Единицы измерения космических расстояний


Если сравнивать просторы нашей планеты с масштабами галактики, то они оказываются ничтожно малы, по этому привычные нам единицы измерения астрономы не используют. Основными мера длины являются световой год и парсек.

rastoyanie-kosmos

Парсек — распространённая в астрономии внесистемная единица измерения расстояний. Название образовано из сокращений слов «параллакс» и «секунда» — парсек равен расстоянию до объекта, годичный тригонометрический параллакс которого равен одной угловой секунде. Согласно эквивалентному определению, парсек — это расстояние, с которого отрезок длиной в одну астрономическую единицу (практически равный среднему радиусу земной орбиты), перпендикулярный лучу зрения, виден под углом в одну угловую секунду.

2016-11-07_17-10-55


Так же часто используют Световой год. Это внесистемная единица длины, равная расстоянию, проходимому светом в вакууме за один земной год (равный по определению 365,25 стандартных суток). Если переводить в метрическую систему, до один световой год равен 9 460 730 472 580 800 метрам. Один световой год равен 0,306 601 парсека.

Астрономическая единица (обозначения международное AU, в России А.Е.) — является наименьшей по значение, приблизительно равная среднему расстоянию от Земли до Солнца. Свет проходит это расстояние примерно за 500 секунд (8 минут 20 секунд). Применяется в основном для измерения расстояний между объектами Солнечной системы, внесолнечных систем, а также между компонентами двойных звёзд.

rastoyanie-kosmos3

Источник: n4a.ru

Астрономическая единица

Наименьшей из таких единиц является астрономическая единица (а.е.). Исторически так сложилось, что одна астрономическая единица равняется радиусу орбиты Земли вокруг Солнца, иначе – среднее расстояние от поверхности нашей планеты до Солнца. Данный метод измерения был наиболее подходящим для изучения структуры Солнечной системы в XVII веке. Ее точное значение 149 597 870 700 метра. Сегодня астрономическая единица используется в расчетах с относительно малыми длинами. То есть при исследовании расстояний в пределах Солнечной системы или других планетных систем.

Световой год


Несколько большей единицей измерения длины в астрономии является световой год. Он равен расстоянию, которое проходит свет в вакууме за один земной, юлианский год. Подразумевается также нулевое влияние гравитационных сил на его траекторию. Один световой год составляет около 9 460 730 472 580 км или 63 241 а.е. Данная единица измерения длины используется лишь в научно-популярной литературе по той причине, что световой год позволяет читателю получить примерное представление о расстояниях в галактическом масштабе. Однако из-за своей неточности и неудобности световой год практически не используется в научных работах.

Материалы по теме

Световой год Расстояния в космосе

Парсек

Наиболее практичной и удобной для астрономических вычислений является такая единица измерения расстояния как парсек. Чтобы понять ее физический смысл, следует рассмотреть такое явление как параллакс.
о суть состоит в том, что при движении наблюдателя относительно двух отдаленных друг от друга тел, видимое расстояние между этими телами также меняется. В случае со звездами происходит следующее. При движении Земли по своей орбите вокруг Солнца визуальное положение близких к нам звезд несколько меняется, в то время как дальние звезды, выступающие в роли фона, остаются на тех же местах. Изменение положения звезды при смещении Земли на один радиус ее орбиты, называется годичный параллакс, который измеряется в угловых секундах.

Тогда один парсек равен расстоянию до звезды, годичный параллакс которой равен одной угловой секунде – единице измерения угла в астрономии. Отсюда и название «парсек», совмещенное из двух слов: «параллакс» и «секунда». Точное значение парсека равняется 3,0856776·1016 метра или 3,2616 светового года. 1 парсек равен примерно 206 264,8 а. е.

Метод лазерной локации и радиолокации

Эти два современных метода служат для определения точного расстояния до объекта в пределах Солнечной системы. Он производится следующим образом. При помощи мощного радиопередатчика посылается направленный радиосигнал в сторону предмета наблюдения. После чего тело отбивает полученный сигнал и возвращает на Землю. Время, потраченное сигналом на преодоление пути, определяет расстояние до объекта. Точность радиолокации – всего несколько километров. В случае с лазерной локацией, вместо радиосигнала лазером посылается световой луч, который позволяет аналогичными расчетами определить расстояние до объекта. Точность лазерной локации достигается вплоть до долей сантиметра.


Телескоп ТГ-1 лазерного локатора ЛЭ-1, полигон Сары-Шаган

Телескоп ТГ-1 лазерного локатора ЛЭ-1, полигон Сары-Шаган

Метод тригонометрического параллакса

Наиболее простым методом измерения расстояния до удаленных космических объектов является метод тригонометрического параллакса. Он основывается на школьной геометрии и состоит в следующем. Проведем отрезок (базис) между двумя точками на земной поверхности. Выберем на небосводе объект, расстояние до которого мы намерены измерить, и определим его как вершину получившегося треугольника. Далее измеряем углы между базисом и прямыми, проведенными от выбранных точек до тела на небосводе. А зная сторону и два прилежащих к ней угла треугольника, можно найти и все другие его элементы.

Тригонометрический параллакс


Тригонометрический параллакс

Величина выбранного базиса определяет точность измерения. Ведь если звезда расположена на очень большом расстоянии от нас, то измеряемые углы будут почти перпендикулярны базису и погрешность в их измерении может значительно повлиять на точность посчитанного расстояния до объекта. Поэтому следует выбирать в качестве базиса максимально отдаленные точки на Земле. Изначально в роли базиса выступал радиус Земли. То есть наблюдатели располагались в разных точках земного шара и измеряли упомянутые углы, а угол, расположенный напротив базиса назывался горизонтальным параллаксом. Однако позже в качестве базиса стали брать большее расстояние – средний радиус орбиты Земли (астрономическая единица), что позволило измерять расстояние до более отдаленных объектов. В таком случае, угол, лежащий напротив базиса, называется годичным параллаксом.

Данный метод не очень практичен для исследований с Земли по той причине, что из-за помех земной атмосферы, определить годичный параллакс объектов, расположенных более чем на расстоянии в 100 парсек – не удается.

Однако в 1989 год Европейским космическим агентством был запущен космический телескоп Hipparcos, который позволил определить звезды на расстоянии до 1000 парсек. В результате полученных данных ученые смогли составить трехмерную карту распределения этих звезд вокруг Солнца. В 2013 году ЕКА запустило следующий спутник – Gaia, точность измерения которого в 100 раз лучше, что позволяет наблюдать все звезды Млечного Пути. Если бы человеческие глаза обладали точностью телескопа Gaia, то мы имели бы возможность видеть диаметр человеческого волоса с расстояния 2 000 км.

Метод стандартных свечей


Для определения расстояний до звезд в других галактиках и расстояний до самих этих галактик используется метод стандартных свечей. Как известно, чем дальше от наблюдателя расположен источник света, тем более тусклым он кажется наблюдателю. Т.е. освещенность лампочки на расстоянии 2 м будет в 4 раза меньше, чем на расстоянии 1 метр.Это и есть принцип, по которому измеряется расстояние до объектов методом стандартных свечей. Таким образом, проводя аналогию между лампочкой и звездой, можно сравнивать расстояния до источников света с известными мощностями.

Масштабы разведанной существующими методами Вселенной впечатляют.

Масштабы разведанной существующими методами Вселенной впечатляют. Смотреть инфографику в полном размере.

В качестве стандартных свечей в астрономии выступают объекты, светимость (аналог мощности источника) которых известна.
о может быть любого рода звезда. Для определения ее светимости астрономы измеряют температуру поверхности, опираясь на частоту ее электромагнитного излучения. После чего, зная температуру, позволяющую определить спектральный класс звезды, выясняют ее светимость при помощи диаграммы Герцшпрунга-Рассела. Затем, имея значения светимости и измерив яркость (видимую величину) звезды, можно посчитать расстояние до нее. Такая стандартная свеча позволяет получить общее представление о расстоянии до галактики, в которой она находится.

Однако данный метод достаточно трудоемкий и не отличается высокой точностью. Поэтому астрономам удобнее использовать в качестве стандартных свечей космические тела с уникальными особенностями, для которых светимость известна изначально.

Уникальные стандартные свечи

Цефеида PTC Puppis

Цефеида PTC Puppis

Цефеиды – наиболее используемые стандартные свечи, представляющие собой переменные пульсирующие звезды. Изучив физические особенности этих объектов, астрономы узнали, что цефеиды обладают дополнительной характеристикой – периодом пульсации, который легко можно измерить и который соответствует определенной светимости.


В результате наблюдений ученым удается измерить яркость и период пульсации таких переменных звезд, а значит и светимость, что позволяет высчитать расстояние до них. Нахождение цефеиды в иной галактике дает возможность относительно точно и просто определить расстояние до самой галактики. Поэтому данный тип звезд часто именуется «маяками Вселенной».

Несмотря на то, что метод цефеид является наиболее точным на расстояниях до 10 000 000 пк, его погрешность может достигать 30%. Для повышения точности потребуется как можно больше цефеид в одной галактике, но и в таком случае погрешность сводится не менее чем к 10%. Причиной тому служит неточность зависимости период-светимость.

Цефеиды — "маяки Вселенной".

Цефеиды — «маяки Вселенной».

Кроме цефеид в качестве стандартных свечей могут использоваться и другие переменные звезды с известными зависимостями период-светимость,  а также для наибольших расстояний — сверхновые с известной светимостью. Близким по точности к методу цефеид является метод, с красными гигантами в роли стандартных свеч. Как выяснилось, ярчайшие красные гиганты имеют абсолютную звездную величину в достаточно узком диапазоне, которая позволяет посчитать светимость.

Расстояния в цифрах

Расстояния в Солнечной системе:

  • 1 а.е. от Земли до Солнца = 500 св. секунд или 8,3 св. минуты
  • 30 а. е. от Солнца до Нептуна = 4,15 световых часа
  • 132 а.е. от Солнца – таково расстояние до космического аппарата «Вояджер-1», было отмечено 28 июля 2015 года. Данный объект является самым отдаленным из тех, что были сконструированы человеком.

Расстояния в Млечном Пути и за его пределами:

  • 1,3 парсека (268144 а.е. или 4,24 св. года) от Солнца до Проксима Центавра – ближайшей к нам звезды
  • 8 000 парсек (26 тыс. св. лет) – расстояние от Солнца до центра Млечного Пути
  • 30 000 парсек (97 тыс. св. лет) – примерный диаметр Млечного Пути
  • 770 000 парсек (2,5 млн. св. лет) – расстояние до ближайшей большой галактики – туманность Андромеды
  • 300 000 000 пк — масштабы в которых Вселенная практически однородна
  • 4 000 000 000 пк (4 гигапарсек) – край наблюдаемой Вселенной. Это расстояние прошел свет, регистрируемый на Земле. Сегодня объекты, излучившие его, с учетом расширения Вселенной, расположены на расстоянии 14 гигапарсек (45,6 млрд. световых лет).

Источник

Поделиться ссылкой:

Источник: hikosmos.ru

Астрономическая единица


Расстояние между Землей и Солнцем составляет около 150 миллионов километров. Это огромное число, поэтому астрономы используют астрономическую единицу для описания этого расстояния. Одной астрономической единицей, или «au», является расстояние между Землей и Солнцем. Она используется для сравнения расстояний других тел в Солнечной системе, таких как Солнце, планеты, кометы и астероиды.

Световой год

Как далеко нашей Солнечной системе до ближайшей звезды Проксима Центавра?

Проксима Центавра находится на расстоянии около 38 000 000 000 000 км. Это так далеко, что если космический корабль полетит к этой звезде, то может понадобиться около 75 000 лет, чтобы добраться туда.

Использование астрономической единицы для описания расстояний между звездами (и объектами за пределами нашей Солнечной системы) не сильно уменьшает нули в цифрах. До ближайшей Звезды (а точнее, тройной звездной системы) Проксима Центавра это расстояние примерно 265 000 au. Нужен еще один блок! Таким образом, для измерения расстояния (по крайней мере до ближайших к нам звезд) можно использовать световые годы.

Фото: spacegid.com

Свет — самое быстрое явление, которое мы знаем. В космосе свет перемещается со скоростью почти 300 000 км/с. Световой год — это расстояние, которое свет может пройти за один год, что составляет 9 461 000 000 000 километров! Чтобы пройти это расстояние до следующей ближайшей звезды к Солнечной системе, свету требуется около 4,2 года, поэтому астрономы говорят, что Проксима Центавра находится на расстоянии 4,2 световых года.

Это просто ближайшая звезда. Ночное небо заполнено звездами нашей Галактики, Млечный Путь. Ближайшая большая галактика к Млечному Пути находится на расстоянии 2,5 миллионов световых лет. Это самая ближайшая галактика. Многие галактики, также заполненные звездами, находятся в тысячи раз дальше. Пространство поистине огромно.

Источник: zen.yandex.ua

Причины разных дистанций между объектами

Основная характеристика скоплений всех звезд приблизительно идентична. Единственное отличие – это разная дистанция между ними. Геометрический метод помогает определить длину от нас до ближайшего скопления звезд. А сравнив данные по другим скоплениям, уже измеренным расстояниям, можно узнать дистанцию между ними.

Яркость спиралевидного пространства непосредственно влияет на ее вращение. Галактика видна нам под определенным углом, соответственно, одна ее половина вращается, приближаясь к нам, а другая отдаляясь. А из-за расширения её спектральной линии снижается видимость и яркость, поэтому сложнее измерить расстояние.

Вселенная и ее космические размеры

Метод так званого параллакса

Неточности космических расстояний создает проблему излучения жестких и коротких импульсов разного направления и поступавших на Землю каждые сутки. Поэтому еще в 90-х годах 20 века разработан спутник Гиппарха, который за годы работы установил длину пути к 120 000 звезд SPL. Он работает благодаря элементарному методу триангуляции, который широко используется в геодезии. Астрономия называет это явление параллактическим сдвижением или параллаксом. То-есть, выбирается база, отрезок с определенной длиной, от него измеряется расстояние ко всем углам неизвестной точки, в последствии, она двигается на фоне уже известных объектов в космосе.

Как измерить расстояние в космосе?

История методологии

Чтобы измерять длину пути к звездам, астрономам необходимо взять доступную основу с таким же диаметром как орбита Земли. Первым к этому методу обратился Тихо Браге, который поставил под сомнение версию Коперника о круговороте планеты Земля. Но одна минута дуги в 16 веке была абсолютно мизерной для измерения параллактического смещения. Потому он и увенчал теорию Коперника неверной. Спустя 100 лет Джеймс Брэдли наблюдал за гаммой звезд Дракона и пришел к выводу, что они колеблются вокруг своего положение до 20 секунд в год. Скорость летящего от звезды света равна скорости передвижения Земли по своей орбите. Но и тем не менее, он забросил эти исследования, поскольку не смог найти ничего общего с параллаксом. Да и не нашел бы. И только в средине 19 века в трех разных точках всего мира вновь возобновилось изучение и разработка измерений огромных дистанций в космосе.

Единицы измерения расстояния

Парсек – стала официальной специальной единицей измерения расстояний в космосе, благодаря параллаксу у профессиональных астрономов. Поэтому единица расстояний до неизвестной звезды разделяется на параллакс в секунду. Например, дина пути к альфа Центавру равна 1,3 парсека (1/0,76).

Единица измерения определяет расстояние, под каким углом виден радиус орбиты за 1 секунду.

3 светового года = 1 пк. Известны еще килопарсек (= 1000 пк), мегапарсек (= 1 млн парсекв). Но стоит заметить, что в основном она применяется для установки дистанций между объектами, которые располагаются вне галактики, поскольку они дают наиболее верные результаты.

Другая единица измерения – световой год. Это расстояние динамического передвижения света за год со скоростью 300 тысяч км/сек. Например проксима Кентавра, ближняя звезда к Солнцу, находится от Земли в 4 световых годах, а Андромедова галактика – около 2 млн световых лет.

Процесс измерения

Ближайшая звезда к Земле наблюдается космическими спутниками в разных местах и смещается на тле более дальних звезд. Это и есть основная и наиболее современная методология вычисления дистанций объектов в космосе.

Выбрав две точки, максимально отдаленных друг от друга, совершается наблюдение и измерение. Земля находится в 155 млн км от Солнца, то наблюдения с разрывом в пол года будут происходить из 2-х мест в галактике, на дистанции в 300 млн км, равной двум радиусам орбиты нашей планеты. Высчитав угол сдвижения звезды с места, рассчитывается расстояние к ней с помощью тригонометрии.

Как результат, параллаксы звезды – это прямоугольные треугольники, а их гипотенузы равны дистанции Солнца к звезде, а катет – половина оси орбиты Земли.

На самом деле, эти цифирные выводы не так элементарны, как методы. Углы, которые поддаются измерениям, очень мелкие из-за огромного их расстояния к звездам. Параллакс одного года позволяет мерять расстояние не больше, чем сотню световых лет от планеты.

Естественно, каждая ступень измерений расстояния любой точки в космосе от Земли богата на погрешности. Но в общем, масштаб галактики в наше время измерен и изучен довольно-таки точно и перепроверен ни одним методом. Поэтому можно уже говорить о дальнейших измерениях дистанций к другим галактикам.

Источник: www.13min.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.