Для чего нужен коллайдер андронный


Основная причина и цель создания Большого андронного коллайдера

Ею является поиск путей объединения двух фундаментальных теорий – ОТО (о гравитационном взаимодействии) и СМ (стандартной модели, объединяющей три фундаментальных физических взаимодействия – электромагнитного, сильного и слабого). Нахождению решения до создания БАКа препятствовали трудности при создании теории квантовой гравитации.

Построение этой гипотезы включает в себя соединение двух физических теорий – квантовой механики и общей теории относительности.

Для этого были использованы сразу несколько популярных и нужных в современной физике подходов – струнная теория, теория бран, теория супергравитации, а также теория квантовой гравитации. До построения колайдера главной проблемой проведения необходимых экспериментов являлось отсутствие энергии, которую нельзя достичь на других современных ускорителях заряженных частиц.

Женевский БАК дал ученым возможность проведения ранее неосуществимых экспериментов. Считается, что уже в скором будущем при помощи аппарата будут подтверждены или опровергнуты многие физические теории. Одной из самых проблемных является суперсимметрия или теория струн, которая долгое время разделяла физическое сообщество на два лагеря – «струнщиков» и их соперников.

Другие фундаментальные эксперименты, проводимые в рамках работы БАК


Интересны и изыскания ученых в области изучения топ-кварков, являющихся самыми тяжелыми кварками и наиболее тяжелыми (173,1 ± 1,3 ГэВ/c²) из всех известных в настоящее время элементарных частиц.

Из-за этого свойства и до создания БАКа, ученые могли наблюдать кварки только на ускорителе «Тэватрон», так как прочие устройства просто не обладали достаточной мощностью и энергией. В свою очередь, теория кварков представляет собой важный элемент нашумевшей гипотезы о бозоне Хиггса.

Все научные изыскания по созданию и изучению свойств кварков ученые производят в топ-кварк-антикварковой паровой в БАКе.

Важной целью женевского проекта также является процесс изучения механизма электрослабой симметрии, которая также связана с экспериментальным доказательством существования бозона Хиггса. Если обозначить проблематику еще точнее, то предметом изучения является не столько сам бозон, сколько предсказанный Питером Хиггсом механизм нарушения симметрии электрослабого взаимодействия.

В рамках БАКа также проводятся эксперименты по поиску суперсимметрии – причем желаемым результатом станет и доказательство теории о том, что любая элементарная частица всегда сопровождается более тяжелым партнером, и ее опровержение.

Источник: www.kakprosto.ru

Что такое Большой адронный коллайдер?


В конструкции Большого адронного коллайдера, или БАК, нет ничего мистического. Это всего лишь ускоритель заряженных элементарных частиц, который необходим для разгона тяжёлых частиц и изучения продуктов, образующихся при их столкновении с другими частицами.

Во всём мире существует больше десятка аналогичных установок, в их числе – российские ускорители в подмосковной Дубне и в Новосибирске. БАК был впервые запущен в 2008 году, но из-за случившейся вскоре аварии долгое время работал на невысокой энергетической мощности, и лишь с 2015 года стала возможной эксплуатация установки на расчётных мощностях.

Как и практически все подобные установки, БАК представляет собой тоннель, проложенный в виде кольца. Он находится на глубине примерно 100 метров на границе между Францией и Швейцарией. Строго говоря, в систему БАК входит две установки, одна меньшего, другая большего диаметра. Длина большого тоннеля превосходит размеры всех прочих существующих сегодня ускорителей и составляет 25,5 километров, из-за чего коллайдер получил название Большого.

Для чего построен коллайдер?


Современным физикам удалось разработать теоретическую модель Вселенной, объединяющую три фундаментальных взаимодействия из четырёх существующих и названную Стандартной моделью (СМ). Однако она пока не может считаться всеобъемлющей теорией строения мира, поскольку практически неисследованной остаётся область, названная учёными теорией квантовой гравитации и описывающая гравитационное взаимодействие. Ведущую роль в нём, согласно теории, должен играть механизм образования массы частиц, названный бозоном Хиггса.
Что такое Большой адронный коллайдер и для чего он нужен?
Учёные всего мира надеются, что исследования, проводимые на БАК, позволят изучить свойства бозона Хиггса экспериментальным путём. Кроме того, немалый интерес представляет изучение кварков – так называются элементарные частицы, образующие адроны (из-за них коллайдер назван адронным).

Как функционирует БАК?

Как уже сказано, БАК представляет собой круглый тоннель, состоящий из основного и вспомогательного колец. Стенки тоннеля сложены из множества мощнейших электромагнитов, которые генерируют поле, ускоряющее микрочастицы. Начальный разгон происходит во вспомогательном тоннеле, но необходимую скорость частицы набирают в основном кольце, после чего несущиеся навстречу частицы сталкиваются, а результат их столкновения фиксируют высокочувствительные приборы.

В результате многочисленных экспериментов в июле 2012 года руководство ЦЕРН (Европейского совета ядерных исследований) объявило о том, что эксперименты позволили обнаружить бозон Хиггса. В настоящее время продолжается изучение этого явления, так как многие его свойства отличаются от предсказанных в теории.


Для чего людям нужен БАК?

Затраты на строительство БАК составили, по разным сведениям, свыше 6 млрд долларов США. Сумма становится намного более внушительной, если вспомнить ежегодные расходы на эксплуатацию установки. Для чего нужно нести столь существенные расходы, какую пользу принесёт коллайдер обычным людям?

Исследования, запланированные и уже происходящие на БАК, в перспективе могут открыть людям доступ к дешёвой энергии, которую можно будет получать буквально из воздуха. Это будет, возможно, наиболее грандиозная научно-техническая революция в истории человечества. Кроме того, разобравшись в механизме бозона Хиггса, люди, возможно, получат власть над силой, которая пока остаётся полностью неподконтрольной людям – над гравитацией.
Что такое Большой адронный коллайдер и для чего он нужен?
Безусловно, открытия, которые будут сделаны при помощи Большого адронного коллайдера, не позволят нам прямо завтра овладеть технологией преобразования вещества в энергию или создать антигравитационный летательный аппарат – практические результаты ожидаются лишь в отдалённом будущем.
нако эксперименты позволят сделать ещё несколько небольших шагов к пониманию сути строения Вселенной.

Источник: www.vseznaika.org

Большой адронный коллайдер называют либо «машиной Судного дня», либо ключом к тайне Вселенной, но его значимость не подвергается сомнению.

Как сказал когда-то знаменитый британский мыслитель Бертран Рассел: «Наука – это то, что вы знаете, философия – то, чего не знаете». Казалось бы, что истинно научное знание давно отделилось от своих истоков, которые можно найти в философских изысканиях Древней Греции, но это не совсем так.


 

 

На протяжении двадцатого века ученые пытались найти в науке ответ на вопрос об устройстве мира. Этот процесс был похож на поиск смысла жизни: огромное множество теорий, предположений и даже безумный идей. К каким же выводам пришли ученые к началу XXI века?

Весь мир состоит из элементарных частиц, которые представляют собой конечные формы всего сущего, то есть то, что нельзя расщепить на более мелкие элементы.
ним относятся протоны, электроны, нейтроны и так далее. Эти частицы находятся между собой в постоянном взаимодействии. На момент начала нашего столетия оно выражалось в 4 фундаментальных типах: гравитационное, электромагнитное, сильное и слабое. Первое описывается Общей теорией относительности, другие три объединяются в рамках Стандартной модели (квантовая теория). Было также сделано предположение о существовании еще одного взаимодействия, впоследствии названного «поле Хиггса».

Постепенно стала формироваться идея объединения всех фундаментальных взаимодействий в рамках «теории всего», которая изначально воспринималась как шутка, но быстро переросла в мощное научное направление. Зачем это нужно? Всё просто! Без понимания того, как функционирует мир, мы словно муравьи в искусственном гнезде – не выберемся за пределы своих возможностей. Человеческое знание не может (ну, или пока не может, если вы оптимист) охватить устройство мира целиком.

Одной из самых знаменитых теорий, претендующих на «объятие всего», считается теория струн. Она подразумевает, что вся Вселенная и наша с вами жизнь многомерна. Несмотря на разработанную теоретическую часть и поддержку знаменитых физиков, таких, как Брайан Грин и Стивен Хокинг, она не имеет экспериментального подтверждения.

Ученые, спустя десятилетия, устали вещать с трибун и решили построить то, что раз и навсегда должно расставить все точки над «i». Для этого и была создана крупнейшая в мире экспериментальная установка – Большой адронный коллайдер (БАК).


«К коллайдеру!»

Что такое коллайдер? Если говорить научным языком, то это – ускоритель заряженных частиц, предназначенный для разгона элементарных частиц для дальнейшего понимания их взаимодействия. Если говорить ненаучным языком – это большая арена (или песочница, если вам угодно), на которой ученые сражаются за подтверждение своих теорий.

Впервые идея столкнуть элементарные частицы и посмотреть, что будет, появилась у американского физика Дональда Вильяма Керста (Donald William Kerst) в 1956 году. Он предположил, что благодаря этому ученым удастся проникнуть в тайны Вселенной. Казалось бы, что плохого в том, чтобы столкнуть между собой два пучка протонов с суммарной энергией в миллион раз больше, чем от термоядерного синтеза? Времена были соответствующие: холодная война, гонка вооружений и все такое.

История создания БАК

Идея создания ускорителя для получения и исследования заряженных частиц появилась еще в начале 1920-х годов, но первые прототипы были созданы только к началу 1930-х. Изначально они представляли собой высоковольтные линейные ускорители, то есть заряженные частицы двигались прямолинейно. Кольцевой вариант был представлен в 1931 году в США, после чего похожие устройства стали появляться в ряде развитых стран – Великобритании, Швейцарии, СССР.  Они получили название циклотроны, и стали в дальнейшем активно использоваться для создания ядерного оружия.


Нужно отметить, что стоимость строительства ускорителя частиц неимоверно высокая. Европа, игравшая во время холодной войны не первостепенную роль, поручила его создание Европейской организации по ядерным исследованиям (на русском часто читается как ЦЕРН), которая в дальнейшем занялась и строительством БАК.

ЦЕРН была создана на волне беспокойства мирового сообщества в отношении ядерных исследований в США и СССР, которые могли привести к всеобщему истреблению. Поэтому ученые решили объединить усилия и направить их в мирное русло. В 1954 году ЦЕРН получила своё официальное рождение.

В 1983 году под эгидой ЦЕРН были открыты бозоны W и Z, после чего вопрос об открытии бозонов Хиггса стал лишь делом времени. В том же году началась работа над строительством Большого электрон-позитронного коллайдера (БЭПК), который сыграл первостепенную роль в изучении обнаруженных бозонов. Однако уже тогда стало ясно, что мощности созданного устройства в скором времени окажутся недостаточными. И в 1984 году было принято решение о строительстве БАК, сразу после того, как БЭПК будет демонтирован. Это и произошло в 2000 году.

Строительство БАК, начавшееся в 2001 году, облегчалось тем, что оно происходило на месте бывшего БЭПК, в долине Женевского озера. В связи с вопросами финансирования (в 1995 году стоимость оценивалась в 2,6 млрд швейцарских франков, к 2001 превысила 4,6 млрд, в 2009 составила 6 млрд долларов).


На данный момент БАК располагается в туннеле с длиной окружности 26,7 км и проходит через территории сразу двух европейских стран – Франции и Швейцарии. Глубина туннеля варьируется от 50 до 175 метров. Нужно также отметить, что энергия столкновения протонов в ускорителе достигает 14 тераэлектронвольт, что в 20 раз больше достигнутых результатов при использовании БЭПК.

 «Любопытство – не порок, но большое свинство»

Зачем нужна эта рукотворная «машина Судного дня»? Ученые рассчитывают увидеть мир таким, каким он был сразу после Большого взрыва, то есть в момент образования материи.

Цели, которые поставили перед собой ученые при строительстве БАК:

  1. Подтверждение или опровержение Стандартной модели с целью дальнейшего создания «теории всего».
  2. Доказательство существования бозона Хиггса как частицы пятого фундаментального взаимодействия. Она, согласно теоретическим изысканиям, должна влиять на электрическое и слабое взаимодействие, нарушая их симметрию.
  3. Изучение кварков, представляющих собой фундаментальную частицу, которая в 20 тысяч раз меньше состоящих из них протонов.
  4. Получение и исследование темной материи, составляющей большую часть Вселенной.

Это далеко не единственные цели, возложенные учеными на БАК, но остальные больше относятся к смежным или сугубо теоретическим.


Чего удалось достичь?

Несомненно, наиболее крупным и значимым достижением стало официальное подтверждение существования бозона Хиггса. Открытие пятого взаимодействия (поля Хиггса), которое, по утверждениям ученых, влияет на приобретение массы всеми элементарными частицами. Считается, что при нарушении симметрии в процессе воздействия поля Хиггса на другие поля, бозоны W и Z становятся массивными. Открытие бозона Хиггса настолько велико по своей значимости, что ряд ученых дал им название «божественные частицы».

Кварки объединяются в частицы (протоны, нейтроны и другие), которые получили название адроны. Именно они ускоряются и сталкиваются в БАК, откуда и пошло его название. В процессе работы коллайдера было доказано, что выделить кварк из адрона попросту невозможно. Если вы попытаетесь это сделать, то просто вырвете из, например, протона другой вид элементарной частницы –  мезон. Несмотря на то что это лишь один из адронов и ничего нового в себе не несет, дальнейшее изучение взаимодействия кварков должно осуществляться именно небольшими шагами. В исследованиях фундаментальных законов функционирования Вселенной спешка опасна.

Хоть сами кварки и не были открыты в процессе использования БАК, но их существование до определенного момента воспринималось как математическая абстракция. Первые такие частицы были найдены в 1968 году, но лишь в 1995-ом официально доказано существование «истинного кварка». Результаты экспериментов подтверждаются возможностью их воспроизвести. Поэтому достижение БАК аналогичного результата воспринимается не как повтор, а как закрепляющее доказательство их существования! Хотя проблема с реальностью кварков никуда и не исчезла, ведь их просто нельзя выделить из адронов.

Какие планы?

Основная задача по созданию «теории всего» решена не была, но теоретическая проработка возможных вариантов её проявления ведется. До сих пор одной из проблем объединения Общей теории относительности и Стандартной модели остается разная область их действия, в связи с чем вторая не учитывает особенности первой. Поэтому важен выход за пределы Стандартной модели и достижения грани Новой физики.

Суперсимметрия – ученые считают, что она связывает бозонное и фермионное квантовые поля, да так, что они могут превращаться друг в друга. Именно подобная конверсия выходит за рамки Стандартной модели, так как существует теория, что в основе симметричного отображения квантовых полей лежат гравитоны. Они, соответственно, могут являться элементарной частицей гравитации.

Бозон Мадала – гипотеза о существовании бозона Мадала предполагает, что имеется еще одно поле. Только если бозон Хиггса взаимодействует с известными частицами и материей, то бозон Мадала – с темной материей. Несмотря на то что она занимает большую часть Вселенной, её существование не входит в рамки Стандартной модели.

Микроскопическая черная дыра – одно из исследований БАК заключается в создании черной дыры. Да-да, именно той черной, всепоглощающей области в космическом пространстве. Благо, что значительных достижений в этом направлении сделано не было.

На сегодняшний день Большой адронный коллайдер представляет собой многоцелевой исследовательский центр, на основе работы которого создаются и экспериментально подтверждаются теории, которые помогут нам лучше понять устройство мира. Вокруг ряда проводимых исследований, которые клеймятся опасными, нередко поднимаются волны критики, в том числе со стороны Стивена Хокинга, но игра определенно стоит свеч. Мы не сможем плыть в черном океане под названием Вселенная с капитаном, у которого ни карты, ни компаса, ни элементарных знаний об окружающем мире.

Источник: sciencepop.ru

Краткое описание

LHC является частью проекта, который возглавляет Европейская организация ядерных исследований (ЦЕРН). Коллайдер включен в комплекс ускорителей ЦЕРН за пределами Женевы в Швейцарии и используется для разгона пучков протонов и ионов до скорости, приближающейся к скорости света, столкновения частиц друг с другом и записи результирующих событий. Ученые надеются, что это поможет больше узнать о возникновении Вселенной и о ее составе.

Что такое коллайдер (LHC)? Это самый амбициозный и мощный ускоритель частиц, построенный на сегодняшний день. Тысячи ученых из сотен стран сотрудничают и конкурируют друг с другом в поиске новых открытий. Для сбора данных экспериментов предусмотрены 6 участков, расположенные вдоль окружности коллайдера.

Сделанные с его помощью открытия могут стать полезными в будущем, но это не причина его постройки. Цель Большого адронного коллайдера – расширить наши знания о Вселенной. Учитывая, что LHC стоит миллиарды долларов и требует сотрудничества многих стран, отсутствие практического применения может быть неожиданным.

Для чего нужен Адронный коллайдер?

В попытке понять нашу Вселенную, ее функционирование и фактическую структуру, ученые предложили теорию, называемую стандартной моделью. В ней предпринята попытка определить и объяснить фундаментальные частицы, которые делают мир таким, каким он есть. Модель объединяет элементы теории относительности Эйнштейна с квантовой теорией. В ней также учтены 3 из 4 основных сил Вселенной: сильные и слабые ядерные взаимодействия и электромагнетизм. Теория не касается 4-й фундаментальной силы – силы тяжести.

Стандартная модель дала несколько предсказаний о Вселенной, которые согласуются с различными экспериментами. Но есть и другие ее аспекты, которые требовали подтверждения. Один из них – теоретическая частица, называемая бозоном Хиггса.

Его открытие дает ответ на вопросы о массе. Почему материя ею обладает? Ученые идентифицировали частицы, у которых нет массы, например, нейтрино. Почему у одних она есть, а у других – нет? Физики предложили много объяснений.

Самое простое из них – механизм Хиггса. Эта теория гласит, что существует частица и соответствующая ей сила, которая объясняет наличие массы. Ранее она никогда не наблюдалась, поэтому события, создаваемые LHC, должны были либо доказать существование бозона Хиггса, либо дать новую информацию.

Еще один вопрос, которым задаются ученые, связан с зарождением Вселенной. Тогда материя и энергия были одним целым. После их разделения частицы вещества и антиматерии уничтожили друг друга. Если бы количество их было равным, то ничего бы не осталось.

Но, к счастью для нас, во Вселенной материи было больше. Ученые надеются наблюдать антивещество во время работы LHC. Это могло бы помочь понять причину разницы в количестве материи и антиматерии, когда началась Вселенная.

Темная материя

Современное понимание Вселенной предполагает, что пока можно наблюдать лишь около 4% материи, которая должна существовать. Движение галактик и других небесных тел говорит о том, что существует гораздо больше видимого вещества.

Ученые назвали эту неопределенную материю темной. Наблюдаемая и темная материя составляют около 25%. Другие 3/4 исходят от гипотетической темной энергии, которая способствует расширению Вселенной.

Ученые надеются, что их эксперименты либо предоставят дополнительные доказательства существования темной материи и темной энергии, либо подтвердят альтернативную теорию.

Но это лишь верхушка айсберга физики элементарных частиц. Есть еще более экзотические и противоречивые вещи, которые необходимо выявить, для чего и нужен коллайдер.

Большой взрыв в микромасштабах

Сталкивая протоны с достаточно большой скоростью, LHC разбивает их на более мелкие атомные субчастицы. Они очень нестабильны, и до распада или рекомбинации существуют только долю секунды.

Согласно теории Большого взрыва, первоначально из них состояла все материя. По мере расширения и охлаждения Вселенной они объединились в более крупные частицы, такие как протоны и нейтроны.

Необычные теории

Если теоретические частицы, антиматерия и темная энергия, не являются достаточно экзотичными, некоторые ученые считают, что LHC может предоставить доказательства существования других измерений. Принято считать, что мир является четырехмерным (трехмерное пространство и время). Но физики предполагают, что могут существовать и другие измерения, которые люди не могут воспринимать. Например, одна версия теории струн требует наличия не менее 11 измерений.

Адепты этой теории надеются, что LHC предоставит доказательства предлагаемой ими модели Вселенной. По их мнению, фундаментальными строительными кирпичиками являются не частицы, а струны. Они могут быть открытыми или закрытыми, и вибрировать подобно гитарным. Различие в колебаниях делает струны разными. Одни проявляют себя в виде электронов, а другие реализуются как нейтрино.

Что такое коллайдер в цифрах?

LHC представляет собой массивную и мощную конструкцию. Он состоит из 8 секторов, каждый из которых является дугой, ограниченной на каждом конце секцией, называемой «вставкой». Длина окружности коллайдера равна 27 км.

Трубки ускорителя и камеры столкновений находятся на глубине 100 метров под землей. Доступ к ним обеспечивает сервисный туннель с лифтами и лестницами, расположенными в нескольких точках вдоль окружности LHC. ЦЕРН также построил наземные здания, в которых исследователи могут собирать и анализировать данные, генерируемые детекторами коллайдера.

Для управления пучками протонов, движущихся со скоростью равной 99,99% скорости света, используются магниты. Они огромны, весят несколько тонн. В LHC имеется около 9 600 магнитов. Они охлаждаются до 1,9К (-271,25 °C). Это ниже температуры космического пространства.

Протоны внутри коллайдера проходят по трубам со сверхвысоким вакуумом. Это необходимо, чтобы не было частиц, с которыми они могли бы столкнуться до достижения цели. Единственная молекула газа может привести к неудаче эксперимента.

На окружности большого коллайдера есть 6 участков, где инженеры смогут проводить свои эксперименты. Их можно сравнить с микроскопами с цифровой камерой. Некоторые из этих детекторов огромны – ATLAS представляет собой устройство длиной 45 м, высотой 25 м и весом 7 т.

В LHC задействовано около 150 млн датчиков, которые собирают данные и отправляют их в вычислительную сеть. Согласно ЦЕРН объем информации, получаемой во время экспериментов, составляет около 700 МБ/с.

Очевидно, что такому коллайдеру требуется много энергии. Его годовая потребляемая мощность составляет около 800 ГВт∙ч. Она могла быть намного больше, но объект не работает в зимние месяцы. По данным ЦЕРН стоимость энергии составляет порядка 19 млн евро.

Столкновение протонов

Принцип, лежащий в основе физики коллайдера, довольно прост. Сперва производится запуск двух пучков: одного – по часовой стрелке, а второго – против. Оба потока ускоряются до скорости света. Затем их направляют навстречу друг к другу и наблюдают результат.

Оборудование, необходимое для достижения этой цели, намного сложнее. LHC является частью комплекса ЦЕРН. Прежде, чем какие-либо частицы войдут в LHC, они уже проходят ряд шагов.

Во-первых, для получения протонов ученые должны лишить атомы водорода электронов. Затем частицы направляются в установку LINAC 2, которая запускает их в ускоритель PS Booster. Эти машины для ускорения частиц используют переменное электрическое поле. Удерживать пучки помогают поля, создаваемые гигантскими магнитами.

Когда луч достигает нужного энергетического уровня, PS Booster направляет его в суперсинхротрон SPS. Поток ускоряется еще больше и делится на 2808 пучков по 1,1 x 1011 протонов. SPS вводит лучи в LHC по часовой и против часовой стрелки.

Внутри Большого адронного коллайдера протоны продолжают ускоряться в течение 20 минут. На максимальной скорости они совершают 11245 оборотов вокруг LHC каждую секунду. Лучи сходятся на одном из 6 детекторов. При этом происходит 600 млн столкновений в секунду.

Когда сталкиваются 2 протона, они расщепляются на более мелкие частицы, в том числе кварки и глюоны. Кварки очень неустойчивы и распадаются за долю секунды. Детекторы собирают информацию, отслеживая путь субатомных частиц, и направляют ее в вычислительную сеть.

Не все протоны сталкиваются. Остальные продолжают движение до секции сброса луча, где поглощаются графитом.

Детекторы

Вдоль окружности коллайдера расположены 6 секций, в которых производится сбор данных и проводятся эксперименты. Из них 4 детектора основные и 2 меньшего размера.

Самым крупным является ATLAS. Его размеры – 46 х 25 х 25 м. Трекер обнаруживает и анализирует импульс частиц, проходящих через ATLAS. Его окружает калориметр, измеряющий энергию частиц, поглощая их. Ученые могут наблюдать траекторию их движения и экстраполировать информацию о них.

Детектор ATLAS также имеет мюонный спектрометр. Мюоны – это отрицательно заряженные частицы в 200 раз тяжелее электронов. Они единственные способны проходить через калориметр без остановки. Спектрометр измеряет импульс каждого мюона датчиками заряженных частиц. Эти сенсоры могут обнаруживать флуктуации в магнитном поле ATLAS.

Компактный мюонный соленоид (CMS) является детектором общего назначения, который обнаруживает и измеряет субчастицы, высвобождаемые во время столкновений. Прибор находится внутри гигантского соленоидного магнита, который может создать магнитное поле, почти в 100 тысяч раз превышающее магнитное поле Земли.

Детектор ALICE разработан для изучения столкновений ионов железа. Таким образом исследователи надеются воссоздать условия, подобные тем, которые произошли сразу после Большого взрыва. Они ожидают увидеть, как ионы превращаются в смесь кварков и глюонов. Основным компонентом ALICE является камера TPC, служащая для изучения и воссоздания траектории частиц.

LHC служит для поиска доказательств существования антивещества. Он делает это путем поиска частицы, называемой прелестным кварком. Ряд субдетекторов, окружающих точку столкновения, имеет 20 метров в длину. Они могут улавливать очень неустойчивые и быстро распадающиеся частицы прелестных кварков.

Эксперимент ТОТЕМ проводится на участке с одним из малых детекторов. Он измеряет размер протонов и яркость LHC, указывающей на точность создания столкновений.

Эксперимент LHC имитирует космические лучи в контролируемой среде. Его целью является помощь в разработке широкомасштабных исследований реальных космических лучей.

На каждом участке детектирования работает команда исследователей, насчитывающая от нескольких десятков до более тысячи ученых.

Обработка данных

Неудивительно, что такой коллайдер генерирует огромный поток данных. 15 000 000 ГБ, ежегодно получаемых детекторами LHC, ставят перед исследователями огромную задачу. Ее решением является вычислительная сеть, состоящая из компьютеров, каждый из которых способен самостоятельно анализировать фрагмент данных. Как только компьютер завершит анализ, он отправляет результаты на центральный компьютер и получает новую порцию.

Ученые из ЦЕРН решили сосредоточиться на использовании относительно недорогого оборудования для выполнения своих расчетов. Вместо приобретения передовых серверов и процессоров используется имеющееся оборудование, которое может хорошо работать в сети. При помощи специального ПО сеть компьютеров сможет хранить и анализировать данные каждого эксперимента.

Опасность для планеты?

Некоторые опасаются, что такой мощный коллайдер может представлять угрозу для жизни на Земле, в том числе участвовать в формировании черных дыр, «странной материи», магнитных монополий, радиации и т.д.

Ученые последовательно опровергают такие утверждения. Образование черной дыры невозможно, поскольку между протонами и звездами есть большая разница. «Странная материя» уже давно бы могла образоваться под действием космических лучей, и опасность этих гипотетических образований сильно преувеличена.

Коллайдер чрезвычайно безопасен: он отделен от поверхности 100-метровым слоем грунта, а персоналу запрещено находиться под землей во время проведения экспериментов.

Источник: www.syl.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.