Физические свойства плазмы


ПЛА́ЗМА (греч. πλάσμα – вы­ле­п­лен­ное, оформ­лен­ное), ио­ни­зо­ван­ный газ, со­стоя­щий из элек­тро­нов и ио­нов, дви­же­ние ко­то­рых оп­ре­де­ля­ет­ся пре­им. кол­лек­тив­ным ха­рак­те­ром взаи­мо­дей­ст­вия за счёт даль­но­дей­ст­вую­щих элек­тро­маг­нит­ных сил, в от­ли­чие от обыч­но­го га­за, в ко­то­ром до­ми­ни­ру­ют близ­ко­дей­ст­вую­щие пар­ные взаи­мо­дей­ст­вия (столк­но­ве­ния). Вы­со­кая элек­тро­про­вод­ность П. де­ла­ет её чув­ст­ви­тель­ной к воз­дей­ст­вию элек­тро­маг­нит­ных по­лей. Спе­ци­фи­ка от­кли­ка П. на та­кое воз­дей­ст­вие по­зво­ля­ет счи­тать П. осо­бым (чет­вёр­тым) аг­ре­гат­ным со­стоя­ни­ем ве­ще­ст­ва на­ря­ду с твёр­дым те­лом, жид­ко­стью и га­зом.

Основные параметры и свойства плазмы

Ко­ли­че­ст­вен­но П. ха­рак­те­ри­зу­ет­ся кон­цен­тра­ция­ми элек­тро­нов $n_e$ и ио­нов $n_i$, их ср. темп-ра­ми (энер­гия­ми) $T_e$ и $T_i$, сте­пе­нью ио­ни­за­ции (дóлей ио­ни­зо­ван­ных ато­мов) $α=n_i/(n_i+n_0)$, где $n_0$ – кон­цен­тра­ция ней­траль­ных ато­мов, ср.
­ря­дом ио­на $Z_{eff}$. Вы­со­кая под­виж­ность час­тиц П. (осо­бен­но элек­тро­нов) обес­пе­чи­ва­ет эк­ра­ни­ро­ва­ние вне­сён­но­го в П. за­ря­да на рас­стоя­ни­ях по­ряд­ка де­ба­евско­го ра­диу­са эк­ра­ни­ро­ва­ния $r_D$ за вре­ме­на по­ряд­ка об­рат­ной плаз­мен­ной элек­трон­ной (лен­гмю­ров­ской) час­то­ты , $ω_{ре}=sqrt{4πn_ee^2/m_e},$ где $e$ и $m_e$ – за­ряд и мас­са элек­тро­на; здесь и ни­же в фор­му­лах ис­поль­зу­ет­ся га­ус­со­ва сис­те­ма еди­ниц (СГС); темп-ру в фи­зи­ке П. при­ня­то из­ме­рять в энер­ге­тич. еди­ни­цах (1 кэВ≈107 К). Про­стран­ст­вен­ный и вре­мен­нoй мас­шта­бы обыч­но ма­лы, по­это­му кон­цен­тра­ции по­ло­жи­тель­ных и от­ри­ца­тель­ных за­ря­дов ока­зы­ва­ют­ся прак­ти­че­ски оди­на­ко­вы­ми $(|Z_{eff}n_i-n_e|/n_e≪1)$; в этом смыс­ле го­во­рят о ква­зи­нейт­раль­но­сти П. Это важ­ней­шее свой­ство П. час­то ис­поль­зу­ют для оп­ре­де­ле­ния П., сле­дуя И. Лен­гмю­ру, впер­вые при­ме­нив­ше­му в 1920-х гг. тер­мин «П.» для обо­зна­че­ния уда­лён­ной от элек­тро­дов ква­зи­нейт­раль­ной об­лас­ти га­зо­во­го раз­ря­да. Обыч­но вре­ме­на су­ще­ст­во­ва­ния и раз­ме­ры П. пре­вы­ша­ют со­от­вет­ст­вен­но и $r_D$, что обес­пе­чи­ва­ет её ква­зи­нейт­раль­ность. Ква­зи­нейт­раль­ность П. не про­ти­во­ре­чит на­ли­чию объ­ём­но­го элек­трич. по­ля в П., на­хо­дя­щей­ся в маг­нит­ном по­ле.

Классификация видов плазмы


Клас­си­фи­ка­ция ви­дов плаз­мы ус­ловна. Ес­ли в сфе­ре ра­диу­са $r_D$ на­хо­дит­ся мно­го за­ря­жен­ных час­тиц ($N≈4πnr_D^3/3≫1, n$ – кон­цент­ра­ция всех ча­стиц плаз­мы), П. на­зы­ва­ет­ся иде­аль­ной плаз­мой; при $N⩽1$ го­во­рят о не­иде­аль­ной плаз­ме (здесь $N$ – па­ра­метр иде­аль­но­сти). В иде­аль­ной П. по­тен­ци­аль­ная энер­гия взаи­мо­дей­ст­вия час­тиц ма­ла по срав­не­нию с их те­п­ло­вой энер­ги­ей.

Вы­со­ко­ио­ни­зо­ван­ную П. с темп-рой $⩾10^2–10^3$ эВ на­зы­ва­ют вы­со­ко­тем­пе­ра­тур­ной, в от­ли­чие от низ­ко­тем­пе­ра­тур­ной плаз­мы с $T_e⩽10–100$ эВ, в ко­то­рой су­ще­ст­вен­ную роль мо­гут иг­рать столк­но­ви­тель­ные и ра­диа­ци­он­ные про­цес­сы. Осо­бой раз­но­вид­но­стью низ­ко­тем­пе­ра­тур­ной П. яв­ля­ет­ся пы­ле­вая плаз­ма, со­дер­жа­щая мак­ро­ско­пи­че­ские (раз­ме­ром от до­лей до со­тен мик­ро­мет­ров) твёр­дые час­тич­ки, не­су­щие боль­шой элек­трич. за­ряд $(Z_{eff}≫1)$. Вы­со­ко­тем­пе­ра­тур­ную П. с вы­со­кой элек­тро­про­вод­но­стью $σ$ так­же на­зы­ва­ют иде­аль­ной, ес­ли мож­но пре­неб­речь дис­си­па­тив­ны­ми про­цес­са­ми.

При сверх­вы­со­ких плот­но­стях энер­гии, воз­ни­каю­щих в ре­зуль­та­те столк­но­ве­ний тя­жё­лых ульт­ра­ре­ля­ти­ви­ст­ских час­тиц, воз­мож­но об­ра­зо­ва­ние кварк-глю­он­ной плаз­мы – ад­рон­ной сре­ды, в ко­то­рой пе­ре­ме­ша­ны цвет­ные за­ря­ды квар­ков и глюо­нов, как в обыч­ной П.
­ре­ме­ша­ны элек­трич. за­ря­ды. Час­ти­цы крио­ген­ной плаз­мы (с темп-рой в до­ли кель­ви­на) соз­да­ют­ся пу­тём пре­ци­зи­он­ной ио­ни­за­ции хо­лод­ных ато­мов ла­зер­ным пуч­ком, энер­гия кван­тов ко­то­ро­го прак­ти­че­ски рав­на энер­гии ио­ни­за­ции. Для опи­са­ния элек­тро­нов в ме­тал­лах, за­ряд ко­то­рых ском­пен­си­ро­ван за­ря­дом ио­нов кри­стал­лич. ре­шёт­ки, а так­же элек­тро­нов и ды­рок в по­лу­про­вод­ни­ках час­то ис­поль­зу­ют тер­мин плаз­ма твёр­дых тел. Совр. фи­зи­ка П. рас­смат­ри­ва­ет так­же ла­зер­ную плаз­му, воз­ни­каю­щую при оп­ти­че­ском про­бое под дей­ст­ви­ем мощ­но­го ла­зер­но­го из­лу­че­ния на ве­ще­ст­во; за­ря­жен­ную П., в ча­ст­но­сти элек­трон­ные и ион­ные пуч­ки, за­ря­жен­ные слои (двой­ной элек­три­че­ский слой) и др.

П. на­зы­ва­ют вы­ро­ж­ден­ной при низ­кой темп-ре $T$ и вы­со­кой кон­цен­тра­ции час­тиц $n$, ко­гда ха­рак­тер­ное рас­стоя­ние $(∝n^{–1/3})$ ме­ж­ду ни­ми ста­но­вит­ся по­ряд­ка дли­ны вол­ны де Брой­ля $(λ≈h/(2mT)^{1/2}$, где $h$ – по­сто­ян­ная План­ка). Ис­кус­ст­вен­но соз­дан­ная П. обыч­но тер­мо­ди­на­ми­че­ски не­рав­но­вес­на. Ло­каль­ное рав­но­ве­сие на­сту­па­ет, толь­ко ес­ли час­ти­цы П. стал­ки­ва­ют­ся ме­ж­ду со­бой. Бы­ст­рее все­го ус­та­нав­ли­ва­ет­ся рав­но­ве­сие внут­ри элек­трон­ной ком­по­нен­ты П., а в ион­ной ком­по­нен­те и ме­ж­ду ио­на­ми и элек­тро­на­ми – со­от­вет­ст­вен­но в $sqrt{∼m_i/m_e}$ и $∼m_i/m_e$ раз мед­лен­нее. В от­ли­чие от га­за, час­то­та столк­но­ве­ний час­тиц П. умень­ша­ет­ся с уве­ли­че­ни­ем энер­гии час­тиц ($∝T^{–3/2}$). По чис­лу ви­дов ио­нов раз­ли­ча­ют од­но- и мно­го­ком­по­нент­ную плаз­му.

Плазма в природе и технике


Счи­та­ет­ся, что бо­лее 99% ба­ри­он­но­го ве­ще­ст­ва во Все­лен­ной пре­бы­ва­ет в со­стоя­нии П. в ви­де звёзд, меж­звёзд­но­го и меж­га­лак­тич. га­за (см. Кос­ми­че­ская плаз­ма). П. маг­ни­то­сфе­ры за­щи­ща­ет Зем­лю от раз­ру­ши­тель­но­го по­то­ка П., ис­пус­кае­мой Солн­цем, – сол­неч­но­го вет­ра. При­сут­ст­вие ио­но­сфер­ной П., от­ра­жаю­щей ра­дио­вол­ны, де­ла­ет воз­мож­ной даль­нюю ра­дио­связь. П. в при­ро­де мож­но на­блю­дать в ви­де ат­мо­сфер­ных раз­ря­дов (мол­ний и ко­рон­ных раз­ря­дов) и по­ляр­ных сия­ний, а так­же в обыч­ном пла­ме­ни. В тех­ни­ке наи­боль­шее рас­про­стра­не­ние по­лу­чи­ла П. га­зо­вых раз­ря­дов, ис­поль­зуе­мых в ла­бо­ра­тор­ных и тех­но­ло­гич. це­лях, в га­зо­раз­ряд­ных ис­точ­ни­ках све­та (напр., лю­ми­нес­цент­ных лам­пах), в ком­му­ти­рую­щих уст­рой­ст­вах, при свар­ке и рез­ке ма­те­риа­лов, в плаз­мен­ных па­не­лях те­ле­ви­зи­он­ных и муль­ти­ме­дий­ных эк­ра­нов. По­то­ки П. при­ме­ня­ют­ся в плаз­мо­тро­нах для об­ра­бот­ки ма­те­риа­лов, в хи­рур­гии, в плаз­мен­ных кос­мич.
и­га­те­лях и маг­ни­то­гид­ро­ди­на­ми­че­ских ге­не­ра­то­рах. В вы­со­ко­тем­пе­ра­тур­ной П. воз­мож­но про­те­ка­ние тер­мо­ядер­ных ре­ак­ций. Для реа­ли­за­ции управ­ляе­мо­го тер­мо­ядер­но­го син­те­за (УТС) в дей­те­рий-три­тие­вой П. не­об­хо­ди­мо вы­пол­не­ние Ло­усо­на кри­те­рия – удер­жа­ние П. с $T⩾10$ кэВ и $n⩾10^{14}$ см–3 в те­че­ние вре­ме­ни $⩾1$ с (в П. др. со­ста­ва эти зна­чения ещё вы­ше). Ти­пич­ные зна­че­ния па­ра­мет­ров разл. ви­дов плаз­мы при­ве­де­ны на ри­сун­ке.

Методы описания плазмы

Ес­те­ст­вен­ный спо­соб опи­сать П., про­ве­дя рас­чёт дви­же­ния всех её час­тиц, не реа­ли­зу­ем на прак­ти­ке да­же с по­мо­щью мощ­ной вы­чис­лит. тех­ни­ки в си­лу кол­лек­тив­но­го ха­рак­те­ра взаи­мо­дей­ст­вия час­тиц. Од­на­ко мн. важ­ные свой­ст­ва П. мож­но по­нять на ос­но­ве ана­ли­за дви­же­ния отд. час­тиц. В маг­нит­ном по­ле с ин­дук­ци­ей $boldsymbol B$ дви­же­ние за­ря­жен­ных час­тиц П. вдоль и по­пе­рёк на­прав­ле­ния маг­нит­но­го по­ля су­ще­ст­вен­но раз­лич­но. В про­доль­ном на­прав­ле­нии час­ти­ца с за­ря­дом $q$ дви­жет­ся по­сту­па­тель­но, а в по­пе­реч­ном – вра­ща­ет­ся с цик­ло­трон­ной час­то­той $ω_B=qB/mc$ ($c$ – ско­рость све­та).
­ли лар­мо­ров­ский ра­ди­ус $ρ_L=v_⟂/ω_B$ та­ко­го вра­ще­ния мень­ше дли­ны сво­бод­но­го про­бе­га час­ти­цы и ха­рак­тер­но­го раз­ме­ра П., а элек­тро­маг­нит­ное по­ле ме­ня­ет­ся мед­лен­но по срав­не­нию с пе­рио­дом цик­ло­трон­но­го вра­ще­ния, П. счи­та­ет­ся за­маг­ни­чен­ной плаз­мой ($v_⟂$ – ско­рость дви­же­ния час­ти­цы по­пе­рёк маг­нит­но­го по­ля). Час­ти­цы та­кой П. дви­жут­ся с со­хра­не­ни­ем адиа­ба­тич. ин­ва­ри­ан­та – маг­нит­но­го мо­мен­та $μ approx mv_⟂^2/2B$, а под дей­ст­ви­ем к.-л. си­лы $boldsymbol F$ опи­сы­вае­мые ими лар­мо­ров­ские спи­ра­ли мед­лен­но дрей­фу­ют по­пе­рёк маг­нит­но­го по­ля со ско­ро­стью $boldsymbol v_F=c[boldsymbol F×boldsymbol B]/qB^2$. В за­ви­си­мо­сти от при­ро­ды си­лы $boldsymbol F$ раз­ли­ча­ют гра­ви­та­ци­он­ный, элек­три­че­ский, гра­ди­ент­ный, цен­тро­беж­ный и по­ля­ри­за­ци­он­ный дрей­фы (см. Дрейф за­ря­жен­ных час­тиц). На­прав­ле­ние цик­ло­трон­но­го вра­ще­ния час­тиц оп­ре­де­ля­ет­ся Лен­ца пра­ви­лом: маг­нит­ное по­ле то­ка цик­ло­трон­но­го вра­ще­ния час­тиц про­ти­во­по­лож­но внеш­не­му по­лю и, сле­до­ва­тель­но, ос­лаб­ля­ет его. В этом про­яв­ля­ет­ся диа­маг­не­тизм П., при­во­дя­щий к вы­тал­ки­ва­нию П. из об­лас­ти бо­лее силь­но­го маг­нит­но­го по­ля.

То­ж­де­ст­вен­ность час­тиц ка­ж­дой ком­по­нен­ты П. по­зво­ля­ет ис­поль­зо­вать ки­не­тич. опи­са­ние с по­мо­щью од­но­час­тич­ной функ­ции рас­пре­де­ле­ния $f(t, boldsymbol r, boldsymbol v)$, оп­ре­де­ляе­мой как кон­цен­тра­ция час­тиц дан­ной ком­по­нен­ты в фа­зо­вом про­стран­ст­ве (см.
­не­ти­че­ские урав­не­ния для плаз­мы). Как и обыч­ная кон­цен­тра­ция, функ­ция рас­пре­де­ле­ния удов­ле­тво­ря­ет урав­не­нию не­пре­рыв­но­сти, но толь­ко в фа­зо­вом про­стран­ст­ве: $?f/?t+rm{div}_r(fboldsymbol v)+rm{div}_v(fboldsymbol a)=St[f]$. Здесь $boldsymbol a=boldsymbol F/m$ – ус­ко­ре­ние, $t$ – вре­мя, $fboldsymbol v$ и $fboldsymbol a$ – плот­но­сти по­то­ка час­тиц в ко­ор­ди­нат­ном про­стран­ст­ве и про­стран­ст­ве ско­ро­стей со­от­вет­ст­вен­но. Не­пре­рыв­ность по­то­ка в фа­зо­вом про­стран­ст­ве на­ру­ша­ет­ся при столк­но­ве­ни­ях час­тиц, что опи­сы­ва­ет­ся ин­те­граль­ным столк­но­ви­тель­ным чле­ном $St[f]$ в пра­вой час­ти ки­не­тич. урав­не­ния. В вы­со­ко­ио­ни­зо­ван­ной П. до­ми­ни­ру­ют даль­ние столк­но­ве­ния, при ко­то­рых на­прав­ле­ние и ско­рость дви­же­ния час­тиц ме­ня­ют­ся плав­но. Это по­зво­ля­ет за­пи­сать столк­но­ви­тель­ный член в ви­де ди­вер­ген­ции не­кое­го по­то­ка $boldsymbol Gamma$ в про­стран­ст­ве ско­ро­стей: $St[f]=–rm{div}_v(boldsymbol Gamma)=rm{div}_v(boldsymbol D∇_vf-boldsymbol gf)$, где $boldsymbol D$ – ко­эф. диф­фу­зии (в об­щем слу­чае тен­зор­ный), $boldsymbol g$ – ко­эф. ди­на­мич. тре­ния в про­стран­ст­ве ско­ро­стей. По­сколь­ку час­то­та столк­но­ве­ний убы­ва­ет с рос­том темп-ры П., вы­со­ко­тем­пе­ра­тур­ная П.
е­к­ват­но опи­сы­ва­ет­ся бес­столк­но­ви­тель­ным $(St[f]3rightarrow 0)$ ки­не­тич. урав­не­ни­ем, в ко­то­ром элек­трич. и маг­нит­ное по­ля, оп­ре­де­ляю­щие дей­ст­вую­щие на час­ти­цы си­лы, рас­счи­ты­ва­ют­ся по плот­но­сти за­ря­дов и то­ков в са­мой П. Та­кие по­ля на­зы­ва­ют­ся са­мо­со­гла­со­ван­ны­ми, а бес­столк­но­ви­тель­ное ки­не­тич. урав­не­ние с са­мо­со­гла­со­ван­ны­ми по­ля­ми – урав­не­ни­ем Вла­со­ва. Важ­ным свой­ст­вом П., вы­те­каю­щим из ре­ше­ния урав­не­ния Вла­со­ва, яв­ля­ет­ся фе­но­мен бес­столк­но­ви­тель­ной рас­кач­ки или за­ту­ха­ния плаз­мен­ных волн (Лан­дау за­ту­ха­ние), фи­зич. при­ро­да ко­то­ро­го ана­ло­гич­на эф­фек­ту Че­рен­ко­ва (см. Ва­ви­ло­ва – Че­рен­ко­ва из­лу­че­ние). Урав­не­ние Вла­со­ва опи­сы­ва­ет кол­лек­тив­ные про­цес­сы в П., но не учи­ты­ва­ет флук­туа­ции, свя­зан­ные с дви­же­ни­ем отд. час­тиц.

Сле­дую­щим по ие­рар­хии спо­со­бом опи­са­ния П. яв­ля­ет­ся гид­ро­ди­на­мич. под­ход, опе­ри­рую­щий мо­мен­та­ми функ­ции рас­пре­де­ле­ния (кон­цен­тра­ци­ей, ср. ско­ро­стью, дав­ле­ни­ем, по­то­ка­ми те­п­ла и др.), ус­ред­няе­мой с разл. ве­са­ми по про­стран­ст­ву ско­ро­стей. По­лу­чае­мые та­ким об­ра­зом урав­не­ния мно­го­жид­ко­ст­ной маг­нит­ной гид­ро­ди­на­ми­ки (МГД) при­год­ны для мак­ро­ско­пич. опи­са­ния по­ве­де­ния ком­по­нент П. в маг­нит­ном по­ле. Од­но­жид­ко­ст­ная маг­нит­ная гид­ро­ди­на­ми­ка не раз­ли­ча­ет ком­по­нен­ты П., рас­смат­ри­вая её как еди­ную про­во­дя­щую жид­кость.
с вы­со­кой элек­тро­про­вод­но­стью $(σrightarrowinfty)$ опи­сы­ва­ет­ся урав­не­ния­ми иде­аль­ной маг­нит­ной гид­ро­ди­на­ми­ки, для ко­то­рой ха­рак­тер­на вмо­ро­жен­ность маг­нит­но­го по­ля в П. При ко­неч­ной про­во­ди­мо­сти маг­нит­ное по­ле про­са­чи­ва­ет­ся сквозь П. с ко­эф. маг­нит­ной диф­фу­зии $c^2/4πσ$ (скин-эф­фект). МГД-опи­са­ние П. ши­ро­ко ис­поль­зу­ет­ся в за­да­чах кос­мич. плаз­мы, УТС и др.

Удержание плазмы

П. со­хра­ня­ет свои свой­ст­ва лишь в от­сут­ст­вие кон­так­тов с бо­лее хо­лод­ны­ми и плот­ны­ми сре­да­ми. Осо­бо ак­ту­аль­на за­да­ча удер­жа­ния вы­со­ко­тем­пе­ра­тур­ной П. в УТС. В от­ли­чие от звёзд­ных объ­ек­тов, в ко­то­рых П. удер­жи­ва­ет­ся си­лой гра­ви­та­ции, в ла­бо­ра­тор­ных тер­мо­ядер­ных ус­та­нов­ках при­ме­ня­ют маг­нит­ное и инер­ци­аль­ное (инер­ци­он­ное) удер­жа­ние П. В сис­те­мах маг­нит­но­го удер­жа­ния маг­нит­ное по­ле игра­ет двоя­кую роль: си­ло­вую (соб­ст­вен­но для удер­жа­ния) и обес­пе­чи­ваю­щую маг­нит­ную тер­мо­изо­ля­цию П. от сте­нок ка­ме­ры. Ис­поль­зу­ют­ся маг­нит­ные ло­вуш­ки разл. ти­пов: от­кры­тые ло­вуш­ки, в ко­то­рых си­ло­вые ли­нии маг­нит­но­го по­ля вы­хо­дят из об­лас­ти удер­жа­ния, и замк­ну­тые (то­рои­даль­ные) ло­вуш­ки – то­ка­ма­ки, стел­ла­ра­то­ры, пин­чи с об­ра­щён­ным по­лем и др. В от­кры­той ло­вуш­ке удер­жа­ние час­тиц П.
оль си­ло­вой ли­нии обес­пе­чи­ва­ет­ся на­рас­та­ни­ем маг­нит­но­го по­ля от цен­тра к кон­цам ло­вуш­ки; при­ме­ром та­кой ло­вуш­ки слу­жит маг­нит­ное по­ле Зем­ли, удер­жи­ваю­щее час­ти­цы в ра­диа­ци­он­ных поя­сах Зем­ли. Маг­нит­ная кон­фи­гу­ра­ция то­ка­ма­ка соз­да­ёт­ся су­пер­по­зи­ци­ей то­рои­даль­но­го по­ля маг­нит­ных ка­ту­шек (со­ле­нои­дов) и по­лои­даль­но­го по­ля те­ку­ще­го по П. то­ка, что обес­пе­чи­ва­ет на­вив­ку си­ло­вых ли­ний по­ля на маг­нит­ные по­верх­но­сти, вло­жен­ные друг в дру­га. В стел­ла­ра­то­ре та­кая на­вив­ка («вра­ща­тель­ное пре­об­ра­зо­ва­ние») обес­пе­чи­ва­ет­ся ис­клю­чи­тель­но внеш­ни­ми ка­туш­ка­ми спец. фор­мы. Инер­ци­аль­ное удер­жа­ние реа­ли­зу­ет­ся в им­пульс­ных раз­ря­дах, в ко­то­рых П., соз­да­вае­мая в мик­ро­взры­вах под воз­дей­ст­ви­ем ла­зер­но­го из­лу­че­ния или пуч­ков вы­со­ко­энер­гич­ных час­тиц, «жи­вёт» лишь в те­че­ние вре­ме­ни раз­лё­та. Для эф­фек­тив­но­го удер­жа­ния П. её не­об­хо­ди­мо соз­дать и на­греть, за­тем обес­пе­чить её рав­но­ве­сие, ус­той­чи­вость и при­ем­ле­мый уро­вень про­цес­сов пе­ре­но­са.

Создание и нагрев плазмы

Соз­да­ние и на­грев плаз­мы до тер­мо­ядер­ных па­ра­мет­ров – слож­ная тех­нич. за­да­ча, то­гда как низ­ко­тем­пе­ра­тур­ная П. соз­да­ёт­ся и су­ще­ст­ву­ет в разл. га­зо­вых раз­ря­дах от­но­си­тель­но не­боль­шой мощ­но­сти (см. Ге­не­ра­то­ры плаз­мы). В тер­мо­ядер­ных сис­те­мах маг­нит­но­го удер­жа­ния П. соз­да­ёт­ся ли­бо пу­тём про­боя (ин­дук­ци­он­но­го или вы­со­ко­час­тот­но­го) не­по­сред­ст­вен­но в ра­бо­чей ка­ме­ре ус­та­нов­ки, ли­бо (ре­же) впры­ски­ва­ет­ся в ка­ме­ру из внеш­не­го ис­точ­ни­ка. По­сле­дую­щий на­грев плаз­мы обыч­но обес­пе­чи­ва­ет­ся джо­уле­вым те­п­ло­вы­де­ле­ни­ем при про­пус­ка­нии по П. то­ка, адиа­ба­тич. сжа­ти­ем (пинч-эф­фект), ин­жек­ци­ей пуч­ков вы­со­ко­энер­гич­ных час­тиц или элек­тро­маг­нит­ных волн. По­след­ние эф­фек­тив­но по­гло­ща­ют­ся П. лишь на час­то­тах, близ­ких к ре­зо­нанс­ным (элек­трон­ной и ион­ной цик­ло­трон­ных, их сред­не­гео­мет­ри­че­ской – ниж­не­гиб­рид­ной). Та­кие вол­ны ис­поль­зу­ют­ся для не­ин­дук­ци­он­но­го под­дер­жа­ния то­ка в то­ка­ма­ках, что по­тен­ци­аль­но спо­соб­но обес­пе­чить ста­цио­нар­ную ра­бо­ту то­ка­ма­ка-ре­ак­то­ра.

Равновесие плазмы

Ста­цио­нар­ное удер­жа­ние П. тре­бу­ет её рав­но­ве­сия – ло­каль­но­го ба­лан­са сил. По­сколь­ку на гра­ни­це плаз­мен­ной сис­те­мы кон­цен­тра­ция час­тиц и темп-ра П. обыч­но зна­чи­тель­но ни­же, чем в цен­тре, урав­но­ве­сить си­лу га­зо­ки­не­тич. дав­ле­ния П. мож­но толь­ко си­лой Ам­пе­ра: $∇p=[boldsymbol j×boldsymbol B]/c$, где $p$ – дав­ле­ние П., $boldsymbol j$ – плот­ность то­ка в П. Из это­го урав­не­ния рав­но­ве­сия сле­ду­ет, что и си­ло­вые ли­нии маг­нит­но­го по­ля, и ли­нии то­ка ле­жат на по­верх­но­стях рав­но­го дав­ле­ния – изо­ба­рах. Су­ще­ст­вен­но, что рав­но­ве­сие П. воз­мож­но не в ка­ж­дой маг­нит­ной кон­фи­гу­ра­ции. Так, осе­сим­мет­рич­ная рав­но­вес­ная кон­фи­гу­ра­ция долж­на удов­ле­тво­рять не­ли­ней­но­му урав­не­нию эл­лип­тич. ти­па, на­зы­вае­мо­му урав­не­ни­ем Шаф­ра­но­ва – Грэ­да, ана­лог ко­то­ро­го для про­из­воль­ных трёх­мер­ных сис­тем не­из­вес­тен.

Устойчивость плазмы

Для дли­тель­но­го удер­жа­ния П. не­дос­та­точ­но обес­пе­чить ста­цио­нар­ный ба­ланс сил. Не­об­хо­ди­мо, что­бы П. бы­ла ус­той­чи­ва, т. е. что­бы ма­лые от­кло­не­ния от по­ло­же­ния рав­но­ве­сия (флук­туа­ции) не на­рас­та­ли со вре­ме­нем. Ог­ра­ни­чен­ные по ам­пли­ту­де ко­ле­ба­ния но­сят ха­рак­тер волн в плаз­ме, а на­рас­таю­щие во вре­ме­ни пе­рио­дич. или апе­рио­дич. воз­му­ще­ния на­зы­ва­ют­ся не­ус­той­чи­во­стя­ми плаз­мы.

Осо­бен­ность волн в П. за­клю­ча­ет­ся в со­гла­со­ван­ной взаи­мо­свя­зи ко­ле­ба­ний элек­тро­маг­нит­но­го по­ля и ан­самб­ля час­тиц П., из­ме­не­ний во вре­ме­ни и в про­ст­ран­ст­ве её мак­ро­ско­пич. ха­рак­те­ри­стик. Та­кие ко­ле­ба­ния мож­но опи­сать, рас­счи­тав ди­элек­трич. про­ни­цае­мость плаз­мы $ε$ . Спектр собств. ко­ле­ба­ний П. на­хо­дит­ся из ус­ло­вия $ε=0$. К чис­лу спе­ци­фич. ко­ле­ба­ний П. от­но­сят­ся ко­ле­ба­ния объ­ём­ной плот­но­сти за­ря­да – лен­гмю­ров­ские вол­ны, в ко­то­рых век­тор элек­трич. по­ля кол­ли­неа­рен вол­но­во­му век­то­ру. В за­маг­ни­чен­ной П. ди­элек­трич. про­ни­цае­мость яв­ля­ет­ся тен­зо­ром. Для ана­ли­за волн в за­маг­ни­чен­ной П. при­ме­ня­ет­ся и МГД-под­ход, по­зво­ляю­щий опи­сать не толь­ко аль­ве­нов­ские вол­ны, ион­но-зву­ко­вые ко­ле­ба­ния и маг­ни­то­зву­ко­вые вол­ны в од­но­род­ной П., но и их раз­но­вид­но­сти в не­од­но­род­ной П., вклю­чая гео­де­зич. аку­стич. мо­ды, зо­наль­ные те­че­ния и др. Собств. мо­ды ко­ле­ба­ний и те­п­ло­вое дви­же­ние час­тиц П. при­во­дят к дис­пер­сии волн в П., осо­бен­но важ­ной для не­ли­ней­ных волн. Кон­ку­рен­ция дис­пер­сии и не­ли­ней­но­сти де­ла­ет воз­мож­ным су­ще­ст­во­ва­ние уе­ди­нён­ных волн – со­ли­то­нов.

Ис­точ­ни­ком не­ус­той­чи­во­стей П. слу­жит её не­рав­но­вес­ность. В за­ви­си­мо­сти от ви­дов не­рав­но­вес­но­сти раз­ли­ча­ют маг­ни­то­гид­ро­ди­на­ми­че­ские и ки­не­тич. не­ус­той­чи­во­сти. Наи­бо­лее опас­ны маг­ни­то­гид­ро­ди­на­ми­че­ские не­ус­той­чи­во­сти, вы­зы­вае­мые не­од­но­род­но­стью про­стран­ст­вен­но­го рас­пре­де­ле­ния па­ра­мет­ров П. Они при­во­дят к пе­ре­ме­ши­ва­нию сло­ёв П., вплоть до пол­ной де­гра­да­ции удер­жа­ния. Ки­не­тич. не­ус­той­чи­во­сти свя­за­ны с не­рав­но­вес­но­стью функ­ций рас­пре­де­ле­ния час­тиц П. в про­стран­ст­ве ско­ро­стей (от­кло­не­ни­ем от мак­свел­лов­ско­го рас­пре­де­ле­ния). На­рас­та­ние ам­пли­ту­ды ко­ле­ба­ний при не­ус­той­чи­во­сти мо­жет ог­ра­ни­чи­вать­ся не­ли­ней­ны­ми про­цес­са­ми, а ре­зуль­та­том раз­ви­тия не­ус­той­чи­во­стей, как пра­ви­ло, яв­ля­ет­ся тур­бу­лент­ность плаз­мы. Вос­пре­пят­ст­во­вать раз­ви­тию отд. не­ус­той­чи­во­стей мож­но, пра­виль­но фор­ми­руя со­стоя­ния рав­но­ве­сия, а так­же воз­дей­ст­вуя на П. по­сред­ст­вом об­рат­ных свя­зей. Ес­ли рав­но­ве­сие и мак­ро­ско­пич. ус­той­чи­вость П. обес­пе­че­ны, па­ра­мет­ры удер­жи­вае­мой П. оп­ре­де­ля­ют­ся про­цес­са­ми пе­ре­но­са.

Процессы переноса в плазме

Клас­сич. про­цес­сы пе­ре­но­са час­тиц и энер­гии в за­маг­ни­чен­ной П. ана­ло­гич­ны диф­фу­зии и те­п­ло­про­вод­но­сти обыч­ных га­зов с той раз­ни­цей, что в на­прав­ле­нии по­пе­рёк маг­нит­но­го по­ля час­ти­цы при столк­но­ве­ни­ях сме­ща­ют­ся лишь на ве­ли­чи­ну по­ряд­ка лар­мо­ров­ско­го ра­диу­са $ρ_L$. В замк­ну­тых маг­нит­ных сис­те­мах су­щест­ву­ют час­ти­цы, за­пер­тые ме­ж­ду ло­каль­ны­ми мак­си­му­ма­ми маг­нит­но­го по­ля, тра­ек­то­рии ко­то­рых от­кло­ня­ют­ся от маг­нит­ных по­верх­но­стей на ве­ли­чи­ну, су­ще­ст­вен­но пре­вы­шаю­щую $ρ_L$ и со­от­вет­ст­вую­щую лар­мо­ров­ско­му ра­диу­су, рас­счи­ты­вае­мо­му по по­лои­даль­но­му маг­нит­но­му по­лю (т. н. ба­на­но­вые ор­би­ты). Учи­ты­ваю­щая этот факт тео­рия пе­ре­но­сов по­лу­чи­ла назв. «не­оклас­си­че­ской». Пе­ре­но­сы в тур­бу­лент­ной П. мо­гут вы­зы­вать­ся рас­сея­ни­ем час­тиц П. на флук­туа­ци­ях элек­трич. и маг­нит­но­го по­лей. Эф­фек­тив­ные ко­эф. та­ко­го «ано­маль­но­го» пе­ре­но­са, как пра­ви­ло, на по­ряд­ки вы­ше не­оклас­си­че­ских. В тур­бу­лент­ном пе­ре­но­се час­то за­мет­ную роль иг­ра­ют кон­век­тив­ные по­то­ки, что пре­до­пре­де­ля­ет его обыч­но не­диф­фу­зи­он­ный ха­рак­тер.

Диагностика плазмы

Для из­ме­ре­ния зна­че­ний па­ра­мет­ров П. в экс­пе­ри­мен­тах при­ме­ня­ют­ся разл. ди­аг­но­стич. сред­ст­ва, по­зво­ляю­щие пря­мо или кос­вен­но оп­ре­де­лить кон­цен­тра­ции час­тиц ком­по­нент П., тем­пе­ра­ту­ру, ско­ро­сти, на­пря­жён­но­сти по­лей и их из­ме­не­ния во вре­ме­ни и в про­стран­ст­ве. Ис­то­ри­че­ски пер­вы­ми ме­то­да­ми ди­аг­но­сти­ки плаз­мы бы­ли зон­до­вые ме­то­ды с ис­поль­зо­ва­ни­ем зон­дов Лен­гмю­ра разл. мо­ди­фи­ка­ций. Вне­се­ние да­же ми­ниа­тюр­но­го зон­да в П. ис­ка­жа­ет её ха­рак­те­ри­сти­ки, по­это­му совр. ди­аг­но­стич. сред­ст­ва, как пра­ви­ло, бес­кон­такт­ные. Маг­нит­ные дат­чи­ки рас­по­ла­га­ют­ся обыч­но вне П. (поясá Ро­гов­ско­го, зон­ды Мир­но­ва, диа­маг­нит­ные пет­ли, дат­чи­ки гра­ди­ен­та маг­нит­но­го по­то­ка и др.). Весь­ма по­пу­ляр­ны оп­тич. ди­аг­но­сти­ки (вклю­чая рент­ге­нов­скую), ис­поль­зую­щие как соб­ст­вен­ное из­лу­че­ние плаз­мы (пас­сив­ная ди­аг­но­сти­ка), так и про­све­чи­ваю­щие ме­то­ды: ла­зер­ную и СВЧ-ин­тер­фе­ро­мет­рию и ди­фрак­то­мет­рию, ме­то­ды, ос­но­ван­ные на рас­сея­нии све­та (том­со­нов­ском и кол­лек­тив­ном), ме­тод фа­зо­во­го кон­тра­ста и др. Кор­пус­ку­ляр­ная ди­аг­но­сти­ка бы­ва­ет пас­сив­ной (ос­но­ван­ной на ана­ли­зе вы­хо­дя­щих из П. по­то­ков час­тиц) и ак­тив­ной, ис­поль­зую­щей спец. ди­аг­но­стич. пу­чок. Ре­ги­ст­ри­руя ос­лаб­ле­ние и рас­сея­ние пуч­ка, воз­бу­ж­де­ние, ио­ни­за­цию и гео­мет­рию по­сле­дую­щих тра­ек­то­рий его час­тиц и ато­мов пе­ре­за­ряд­ки, мож­но ло­каль­но оп­ре­де­лять кон­цен­тра­цию, темп-ру ио­нов и рас­пре­де­ле­ние элек­трич. по­тен­циа­ла. При­ме­ня­ют­ся и др. ви­ды ак­тив­ных ди­аг­но­стик, в ко­то­рых из­ме­ря­ет­ся от­клик П. на вно­си­мое спе­ци­фич. воз­му­ще­ние. Раз­ви­ва­ет­ся т. н. МГД-спек­тро­ско­пия, ос­но­ван­ная на ре­ги­ст­ра­ции МГД-ко­ле­ба­ний. Осн. про­бле­мы ди­а­г­но­сти­ки П. со­сто­ят имен­но в труд­но­стях на­хо­ж­де­ния ло­каль­ных зна­че­ний па­ра­мет­ров П. и во мно­же­ст­вен­но­сти фак­то­ров, от ко­то­рых за­ви­сят ре­зуль­та­ты из­ме­ре­ний.

Методы моделирования плазмы

Слож­ность по­ве­де­ния П. де­ла­ет ак­ту­аль­ным её ком­пь­ю­тер­ное мо­де­ли­ро­ва­ние. Осн. про­бле­ма за­клю­ча­ет­ся в су­ще­ст­вен­ных раз­ли­чи­ях (на 5–7 по­ряд­ков ве­ли­чи­ны) ха­рак­тер­ных про­стран­ст­вен­ных и вре­мен­ны́х мас­шта­бов про­цес­сов, фор­ми­рую­щих ди­на­ми­ку П., да­же в МГД-при­бли­же­нии и ещё бо́ль­ших в ки­не­ти­ке. По­это­му ком­пь­ю­тер­ные рас­чё­ты ис­поль­зу­ют­ся пре­им. для мо­де­ли­ро­ва­ния отд. про­цес­сов в П. на ос­но­ве уп­ро­щён­ных (ре­ду­ци­ро­ван­ных) урав­не­ний. Так, в пред­по­ло­же­нии сим­мет­рии сис­те­мы на­дёж­но ре­ша­ет­ся за­да­ча дву­мер­но­го рав­но­ве­сия П. и его мед­лен­ной эво­лю­ции; су­ще­ст­ву­ют ко­ды рас­чё­та трёх­мер­но­го рав­но­ве­сия П. в стел­ла­ра­то­рах с маг­нит­ны­ми по­верх­но­стя­ми, то­гда как про­бле­ма рас­чё­та об­ще­го трёх­мер­но­го рав­но­ве­сия П. в маг­нит­ном по­ле по­ка не ре­ше­на. Из­вест­ны дву­мер­ные МГД-ко­ды, опи­сы­ваю­щие ди­на­ми­ку П. и раз­ви­тие не­ко­то­рых не­ус­той­чи­во­стей, то­гда как трёх­мер­ные ди­на­мич. МГД-ко­ды до сих пор име­ют весь­ма ог­ра­ни­чен­ную при­ме­ни­мость. Наи­боль­шее рас­про­стра­не­ние для мо­де­ли­ро­ва­ния тур­бу­лент­ной ди­на­ми­ки за­маг­ни­чен­ной П. по­лу­чи­ли ги­ро­ки­не­тич. ко­ды, не учи­ты­ваю­щие бы­строе цик­ло­трон­ное вра­ще­ние час­тиц; од­на­ко по­ка с их по­мо­щью рас­счи­ты­ва­ет­ся весь­ма ко­рот­кое вре­мя эво­лю­ции П. Пря­мое при­ме­не­ние ме­то­дов мо­ле­ку­ляр­ной ди­на­ми­ки к вы­со­ко­тем­пе­ра­тур­ной П. за­труд­ни­тель­но для сколь­ко-ни­будь зна­чит. чис­ла за­ря­жен­ных час­тиц. Его ана­ло­гом слу­жит ме­тод час­тиц в ячей­ках, об­ра­зуе­мых рас­чёт­ной сет­кой. Час­ти­цы П. объ­е­ди­ня­ют­ся в мак­ро­час­ти­цы, дви­жу­щие­ся в ячей­ках, а зна­че­ния по­лей ме­ня­ют­ся лишь при пе­ре­хо­де от од­ной ячей­ки к дру­гой. Спе­циа­ли­зи­ров. ко­ды ис­поль­зу­ют­ся для рас­чё­та на­гре­ва П., из­лу­че­ния и по­гло­ще­ния волн, ге­не­ра­ции то­ка и пуч­ков час­тиц, рас­чё­та атом­ных и ра­диа­ци­он­ных про­цес­сов, про­ис­хо­дя­щих в П., взаи­мо­дей­ст­вия П. с ма­те­риа­ла­ми и пр.

Направления развития плазменных исследований

Спо­со­бы при­ме­не­ния П. в тех­ни­ке весь­ма мно­го­об­раз­ны, их чис­ло уве­ли­чи­ва­ет­ся год от го­да. В низ­ко­тем­пе­ра­тур­ной П. воз­мож­но про­те­ка­ние ря­да важ­ных хи­мич. ре­ак­ций, за­пре­щён­ных в обыч­ных ус­ло­ви­ях, их изу­че­ни­ем за­ни­ма­ет­ся плаз­мо­хи­мия. Важ­ней­шим на­прав­ле­ни­ем ис­сле­до­ва­ний П. ос­та­ёт­ся УТС. Имен­но раз­вёр­ты­ва­ние ра­бот по УТС в нач. 1950-х гг. в СССР и США по­ло­жи­ло на­ча­ло ши­ро­ко­мас­штаб­ным ис­сле­до­ва­ни­ям по фи­зи­ке П. во всём ми­ре. Дос­ти­же­ния по­след­них лет в ис­сле­до­ва­ни­ях кос­мич. про­стран­ст­ва и на­блю­да­тель­ной ас­тро­но­мии при­ве­ли к вспле­ску ра­бот по плаз­мен­ной ас­т­ро­фи­зи­ке, пер­спек­ти­вы раз­ви­тия ко­то­рой так­же вы­гля­дят весь­ма оп­ти­ми­стич­но.

Источник: bigenc.ru

Введение

Гуляя вечером по улицам города, мы любуемся световыми рекламами, не думая о том, что в них светится неоновая или аргоновая плазма. Всякий, кто имел «удовольствие» устроить в электрической сети короткое замыкание, встречался с плазмой. Искра, проскакивающая между проводами, состоит из плазмы электрического разряда в воздухе. Дуга электрической сварки тоже плазма. Кроме того, плазма применяется в самых разных газоразрядных приборах: выпрямителях электрического тока, стабилизаторах напряжения, плазменных усилителях и генераторах сверхвысоких частот (СВЧ), счётчиках космических частиц.

Созданы также плазменные двигатели, магнитогидродинамические электростанции. Разрабатываются различные схемы плазменного ускорения заряженных частиц. А центральной задачей физики плазмы является проблема управляемого термоядерного синтеза.

Применение плазмы очень разнообразно и перспективно, но мало кто знает, что это такое, какими свойствами обладает плазма и каковы перспективы её использования. Поэтому цель работы — изучение свойств и перспектив использования плазмы.

Задачи:

  • Изучить теоретическую составляющую данного вопроса (что такое плазма, как она образуется, ее свойства, какая бывает плазма и перспективы её использования).
  • Выполнить практическую часть: экспериментально получить плазму, используя самостоятельно собранную катушку Тесла, люминесцентную, неоновую и ксеноновую лампы.
  • Проанализировать и обобщить полученный результат исследования.
  • Ответить на вопрос: «Стоит ли за плазмой будущее?»

Объектом исследования является плазма.

Предметом исследования — свойства плазмы.

В работе были использованы следующие методы: изучение и анализ литературы, Интернет ресурсов по данной теме, наблюдение, фотографирование, эксперимент, обобщение результатов.

Глава 1. Теоретическая часть

1.1. А четвертое ли агрегатное состояние вещества?

Термин «плазма» ввел американский химик Ирвинг Ленгмюр (рис. 1., Приложение 1), лауреат Нобелевской премии по химии в 1932 году «за открытия и исследования в области химии поверхностных явлений». Этот термин он использовал для ионизированного газа, который образовывался, когда в ходе экспериментов применялись чрезвычайно мощные переменные токи.

Таким образом, плазма (в переводе с греческого «вылепленное», «оформленное») — частично или полностью ионизированный газ, образованный из нейтральных атомов (или молекул) и заряженных частиц (ионов и электронов) (рис.2, Приложение 1).

Плазму причисляют к четвертому агрегатному состоянию вещества. Это связанно с тем, что газ в результате процесса перехода в плазму почти полностью меняет свои свойства, что следует из сравнительной таблицы представленной ниже.
Сравнительная таблица свойств плазмы и газа

Газ

Не имеет формы и объема

Не имеет формы и постоянного объема

Большая электропроводность

Диэлектрик

Существует только в ионной форме

Существует в молекулярной форме

Состоит из частиц разного рода (ионов, электронов, нейтральных частиц)

Состоит из подобных друг другу частиц

Высокая температура существования

Существует и при минусовых температурах

Обладает «коллективным» — одновременным взаимодействием громадного числа частиц

Частицы взаимодействуют друг с другом попарно

Свечение

Сильное взаимодействие с электрическим и магнитным полями

Колебания электронов в плазме с большой частотой (»108 Гц), вызывающие общее вибрационное состояние плазмы

Эти свойства определяют качественное своеобразие плазмы, позволяющее считать ее особым, четвертым, состоянием вещества.

1.2. Процесс ионизации

Ионизация — процесс перехода газа в плазму. Для перехода газа в плазму необходимо его нагреть, причем до сверхвысоких температур, при этом тепловое движение внутри молекул становится настолько большим, что их межмолекулярные связи разрываются, и молекулы превращаются в свободные ионы, которые составляют новое агрегатное состояние. Так же получить плазму можно путём сообщения электронов газу, при этом частицы газа должны находиться близко друг другу (и под высоким давлением). (рис. 3 Приложение 1).

Важным параметром для данного процесса является — степень ионизации, которая пропорциональна числу атомов, отдавших или поглотивших электроны, и больше всего зависит от температуры. Даже слабо ионизированный газ, в котором менее 1% частиц находятся в ионизированном состоянии, может проявлять некоторые типичные свойства плазмы (взаимодействие с внешним электромагнитным полем и высокая электропроводность). Степень ионизации α определяется как

α = ni /(ni + na),

где ni — концентрация ионов,

na — концентрация нейтральных атомов. Концентрация свободных электронов в незаряженной плазме ne определяется очевидным соотношением: ne = <Z>ni,

где <Z> — среднее значение заряда ионов плазмы, или кратность ионизации плазмы. Очевидно, что максимальное значение α равно 1 (или 100%), такую плазму называют полностью ионизованной.

1.3. Классификация плазмы

Плазму можно классифицировать по следующим признакам:

1) Низкотемпературная и высокотемпературная: низкотемпературная до 106 Кельвинов, высокотемпературная плазма от 106 Кельвинов.

Для низкотемпературной плазмы характерна малая степень ионизации (до 1%). Так как такие плазмы довольно часто употребляются в технологических процессах, их иногда называют технологичными плазмами. Чаще всего их создают при помощи электрических полей, ускоряющих электроны, которые в свою очередь ионизируют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи.

Низкотемпературная плазма, получаемая в плазмотронах1, используется для резки и сварки металлов, для получения некоторых химических соединений (например, галогенидов инертных газов), которые не удается получить другими способами, а так же для очистки газов и жидкостей (озонирование воды и сжигание частичек сажи в дизельных двигателях) и для стерилизации хирургического инструмента. Такая технология наиболее эффективна, потому что воздействие осуществляется на атомном уровне. Плазменная стерилизация позволяет достичь любых слоев материала, из которого созданы поверхности приборов и оборудования. Примером низкотемпературной плазмы в природе является: огонь, молния, северное сияние (рис. 4, 5, Приложение 1).

__________________

1 Плазмотро́н — техническое устройство, в котором при протекании электрического тока через разрядный промежуток образуется плазма, используемая для обработки материалов или как источник света и тепла. Буквально, плазмотрон означает — генератор плазмы.

Горячая (высокотемпературная) плазма почти всегда полностью ионизирована (степень ионизации ~100 %). Обычно именно она понимается под «четвёртым агрегатным состоянием вещества». Примером может служить Солнце, звезды (рис.6, Приложение 1).

2) Равновесная и неравновесная: в равновесной плазме в любой точке системы температуры равны, такая плазма стабильна. В неравновесной плазме в любой точке системы температуры могут отличаться, такая плазма нестабильна.

3) Идеальная и неидеальная: в идеальной плазме все частицы газа ионизированы, а в неидеальной наоборот, не все частицы газа ионизированы.

1.4. Перспективы использования плазмы

Исследования в области плазмы и плазменных технологий разнообразны. Ежегодно проводится международная конференция по физике плазмы и управляемому термоядерному синтезу, на которой предоставляются результаты исследований ученых из разных стран.

Самое практически выгодное и перспективное использование плазмы — искусственный управляемый термоядерный синтез управляемого термоядерного реактора на основе установок с магнитным удержанием высокотемпературной плазмы: токамаков2, стеллараторов3, открытых ловушек (рис.7, Приложение 1). В настоящее время можно выделить два направления в практическом применении данных исследований: так называемый «чистый термоядерный реактор» и термоядерный источник нейтронов.

__________________

2 Токама́к (тороидальная камера с магнитными катушками) — тороидальная установка для магнитного удержания плазмы с целью достижения условий, необходимых для протекания управляемого термоядерного синтеза.

3 Стеллара́тор — тип реактора для осуществления управляемого термоядерного синтеза. Название происходит от лат. stella — звезда, что должно указывать на схожесть процессов, происходящих в стеллараторе и внутри звёзд.

В «чистом» термоядерном источнике энергии предполагается получение энергии из реакции синтеза дейтерия и трития и ее дальнейшая утилизация. Термоядерный источник нейтронов (ТИН) предполагается использовать для создания гибридного реактора, в котором ТИН окружен бланкетом, состоящем из атомов, делящихся под воздействием потока нейтронов. Это позволяет увеличить энергетическую эффективность термоядерного реактора. Второе важное применение ТИНа — дожигание отходов атомных реакторов. Концепция ТИН на базе токамака разрабатывается в НИЦ «Курчатовский института». Одновременно с развитием концепции ТИН на основе компактного токамака в Институте ядерной физики им. Г.М.Будкера СО РАН развивается концепция ТИН на основе открытой ловушки. В перспективе, открытая ловушка типа ГДЛ может использоваться для новых применений в области ядерной энергетики: для дожигания долгоживущих радиоактивных отходов, в качестве драйвера в подкритической энергетической установке, для наработки топлива для ядерных реакторов и даже чисто термоядерной энергетической установки.

Оба направления практического использования исследований в области высокотемпературной плазмы (термоядерный реактор и источник нейтронов) предполагают стационарную работу установки в течение длительного времени, измеряемого годами. Концепция стационарного токамака предполагает одновременное решение трех задач: создание стационарного магнитного поля, решение проблемы поддержания плазменного тока и осуществление непрерывной циркуляции DT-горючего.

Также термоядерные реакции происходят на звездах, благодаря этому они излучают свет. Стоит заметить, что там плазма удерживается гравитационным полем. И ещё следует упомянуть, чтобы атомы элемента соединились в другой, более сложный, им нужно преодолеть кулоновский барьер (частицы с одноименным зарядом отталкиваются друг от друга). Для этого в частности происходит нагревание до высоких температур, чтобы тепловое движение стало настолько большим, чтобы преодолеть кулоновские барьеры.

Глава 2. Практическая часть

2.1. Плазма в люминесцентной лампе

В привычной всем люминесцентной лампе тоже есть плазма. Принцип работы лампы следующий:

  • Через контакты лампы проходит электрический ток, который зажигает плазму внутри колбы с высоким давлением.
  • Люминофор, покрывающий лампу преобразует свет в белый.
  • При этом, чтобы плазма за счет высоких температур не прожгла колбу, она постоянно включается и выключается с помощью специальной схемы, при чём частота мерцания настолько велика, что человеческий глаз воспринимает это как единое целое.

Так как у нас для испытания используется маломощная катушка Теслы, то принцип работы почти тот же. Схемы, которая бы заставляла лампу мерцать нет, но есть переменное электромагнитное поле, за счет этого происходит тот же эффект, описанный в пункте 2.1. (рис. 8,9, Приложение 1).

2.2.Плазма в неоновой и ксеноновой лампах

Принцип работы ламп на основе инертных газов следующий:

  • В колбе находится инертный газ, под высоким давлением.
  • Через контакты, выведенные в колбу пропускают электрический ток. При этом происходит свечение в видимом нами спектре.
  • Важно, что питание таких ламп происходило переменным током, чтобы плазма не проплавила стекло колбы. Но в таких лампах нет эффекта мерцания из-за того, что газ не до конца успевает затухнуть, прежде чем ток снова поменяет направление. Таки образом схема, устраняющая неполадки не нужна.

В нашем же опыте будет получаться плазма так же за счет переменного электромагнитного поля (рис.10,11,12, Приложение 1).

2.3. Низкотемпературная плазма

Примером низкотемпературной плазмы является обычное пламя свечи, которое всегда содержит некоторое количество свободных электронов и ионов (рис.13, Приложение 1).

Возгорание фитиля свечи происходит в результате его нагревания от катушки Тесла (рис. 14, Приложение 1).

На рисунке 15 (Приложение 1) приведена схема строения пламени предварительно полученной смеси светильного газа с воздухом, а также приведены температуры отдельных его участков. Пламя состоит из двух областей внутренней восстановительной и внешней окислительной. Во внутренней протекают первичные реакции термической диссоциации и сгорания компонентов смеси, происходящие при недостатке окислителя с образованием СО2, С2 и Н2. Во внешней протекают реакции полного окисления этих соединений с образованием СО2 и Н2О. Внутренняя восстановительная область отделена от внешней окислительной реакционной зоной – внутренним конусом, в котором реально и протекают реакции полного окисления. Реакционная зона окрашена в зеленовато голубоватый цвет, вследствие излучения молекулярных полос радикала С2, кроме того в ней присутствуют молекулы N2, О2, СО. и другие. Внешняя область пламени содержит нагретые до высокой температуры продукты полного сгорания углеводородов, газы воздуха, радикалы и вследствие равновесности реакций также некоторые количества СО, Н, О. При постоянном составе горючей смеси пламя свечи имеет четко выраженную стабильную структуру. В результате получается устойчивая плазма.

Источник: urok.1sept.ru

Правила сайта (далее – Правила)

  1. Общие положения
    1. Настоящие правила определяют порядок и условия использования материалов, размещенных на сайте www.biblioatom.ru (далее именуется Сайт), а также правила использования материалов Сайтом и порядок взаимодействия с Администрацией Сайта.
    2. Любые материалы, размещенные на Сайте, являются объектами интеллектуальной собственности (объектами авторского права или смежных прав, а также прав на средства индивидуализации). Права Администрации Сайта на указанные материалы охраняются законодательством о правах на результаты интеллектуальной деятельности.
    3. Использование материалов, размещенных на Сайте, допускается только с письменного согласия Администрации Сайта или иного правообладателя, прямо указанного на конкретном материале, размещенном на Сайте, или в непосредственной близости от указанного материала.
    4. Права на использование и разрешение использования материалов, размещенных на Сайте, принадлежащих иным правообладателям, нежели Администрация Сайта, допускается с разрешения таких правообладателей или в соответствии с условиями, установленными такими правообладателями. Никакое из положений настоящих Правил не дает прав третьим лицам на использование материалов правообладателей, прямо указанных на конкретном материале, размещенном на Сайте, или в непосредственной близости от указанного материала.
    5. Настоящие Правила распространяют свое действие на следующих пользователей: информационные агентства, электронные и печатные средства массовой информации, любые физические и юридические лица, а также индивидуальные предприниматели (далее — «Пользователи»).
  2. Использование материалов. Виды использования
    1. Под использованием материалов Сайта понимается воспроизведение, распространение, публичный показ, сообщение в эфир, сообщение по кабелю, перевод, переработка, доведение до всеобщего сведения и иные способы использования, предусмотренные действующим законодательством Российской Федерации.
    2. Использование материалов Сайта без получения разрешения от Администрации Сайта не допустимо.
    3. Внесение каких-либо изменений и/или дополнений в материалы Сайта запрещено.
    4. Использование материалов Сайта осуществляется на основании договоров с Администрацией Сайта, заключенных в письменной форме, или на основании письменного разрешения, выданного Администрацией Сайта.
    5. Запрещается любое использование (бездоговорное/без разрешения) фото-, графических, видео-, аудио- и иных материалов, размещенных на Сайте, принадлежащих Администрации Сайта и иным правообладателям (третьим лицам).
    6. Стоимость использования каждого конкретного материала или выдача разрешения на его использование согласуется Пользователем и Администрацией Сайта в каждом конкретном случае.
    7. В случае необходимости использования материалов Сайта, права на которые принадлежат третьим лицам (иным правообладателям, нежели Администрация Сайта, о чем прямо указано на таких материалах либо в непосредственной близости от них), Пользователи обязаны обращаться к правообладателям таких материалов для получения разрешения на использование материалов.
  3. Обязанности Пользователей при использовании материалов Сайта
    1. 3.1. При использовании материалов Сайта в любых целях при наличии разрешения Администрации Сайта, ссылка на Сайт обязательна и осуществляется в следующем виде:
      1. в печатных изданиях или в иных формах на материальных носителях Пользователи обязаны в каждом случае использования материалов указать источник – электронная библиотека «История Росатома» (www.biblioatom.ru)
      2. в интернете или иных формах использования в электронном виде не на материальных носителях, Пользователи в каждом случае использования материалов обязаны разместить гиперссылку на Сайт — электронная библиотека «История Росатома» (www.biblioatom.ru), гиперссылка должна являться активной и прямой, при нажатии на которую Пользователь переходит на конкретную страницу Сайта, с которой заимствован материал.
      3. Ссылка на источник или гиперссылка, указанные в пп. 3.1.1 и 3.1.2. настоящих Правил, должны быть помещены Пользователем в начале используемого текстового материала, а также непосредственно под используемым аудио-, видео-, фотоматериалом, графическим материалом Администрации Сайта.
    2. Размеры шрифта ссылки на источник или гиперссылки не должны быть меньше размера шрифта текста, в котором используются материалы Сайта, либо размера шрифта текста Пользователя, сопровождающего аудио-, видео-, фотоматериалы и графические материалы Сайта, а также цвет ссылки должен быть идентичен цветам ссылок на Сайте и должен быть видимым Пользователю.
    3. Использование материалов с Сайта, полученных из вторичных источников (от иных правообладателей, нежели Администрация Сайта, о чем прямо указано на таких материалах либо в непосредственной близости от них), возможно только со ссылкой на эти источники и, в случае необходимости, установленной такими источниками (правообладателями), — с их разрешения.
    4. Не допускается переработка оригинального материала (произведения), взятого с Сайта, в том числе сокращение материала, иная его переработка, в том числе приводящая к искажению его смысла.
  4. Права на материалы третьих лиц, урегулирование претензий
    1. Материалы, права на которые принадлежат третьим лицам, размещенные на Сайте, размещены либо с разрешения правообладателя, полученного Администрацией Сайта, либо, в случае, если таковое использование прямо не запрещено правообладателем, в соответствии с Законодательством РФ в информационных целях с обязательным указанием имени автора, материал которого используется, и источника заимствования.
    2. В случае, если в обозначении авторства материалов в соответствии с п. 4.1. настоящих Правил содержится ошибка, или в случае использования материала с предполагаемым или реальным нарушением прав третьих лиц, или в иных спорных случаях использования объектов интеллектуальной собственности, размещенных на Сайте, в том числе в случае, когда права третьего лица тем или иным образом нарушаются с использованием Сайта, применяется следующая схема урегулирования претензий третьих лиц к Администрации Сайта:
      1. в адрес Администрации Сайта по электронной почте на адрес [email protected] направляется претензия, содержащая информацию об объекте интеллектуальной собственности, права на который принадлежат заявителю и который используется незаконно посредством Сайта или с нарушением правил использования, или иным образом права заявителя как обладателя исключительного права на объект интеллектуальной собственности, размещенный на Сайте, нарушены посредством Сайта, с приложением документов, подтверждающих правомочия заявителя, данные о правообладателе и копия доверенности на действия от лица правообладателя, если лицо, направляющее претензию, не является руководителем компании правообладателя или непосредственно физическим лицом — правообладателем. В претензии также указывается адрес страницы Сайта, которая содержит данные, нарушающие права, и излагается полное описание сути нарушения прав;
      2. Администрация Сайта обязуется рассмотреть надлежаще оформленную претензию в срок не менее 5 (пяти) рабочих дней с даты ее получения по электронной почте. Администрация Сайта обязуется уведомить заявителя о результатах рассмотрения его заявления (претензии) посредством отправки письма по электронной почте на адрес, указанный заявителем, а также направить ответ в письменном виде на адрес, указанный заявителем (в случае неуказания такового адреса отправки, обязательство по предоставлению письменного ответа на претензию с Администрации Сайта снимается). В том числе, Администрация Сайта вправе запросить дополнительные документы, свидетельства, данные, подтверждающие законность предъявляемой претензии. В случае признания претензии правомерной, Администрация Сайта примет все возможные меры, необходимые для прекращения нарушения прав заявителя и урегулирования претензии;
      3. Администрация Сайта в любом случае предпринимает все возможные меры к скорейшему удовлетворению обоснованных претензий третьих лиц и стремиться к максимально скорому урегулированию всех спорных вопросов.
  5. Прочие условия
    1. Администрация Сайта оставляет за собой право изменять настоящие Правила в одностороннем порядке в любое время без уведомления Пользователей. Любые изменения будут размещены на Сайте. Изменения вступают в силу с момента их опубликования на Сайте.
    2. По всем вопросам использования материалов Сайта Пользователи могут обращаться к Администрации Сайта по следующим координатам: [email protected]
    3. Во всем, что не урегулировано настоящими Правилами в отношении вопросов использования материалов на Сайте, стороны руководствуются положениями Законодательства РФ.

Источник: elib.biblioatom.ru

Получение плазмы

Получить высокотемпературную плазму можно двумя способами: посредством сильного нагрева газа, либо при помощи сильного сжатия вещества. При таких условиях электроны не способны удерживаться на орбитах в атомах вещества, в результате чего «сходят» с них. Таким образом возникает набор отдельных положительных частиц (протонов или ядер атомов — ионов) и электронов. Посредством дальнейшего увеличения давления или температуры из состояния плазмы также можно получить кварк-глюонную плазму.

Также существует газоразрядная плазма, которая возникает при газовом разряде. При прохождении электрического тока через газ, первый ионизирует газ, ионизированные частицы которого являются переносчиками тока. Так в лабораторных условиях получают плазму, степень ионизации которой можно контролировать при помощи изменения параметров тока. Однако, в отличие от высокотемпературной плазмы, газоразрядная нагревается за счет тока, и потому быстро охлаждается при взаимодействии с незаряженными частицами окружающего газа.

Свойства и параметры плазмы

В отличие от газа вещество в состоянии плазмы обладает очень высокой электрической проводимостью. И хотя суммарный электрический заряд плазмы обычно равен нулю, она значительно подвержена влиянию магнитного поля, которое способно вызывать течение струй такого вещества и разделять его на слои, как это наблюдается на Солнце.

Другое свойство, которое отличает плазму от газа – коллективное взаимодействие. Если частицы газа обычно сталкиваются по двое, изредка лишь наблюдается столкновение трех частиц, то частицы плазмы, в силу наличия электромагнитных зарядов, взаимодействуют одновременно с несколькими частицами.

В зависимости от своих параметров плазму разделяют по следующим классам:

  • По температуре: низкотемпературная – менее миллиона кельвин, и высокотемпературная – миллион кельвин и более. Одна из причин существования подобного разделения заключается в том, что лишь высокотемпературная плазма способна участвовать в термоядерном синтезе.
  • Равновесная и неравновесная. Вещество в состоянии плазмы, температура электронов которого значительно превышает температуру ионов, называется неравновесной. В случае же когда температура электронов и ионов одинаковая говорят о равновесной плазме.
  • По степени ионизации: высокоионизационная и плазма с низкой степенью ионизации. Дело в том, что даже ионизированный газ, 1% частиц которого ионизированы, проявляет некоторые свойства плазмы. Однако, обычно плазмой называют полностью ионизированный газ (100%). Примером вещества в таком состоянии является солнечное вещество. Степень ионизации напрямую зависит от температуры.

Применение

Наибольшее применение плазма нашла в светотехнике: в газоразрядных лампах, экранах и различных газоразрядных приборах, вроде стабилизатора напряжения или генератора сверхвысокочастотного (микроволнового) излучения. Возвращаясь к освещению – все газоразрядные лампы основаны на протекании тока через газ, что вызывает ионизацию последнего. Популярный в технике плазменный экран представляет собой набор газоразрядных камер, заполненных сильно ионизированным газом. Электрический разряд, возникающий в этом газе порождает ультрафиолетовое излучение, которое поглощается люминифором и далее вызывает его свечение в видимом диапазоне.

Вторая область применения плазмы – космонавтика, а конкретнее – плазменные двигатели. Такие двигатели работают на основе газа, обычно ксенона, который сильно ионизируется в газоразрядной камере. В результате этого процесса тяжелые ионы ксенона, которые к тому же ускоряются магнитным полем, образуют мощный поток, создающий тягу двигателя.

Наибольшее же надежды возлагаются на плазму – как на «топливо» для термоядерного реактора. Желая повторить процессы синтеза атомных ядер, протекающие на Солнце, ученые работают над получением энергии синтеза из плазмы. Внутри такого реактора сильно разогретое вещество (дейтерий, тритий или даже гелий-3) находится в состоянии плазмы, и в силу своих электромагнитных свойств, удерживается за счет магнитного поля. Формирование более тяжелых элементов из исходной плазмы происходит с выделением энергии.

Также плазменные ускорители используются в экспериментах по физике высоких энергий.

Физические свойства плазмы

Плазма в природе

Состояние плазмы – наиболее распространенная форма вещества, на которую приходиться около 99% массы всей Вселенной. Вещество любой звезды – это сгусток высокотемпературной плазмы. Помимо звезд, существует и межзвездная низкотемпературная плазма, которая заполняет космическое пространство.

Ярчайшим примером является ионосфера Земли, которая представляет собой смесь нейтральных газов (кислорода и азота), а также сильно ионизированного газа. Ионосфера образуется как следствие облучения газа солнечным излучением. Взаимодействие же космического излучения с ионосферой приводит к полярному сиянию.

На Земле плазму можно наблюдать в момент удара молнии. Электрический искровой заряд, протекающий в атмосфере, сильно ионизирует газ на своем пути, образуя тем самым плазму. Следует отметить, что «полноценная» плазма, как набор отдельных заряженных частиц, образуется при температурах более 8 000 градусов Цельсия. По этой причине утверждение, что огонь (температура которого не превышает 4 000 градусов) – это плазма – лишь популярное заблуждение.

Физические свойства плазмы

Источник: SpaceGid.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.