Эксцентриситет равен


Астрономия > Эксцентриситет

Эксцентриситет

Эксцентриситет – числовая степень отклонения от окружности. Узнайте, как выглядит эксцентриситет эллипса на схеме, уравнение, чему равен по формуле.

Если мы говорим о космосе, то эксцентриситет всегда относится к орбите или небесному телу. Он зависит от математического описания или же общей характеристики орбиты конкретного космического объекта, учитывая гравитацию Ньютона. Подобные орбиты приближаются к эллиптическим, а вот ключевой параметр, описывающий эллипс, именуют эксцентриситетом.

Если проще, то эксцентриситет круговой орбиты равен нулю, а радиальной или параболической – 1. Если показатель приравнивается к единице или превышает ее, то «орбиту» можно считать немного неправильной.


В системах, где присутствует больше одной планеты, орбитальные пути приближаются к форме эллипса, потому что каждый объект влияет на другой гравитационной силой и это определяет их совместные позиции (особенно примечательно для двоичных пульсаров).

Однако орбиты практически всегда достигают эллиптической формы, причем в вычислениях эксцентриситет эллипса все равно остается ключевым параметром. Почему? Просто это невероятно удобно, да и отклонение от эллипса объясняется малым возмущением.

Уравнение эксцентриситета с учетом гравитации Ньютона в системе с двумя компонентами очень проста. Если вы располагаете максимальной удаленностью тела от центра массы – ra (афелий для солнечных планет) и минимальной – rp (перигелий), то с расчетом не возникнет проблем:

E = (ra – rp)/( ra+ rp).

Источник: v-kosmose.com

эксцентриситет

Эксцентриситет Эксцентрисите́т — числовая характеристика конического сечения, показывающая степень его отклонения от окружности. Обычно обозначается formula_1 или formula_2.

Википедия

эксцентриситет

( фр. excentricite, нем. exzentrizitat лат. ex из,вне + centrum центр)
1) геом. постоянная положительная величина, характеризующая эллипс я гиперболу и равная отношению расстояния между фокусами данного конического сечения (линейный э.) к расстоянию между вершинами;
2) тех. расстояние между осью вращения эксцентрика1 и осью, проходящей через его центр.

Новый словарь иностранных слов

эксцентриситет

[фр. excentricite, нем. exzentrizitat

1. геом. постоянная положительная величина, характеризующая эллипс я гиперболу и равная отношению расстояния между фокусами данного конического сечения (линейный э.) к расстоянию между вершинами;

2. тех. расстояние между осью вращения эксцентрика1 и осью, проходящей через его центр.

Словарь иностранных выражений

эксцентриситет

конического сечения , число, равное отношению расстояния от точки конического сечения до фокуса к расстоянию от этой точки до соответствующей директрисы. — в технике , см. Эксцентрик.

Современный толковый словарь, БСЭ

эксцентриситет

конического сечения, число, равное отношению расстояния от точки конического сечения до фокуса к расстоянию от этой точки до директрисы . Э. характеризует форму конического сечения. Так, два конических сечения, имеющих одинаковые Э., подобны. У эллипса Э. меньше единицы, у гиперболы больше единицы, у параболы равен единице. Для эллипса и гиперболы Э. можно определить как отношение расстояний между фокусами к большей или действительной оси.

Большая советская энциклопедия, БСЭ

эксцентриситет

эксцентриситет, -а

Полный орфографический словарь русского языка

эксцентриситет

числовая характеристика конического сечения, показывающая степень его отклонения от окружности

Викисловарь

Источник: xn--b1advjcbct.xn--p1ai

Определение эксцентриситета

Первый закон Кеплера гласит о том, что орбиты любой планеты Солнечной системы представляет собой эллипс. Эксцентриситет определяет, насколько орбита отлична от окружности. Он равен отношению расстояния от центра эллипса (c) до его фокуса большой полуоси (a).

Эксцентриситет орбит

У окружности фокус совпадает с центром, т.е. c = 0. Также любого эллипса c<a. Таким образом, при ε = 0 имеет форму окружности, при 0< ε< 1 – эллипса. При ε = 1 орбита является параболой, при ε > 1 – гиперболой. То есть, объект, орбита которого имеет эксцентриситет, равный или больший единицы, уже не обращается вокруг другого объекта. Примером тому являются некоторые кометы, которые, однажды, посетив Солнце, больше никогда к нему не вернуться. При эксцентриситете, равном бесконечности орбита представляет собой прямую линию.


Эксцентриситеты объектов Солнечной Системы

Орбита Седны. В центре координат — Солнечная система, окруженная роем планет и известных объектов пояса Койпера.

В нашей системе орбиты планет ничем не примечательны. Самой «круговой» орбитой обладает Венера. Её афелий всего-лишь на 1,4 млн. км.больше перигелия, а эксцентриситет равен 0,007 (у Земли – 0,016). По довольно вытянутой орбите движется Плутон. Обладая ε = 0,244, он временами приближается к Солнцу даже ближе чем Нептун. Однако, поскольку Плутон не так давно попал в разряд карликовых планет, самую вытянутую орбит среди планет теперь имеет Меркурий, обладающий ε = 0,204.


Среди карликовых планет наиболее примечательна Седна. Обладая ε = 0,86, она делает полный оборот вокруг Солнца почти за 12 тысяч лет, удаляясь от неё в афелии более чем на тысячу астрономический единиц. Однако даже это несравнимо с параметрами орбит долгопериодических комет. Периоды их обращения порой исчисляются миллионами лет, а многих из них и вовсе никогда не вернутся к Солнцу – т.е. обладают эксцентриситетом, большем 1. Облако Оорта может содержать триллионы комет, удалённых от Солнца на 50-100 тысяч астрономических единиц (0,5 – 1 световых лет). На таких расстояниях на нихмогут влиять другие звёзды и галактические приливные силы. Поэтому такие кометы могут обладать очень непредсказуемыми и непостоянными орбитами с самими различными эксцентриситетами.

Наконец, самым интересным является то, что даже Солнце обладает совсем ни круговой орбитой, как это может показаться на первый взгляд. Как известно, Солнце движется вокруг центра Галактики, проделывая свой путь за 223 млн. лет. Причём, из-за бесчисленного взаимодействия со звездами она получила довольно ощутимый эксцентриситет, равный 0,36.

Эксцентриситеты в других системах

Сравнение орбиты HD 80606 b с внутренними планетами Солнечной системы

Открытие других солнечных систем неизбежно влечёт открытие планет с очень причудливыми параметрами орбит. Примером тому служат эксцентричные юпитеры, газовые гиганты с довольно высокими эксцентриситетами. В системах, имеющие такие планеты невозможно существование планет, подобных Земле. Они неизбежно упадут на гиганты или же статут их спутниками.
Среди обнаруженных на данный момент эксцентричных юпитеров самым большим эксцентриситетом обладает HD 80606b. Он движется вокруг звезды чуть меньшей, чем наше Солнце. Эта планета в перигелии приближается к звезде в 10 раз ближе, чем Меркурий к Солнцу, тогда как в афелии она удаляется от неё почти на астрономическую единицу. Таким образом, она имеет эксцентриситет 0,933.

Стоит отметить, что хоть данная планета и пересекает зону жизни, ни о каких видах привычной биосферы не может идти и речи. Её орбита создаёт на планете экстремальный климат.За короткий период сближения со звездой температура её атмосферы за считанные часы меняется на сотни градусов, в результате чего скорость ветров достигают многих километров в секунду. Подобными условиями обладают прочие планеты с высокими коэффициентами. Тот же Плутон, к примеру, при приближение к Солнцу приобретает обширную атмосферу, которая оседает в виде снега при удалении. В тоже время все Землеподобные планеты обладают орбитами, близкими к круговым. Поэтому эксцентриситет можно назвать одним из параметров, определяющим возможность наличия органической жизни на планете.


Полная версия: http://spacegid.com/ekstsentrisitet-orbityi.html

Источник: zen.yandex.ru

Астрономия > Эксцентриситет

Эксцентриситет

Эксцентриситет – числовая степень отклонения от окружности. Узнайте, как выглядит эксцентриситет эллипса на схеме, уравнение, чему равен по формуле.

Если мы говорим о космосе, то эксцентриситет всегда относится к орбите или небесному телу. Он зависит от математического описания или же общей характеристики орбиты конкретного космического объекта, учитывая гравитацию Ньютона. Подобные орбиты приближаются к эллиптическим, а вот ключевой параметр, описывающий эллипс, именуют эксцентриситетом.

Если проще, то эксцентриситет круговой орбиты равен нулю, а радиальной или параболической – 1. Если показатель приравнивается к единице или превышает ее, то «орбиту» можно считать немного неправильной.

В системах, где присутствует больше одной планеты, орбитальные пути приближаются к форме эллипса, потому что каждый объект влияет на другой гравитационной силой и это определяет их совместные позиции (особенно примечательно для двоичных пульсаров).


Однако орбиты практически всегда достигают эллиптической формы, причем в вычислениях эксцентриситет эллипса все равно остается ключевым параметром. Почему? Просто это невероятно удобно, да и отклонение от эллипса объясняется малым возмущением.

Уравнение эксцентриситета с учетом гравитации Ньютона в системе с двумя компонентами очень проста. Если вы располагаете максимальной удаленностью тела от центра массы – ra (афелий для солнечных планет) и минимальной – rp (перигелий), то с расчетом не возникнет проблем:

E = (ra – rp)/( ra+ rp).

Источник: v-kosmose.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.