард раз более текучая жидкость, чем вода …

Происхождение названия

От ἥλιος — «Солнце» (Гелиос). Любопытен тот факт, что в названии элемента было использовано характерное для металлов окончание «-ий» (по лат. «-um» — «Helium»), так как Локьер предполагал, что открытый им элемент является металлом. По аналогии с другими благородными газами логично было бы дать ему имя «гелион» («Helion»). В современной науке название «гелион» закрепилось за ядром лёгкого изотопа гелия — гелия-3.

Распространённость

Во Вселенной

Гелий занимает второе место по распространённости во Вселенной после водорода — около 23 % по массе . Однако на Земле гелий редок. Практически весь гелий Вселенной образовался в первые несколько минут после Большого Взрыва, во время первичного нуклеосинтеза. В современной Вселенной почти весь новый гелий образуется в результате термоядерного синтеза из водорода в недрах звёзд (см. протон-протонный цикл, углеродно-азотный цикл). На Земле он образуется в результате альфа-распада тяжёлых элементов (альфа-частицы, излучаемые при альфа-распаде — это ядра гелия-4). Часть гелия, возникшего при альфа-распаде и просачивающегося сквозь породы земной коры, захватывается природным газом, концентрация гелия в котором может достигать 7 % от объёма и выше.

Земная кора

В рамках восьмой группы гелий по содержанию в земной коре занимает второе место (после аргона).

Содержание гелия в атмосфере (образуется в результате распада Ac, Th, U) — 5,27·10−4 % по объёму, 7,24·10−5 % по массе. Запасы гелия в атмосфере, литосфере и гидросфере оцениваются в 5·1014 м³. Гелионосные природные газы содержат как правило до 2 % гелия по объёму. Исключительно редко встречаются скопления газов, гелиеносность которых достигает 8 — 16 %.

Среднее содержание гелия в земном веществе — 3 г/т. Наибольшая концентрация гелия наблюдается в минералах, содержащих уран, торий и самарий: клевеите, фергюсоните, самарските, гадолините, монаците (монацитовые пески в Индии и Бразилии), торианите. Содержание гелия в этих минералах составляет 0,8 — 3,5 л/кг, а в торианите оно достигает 10,5 л/кг.

Определение Гелия

Качественно гелий определяют с помощью анализа спектров испускания (характеристические линии 587,56 нм и 388,86 нм), количественно — масс-спектрометрическими и хроматографическими методами анализа, а также методами, основанными на измерении физических свойств (плотности, теплопроводности и др.).

Физические свойства Гелия

Гелий — практически инертный химический элемент.

Простое вещество гелий — нетоксично, не имеет цвета, запаха и вкуса. При нормальных условиях представляет собой одноатомный газ. Его точка кипения (T = 4,215 K для 4He) наименьшая среди всех простых веществ; твёрдый гелий получен лишь при давлениях выше 25 атмосфер — при атмосферном давлении он не переходит в твёрдую фазу даже при крайне близких к абсолютному нулю температурах. Экстремальные условия также необходимы для создания немногочисленных химических соединений гелия, все они нестабильны при нормальных условиях.

Свойства в газовой фазе

При нормальных условиях гелий ведёт себя практически как идеальный газ. Фактически при всех условиях гелий моноатомный. Плотность 0,17847 кг/м³. Он обладает теплопроводностью (0,1437 Вт/(м·К) при н.у.) большей, чем у других газов, кроме водорода, и его удельная теплоёмкость чрезвычайно высока (ср = 5,23 кДж/(кг·К) при н.у., для сравнения — 14,23 кДж/(кг·К) для Н2).

При пропускании тока через заполненную гелием трубку наблюдаются разряды различных цветов, зависящих главным образом от давления газа в трубке. Обычно видимый свет спектра гелия имеет жёлтую окраску. По мере уменьшения давления происходит смена цветов — розового, оранжевого, жёлтого, ярко-жёлтого, жёлто-зелёного и зелёного. Это связано с присутствием в спектре гелия нескольких серий линий, расположенных в диапазоне между инфракрасной и ультрафиолетовой частями спектра, важнейшие линии гелия в видимой части спектра лежат между 706,52 нм и 447,14 нм. Уменьшение давления приводит к увеличению длины свободного пробега электрона, то есть к возрастанию его энергии при столкновении с атомами гелия. Это приводит к переводу атомов в возбуждённое состояние с большей энергией, в результате чего и происходит смещение спектральных линий от инфракрасного к ультрафиолетовому краю.

Гелий менее растворим в воде, чем любой другой известный газ. В 1 л воды при 20 °C растворяется около 8,8 мл (9,78 при 0 °C, 10,10 при 80 °C), в этаноле — 2,8 (15 °C), 3,2 (25 °C). Скорость его диффузии сквозь твёрдые материалы в три раза выше, чем у воздуха, и приблизительно на 65 % выше, чем у водорода.

Коэффициент преломления гелия ближе к единице, чем у любого другого газа. Этот газ имеет отрицательный коэффициент Джоуля-Томсона при нормальной температуре среды, то есть он нагревается, когда ему дают возможность свободно увеличиваться в объёме. Только ниже температуры инверсии Джоуля-Томсона (приблизительно 40 К при нормальном давлении) он остывает во время свободного расширения. После охлаждения ниже этой температуры гелий может быть превращён в жидкость при расширительном охлаждении. Такое охлаждение производится при помощи детандера.

Свойства конденсированных фаз

В 1908 году Х.Камерлинг-Оннес впервые смог получить жидкий гелий. Твёрдый гелий удалось получить лишь под давлением 25 атмосфер при температуре около 1 К (В. Кеезом, 1926). Кеезом также открыл наличие фазового перехода гелия-4 (4He) при температуре 2,17K; назвал фазы гелий-I и гелий-II (ниже 2,17K). В 1938 году П. Л. Капица обнаружил, что у гелия-II отсутствует вязкость (явление сверхтекучести). В гелии-3 сверхтекучесть возникает лишь при температурах ниже 0,0026 К. Сверхтекучий гелий относится к классу так называемых квантовых жидкостей, макроскопическое поведение которых может быть описано только с помощью квантовой механики. В 2004 году появилось сообщение об открытии сверхтекучести твёрдого гелия, однако интерпретация этого явления не до конца понятна.

Химические свойства Гелия

Гелий — наименее химически активный элемент восьмой группы (Инертные газы) таблицы Менделеева. Многие соединения гелия существуют только в газовой фазе в виде так называемых эксимерных молекул, у которых устойчивы возбуждённые электронные состояния и неустойчиво основное состояние. Гелий образует двухатомные молекулы He2, фторид HeF, хлорид HeCl (эксимерные молекулы образуются при действии электрического разряда или УФ излучения на смесь гелия газа и фтора (хлора)).

Известно химическое соединение гелия LiHe. (возможно, имелось ввиду соединение LiHe7)

Изотопы Гелия

Природный гелий состоит из двух стабильных изотопов: 4He (изотопная распространённость — 99,99986 %) и гораздо более редкого 3He (0,00014 %; содержание гелия-3 в разных природных источниках может варьировать в довольно широких пределах). Известны ещё шесть искусственных радиоактивных изотопов гелия.

Получение Гелия

Промышленность — химический элемент гелий получают из гелийсодержащих природных газов (в настоящее время эксплуатируются главным образом месторождения, содержащие > 0,1 % гелия). От других газов гелий отделяют методом глубокого охлаждения, используя то, что он сжижается труднее всех остальных газов. Охлаждение производят дросселированием в несколько стадий очищая его CO2 и углеводородов. В результате получается смесь гелия, неона и водорода. Сырой гелий (70-90 % по объёму гелий) очищают от водорода (4-5 %) с помощью CuO при 650—800 К. Окончательная очистка достигается охлаждением сырого гелий кипящим под вакуумом N2 и адсорбцией примесей на активном угле в адсорберах, также охлаждаемых жидким N2. Производят гелий технической чистоты (99,80 % по объёму гелий) и высокой чистоты (99,985 %).

В России газообразный гелий получают из природного и нефтяного газов. В настоящее время гелий извлекается на гелиевом заводе ООО «Газпром добыча Оренбург» в Оренбурге из газа с низким содержанием гелия (до 0,055 % об.), поэтому российский гелий имеет высокую себестоимость. Актуальной проблемой является освоение и комплексная переработка природных газов крупных месторождений Восточной Сибири с высоким содержанием гелия (от 0,15 до 1 %), что позволит намного снизить его себестоимость.

По производству гелия лидируют следующие страны мира: США (140 млн м³ в год), затем — Алжир (16 млн м³). Россия занимает третье место в мире — 6 млн м³ в год. Мировые запасы гелия составляют 45,6 млрд м³. Крупные месторождения находятся в США(45 % от мировых ресурсов), далее идут Россия (32 %), Алжир (7 %), Канада (7 %) и Китай (4 %).

Транспортировка гелия

Для транспортировки газообразного гелия используются стальные баллоны (ГОСТ 949-73) коричневого цвета, помещаемые в специализированные контейнеры. Для перевозки можно использовать все виды транспорта при соблюдении соответствующих правил перевозки газов.

Для перевозки жидкого гелия применяются специальные транспортные сосуды типа СТГ-10, СТГ-25 и СТГ-40 светло-серого цвета объёмом 10, 25 и 40 литров, соответственно. При выполнении определённых правил транспортировки может использоваться железнодорожный, автомобильный и другие виды транспорта. Сосуды с жидким гелием обязательно должны храниться в вертикальном положении.

Применение гелия

Уникальные свойства гелия широко используются в промышленности и народном хозяйстве:
— в металлургии в качестве защитного инертного газа для выплавки чистых металлов
— в пищевой промышленности зарегистрирован в качестве пищевой добавки E939, в качестве пропеллента и упаковочного газа
— используется в качестве хладагента для получения сверхнизких температур (в частности, для перевода металлов в сверхпроводящее состояние)
— для наполнения воздухоплавающих судов (дирижабли)
— в дыхательных смесях для глубоководного погружения (Баллон для дайвинга)
— для наполнения воздушных шариков и оболочек метеорологических зондов
— для заполнения газоразрядных трубок
— в качестве теплоносителя в некоторых типах ядерных реакторов
— в качестве носителя в газовой хроматографии
— для поиска утечек в трубопроводах и котлах (см. Гелиевый течеискатель)
— как компонент рабочего тела в гелий-неоновых лазерах
— нуклид 3He активно используется в технике нейтронного рассеяния в качестве поляризатора и наполнителя для позиционно-чувствительных нейтронных детекторов
— нуклид 3He является перспективным топливом для термоядерной энергетики
— для изменения тембра голосовых связок (эффект повышенной тональности голоса) за счет различия плотности обычной воздушной смеси и гелия (аналогично гексафториду серы)

Биологическая роль гелия

Гелий не играет никакой биологической роли.

Физиологическое действие

Инертные газы обладают физиологическим действием, которое проявляется в их наркотическом воздействии на организм. Наркотическое воздействие гелия (и неона) при нормальном давлении в опытах не регистрируется, в то время как при повышении давления раньше возникают симптомы «нервного синдрома высокого давления» (НСВД)

Интересные факты

В 2000 г. цены частных компаний на газообразный гелий находились в пределах 1,5 — 1,8 $/м³
В 2009 году цены на газообразный гелий находились в пределах 1.800-2.500 рублей за 6 м³ (40-литровый баллон) (Санкт-Петербург).

Дополнительная информация по гелию

Гелий-3 — лёгкий, нерадиоактивный изотоп гелия.
Эффект Померанчука — аномальный характер плавления (или затвердевания) лёгкого изотопа гелия 3He

Гелий, Helium, Не (2)
В 1868 г. французский астроном Жансен наблюдал в Индии полное солнечное затмение и спектроскопически исследовал хромосферу солнца. Он обнаружил в спектре солнца яркую желтую линию, обозначенную им D3, которая не совпадала с желтой линией D натрия. Одновременно с ним эту же линию в спектре солнца увидел английский астроном Локьер, который понял, что она принадлежит неизвестному элементу. Локьер совместно с Франкландом, у которого он тогда работал, решил назвать новый элемент гелием (от греч.- гелиос, солнце). Затем новая желтая линия была обнаружена другими исследователями в спектрах «земных» продуктов; так, в 1881 г. итальянец Пальмиери обнаружил ее при исследовании пробы газа, отобранного в кратере Везувия.

Bсследуя урановые минералы химик Гиллебранд, установил, что они при действии крепкой серной кислоты выделяют газы. Сам Гиллебранд считал, что это азот. Рамзай, обративший внимание на сообщение Гиллебранда, подверг спектроскопическому анализу газы, выделяемые при обработке кислотой минерала клевеита. Он обнаружил, что в газах содержатся азот, аргон, а также неизвестный газ, дающий яркую желтую линию. Не имея в своем распоряжении достаточно хорошего спектроскопа, Рамзай послал пробы нового газа Круксу и Локьеру, которые вскоре идентифицировали газ как гелий. В том же 1895 г. Рамзай выделил гелий из смеси газов; он оказался химически инертным, подобно аргону. Вскоре после этого Локьер, Рунге и Пашен выступили с заявлением, что гелий состоит из смеси двух газов — ортогелий и парагелий; один из них дает желтую линию спектра, другой зеленую. Этот второй газ они предложили назвать астерием (Asterium) от греч.- звездный. Совместно с Траверсом Рамзай проверил это утверждение и доказал, что оно ошибочно, так как цвет линии гелия зависит от давления газа.

 

 

Источник: himsnab-spb.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.