Для чего нужен идеальный газ


Это газ, который состоит из материальных точек, имеющих конечную массу, но не имеющих объема. Данные частицы не могут взаимодействовать на расстоянии. Столкновения частиц идеального газа описываются при помощи законов абсолютно упругого соударения шаров. Следует отметить, что имеются в виду законы столкновения именно шаров, так как точечные частицы испытывают только лобовые столкновения, которые не могут изменять направления скоростей на разные углы.

Идеальный газ существует только в теории. В реальной жизни он не может существовать в принципе, так как точечные молекулы и отсутствие их взаимодействия на расстоянии аналогично их существованию вне пространства, то есть их не существованию. Ближе всех по своим свойствам к модели идеального газа приближаются газы при малом давлении (разреженные газы) и (или) высокой температуре. Модель идеального газа подходит для изучения методов исследования систем многих частиц, знакомства с соответствующими понятиями.

В промежутках между столкновениями молекулы идеального газа движется по прямым.


коны столкновений и соударений о стенки сосудов, в которых находится газ, известны. Следовательно, если знать положения и скорости всех частиц идеального газа в какой-то момент времени, то можно найти их координаты и скорости в любой другой момент времени. Эта информация наиболее полно описывает состояние системы частиц. Однако количество частиц столь велико, что динамическое описание системы многих частиц непригодно для теории и бесполезно для практики. Это означает, что для изучения систем многих частиц информация должна быть обобщена, и ее относят не к отдельным частицам, а к их большим совокупностям.

Давление идеального газа

При помощи модели идеального газа удалось качественно и количественно объяснить давление газа на стенки сосуда, в котором он находится. Газ оказывает давление на стенки сосуда потому, что его молекулы взаимодействуют со стенками как упругие тела по законам классической механики. Количественно давление (p) идеального газа получили равным:

   

где — средняя кинетическая энергия поступательного движения молекул газа; — концентрация молекул газа (N – число молекул газа в сосуде; V – объем сосуда).

Законы идеальных газов

Идеальным называют газы, которые строго подчиняются законам Бойля – Мариотта и Гей – Люссака.

Закон Бойля – Мариотта. Для постоянной массы (m) идеального газа при постоянной температуре (T) произведение давления (p) газа на его объем (V) является постоянной величиной для любых состояний рассматриваемого вещества:

   


\[\left\{ \begin{array}{c} m=const;\ T=const \\  pV=const. \end{array} \right\]

Закон Гей-Люссака. Для постоянной массы газа при неизменном давлении выполняется соотношение:

   

В поведении реальных газов наблюдают отступления от законов Бойля — Мариотта и Гей-Люссака, и эти отступления различны для разных газов.

Для идеального газа выполняется закон Шарля. Который говорит о том, что для постоянной массы газа, при постоянном объеме, отношение давления газа к температуре, не изменяется:

    	.  
<div id=


d by QuickLaTeX.com"/>

Для связи параметров идеального газа, часто используют уравнение состояния, которое носит имена двух ученых Клапейрона и Менделеева:

   

где — молярная масса газа; – универсальная газовая постоянная.

Закон Дальтона. Давление смеси идеальных газов (p) равно сумме парциальных давлений () рассматриваемых газов:

   

При этом уравнение состояния смеси идеальных газов имеет вид (2), как будто газ является химически однородным.

Источник: ru.solverbook.com

   Как известно, многие вещества в природе могут находиться в трех агрегатных состояниях: твердом, жидком и газообразном.

   Учение о свойствах вещества в различных агрегатных состояниях основывается на представлениях об атомно-молекулярном строении материального мира. В основе молекулярно-кинетической теории строения вещества (МКТ) лежат три основных положения:


  • все вещества состоят из мельчайших частиц (молекул, атомов, элементарных частиц), между которыми есть промежутки;
  • частицы находятся в непрерывном тепловом движении;
  • между частицами вещества существуют силы взаимодействия (притяжения и отталкивания); природа этих сил электромагнитная.

   Значит, агрегатное состояние вещества зависит от взаимного расположения молекул, расстояния между ними, сил взаимодействия между ними и характера их движения.

   Сильнее всего проявляется взаимодействие частиц вещества в твердом состоянии. Расстояние между молекулами примерно равно их собственным размерам. Это приводит к достаточно сильному взаимодействию, что практически лишает частицы возможности двигаться: они колеблются около некоторого положения равновесия. Они сохраняют форму и объем.

   Свойства жидкостей также объясняются их строением. Частицы вещества в жидкостях взаимодействуют менее интенсивно, чем в твердых телах, и поэтому могут скачками менять свое местоположение – жидкости не сохраняют свою форму – они текучи. Жидкости сохраняют объем.

   Газ представляет собой собрание молекул, беспорядочно движущихся по всем направлениям независимо друг от друга. Газы не имеют собственной формы, занимают весь предоставляемый им объем и легко сжимаются.


   Существует еще одно состояние вещества – плазма. Плазма — частично или полностью ионизованный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. При достаточно сильном нагревании любое вещество испаряется, превращаясь в газ. Если увеличивать температуру и дальше, резко усилится процесс термической ионизации, т. е. молекулы газа начнут распадаться на составляющие их атомы, которые затем превращаются в ионы.

Модель идеального газа. Связь между давлением и средней кинетической энергией.

   Для выяснения закономерностей, которым подчиняется поведение вещества в газообразном состоянии, рассматривается идеализированная модель реальных газов – идеальный газ. Это такой газ, молекулы которого рассматриваются как материальные точки, не взаимодействующие друг с другом на расстоянии, но взаимодействующие друг с другом и со стенками сосуда при столкновениях.

   Идеальный газэто газ, взаимодействие между молекулами которого пренебрежимо мало. (Ек>>Ер)

   Идеальный газ – это модель, придуманная учеными для познания газов, которые мы наблюдаем в природе реально. Она может описывать не любой газ. Не применима, когда газ сильно сжат, когда газ переходит в жидкое состояние. Реальные газы ведут себя как идеальный, когда среднее расстояние между молекулами во много раз больше их размеров, т.е. при достаточно больших разрежениях.

   Свойства идеального газа:

  1. расстояние между молекулами много больше размеров молекул;
  2. молекулы газа очень малы и представляют собой упругие шары;
  3. силы притяжения стремятся к нулю;
  4. взаимодействия между молекулами газа происходят только при соударениях, а соударения считаются абсолютно упругими;
  5. молекулы этого газа двигаются беспорядочно;
  6. движение молекул по законам Ньютона.

   Состояние некоторой массы газообразного вещества характеризуют зависимыми друг от друга физическими величинами, называемыми параметрами состояния. К ним относятся объем V, давление p и температура T.

   Объем газа обозначается V. Объем газа всегда совпадает с объемом того сосуда, который он занимает. Единица объема в СИ м3.

   Давление физическая величина, равная отношению силы F, действующей на элемент поверхности перпендикулярно к ней, к площади S этого элемента.

   p = F/S       Единица давления в СИ паскаль [Па]

   До настоящего времени употребляются внесистемные единицы давления:

   техническая атмосфера 1 ат = 9,81-104 Па;

   физическая атмосфера 1 атм = 1,013-105 Па;


   миллиметры ртутного столба 1 мм рт. ст.= 133 Па;

   1 атм = = 760 мм рт. ст. = 1013 гПа.

   Как возникает давление газа? Каждая молекула газа, ударяясь о стенку сосуда, в котором она находится, в течение малого промежутка времени дей­ствует на стенку с определенной силой. В результате беспорядочных ударов о стенку сила со стороны всех молекул на единицу площади стенки быстро меняется со временем относительно некоторой (средней) величины.

   Давление газа возникает в результате беспорядочных ударов молекул о стенки сосуда, в котором находится газ.

   Используя модель идеального газа, можно вычислить давление газа на стенку сосуда.

   В процессе взаимодействия молекулы со стенкой сосуда между ними возникают силы, подчиняющиеся третьему закону Ньютона. В результате проекция υx скорости молекулы, перпендикулярная стенке, изменяет свой знак на противоположный, а проекция υy скорости, параллельная стенке, остается неизменной.

Для чего нужен идеальный газ 

   Приборы, измеряющие давление, называют манометрами. Манометры фиксиру­ют среднюю по времени силу давления, приходящуюся на единицу площади его чувствительного элемента (мембраны) или другого приемника давления.

Для чего нужен идеальный газ

   Жидкостные манометры:

  1. открытый – для измерения небольших давлений выше атмосферного 
  2. закрытый — для измерения небольших давлений ниже атмосферного, т.е. небольшого вакуума

Для чего нужен идеальный газ       Для чего нужен идеальный газ 

    Металлический манометр – для измерения больших давлений.

Для чего нужен идеальный газ

   Основной его частью является изогнутая трубка А, открытый конец которой припаян к трубке В, через которую поступает газ, а закрытый – соединен со стрелкой. Газ поступает через кран и трубку В в трубку А и разгибает её. Свободный конец трубки, перемещаясь, приводит в движение передающий механизм и стрелку. Шкала градуирована в единицах давления.

Для чего нужен идеальный газДля чего нужен идеальный газ 

Основное уравнение молекулярно-кинетической теории идеального газа.

   Основное уравнение МКТ: давление идеального газа пропорционально произведению массы молекулы, концентрации молекул и среднему квадрату скорости движения молекул


   p = 1/3·mn·v2 

   m0 — масса одной молекулы газа;

   n = N/V – число молекул в единице объема, или концентрация молекул;

   v2 — средняя квадратичная скорость движения молекул.

   Так как средняя кинетическая энергия поступательного движения молекул E = m0*v2/2, то домножив основное уравнение МКТ на 2, получим p = 2/3· n·(m0· v2)/2 = 2/3·E·n

   p = 2/3·E·n

   Давление газа равно 2/3 от средней кинетической энергии поступательного движения молекул, которые содержатся в единичном объеме газа.

   Так как m0·n = m0·N/V = m/V = ρ,   где ρ – плотность газа, то имеем     p = 1/3· ρ· v2

Объединенный газовый закон.

   Макроскопические величины, однозначно характеризующие состояние газа, называют термодинамическими параметрами газа.

   Важнейшими термодинамическими параметрами газа являются его объем V, давление р и температура Т.


   Всякое изменение состояния газа называется термодинамическим процессом.

   В любом термодинамическом процессе изменяются параметры газа, определяющие его состояние.

   Соотношение между значениями тех или иных параметров в начале и конце процесса называется газовым законом.

   Газовый закон, выражающий связь между всеми тремя параметрами газа называется объединенным газовым законом.

p = nkT 

   Соотношение p = nkT связывающее давление газа с его температурой и концентрацией молекул, получено для модели идеального газа, молекулы которого взаимодействуют между собой и со стенками сосуда только во время упругих столкновений. Это соотношение может быть записано в другой форме, устанавливающей связь между макроскопическими параметрами газа – объемом V, давлением p, температурой T и количеством вещества ν. Для этого нужно использовать равенства

Для чего нужен идеальный газ 

   где n – концентрация молекул, N – общее число молекул, V – объем газа

   Тогда получим Для чего нужен идеальный газ или Для чего нужен идеальный газ     

   Так как при постоянной массе газа N остается неизменным, то Nk – постоянное число, значит

Для чего нужен идеальный газ 

   При постоянной массе газа произведение объема на давление, деленное на абсолютную температуру газа, есть величина одинаковая для всех состояний этой массы газа.

   Уравнение, устанавливающее связь между давлением, объемом и температурой газа было получено в середине XIX века французским физиком Б. Клапейроном и часто его называют уравнением Клайперона.

   Уравнение Клайперона можно записать в другой форме.

p = nkT,

   учитывая, что

Для чего нужен идеальный газ 

   Здесь N – число молекул в сосуде, ν – количество вещества, NА – постоянная Авогадро, m – масса газа в сосуде, M – молярная масса газа. В итоге получим:

Для чего нужен идеальный газ 

   Произведение постоянной Авогадро NА на постоянную Больцмана k называется универсальной (молярной) газовой постоянной и обозначается буквой R.

   Ее численное значение в СИ   R = 8,31 Дж/моль·К

   Соотношение                                                        

Для чего нужен идеальный газ            

   называется уравнением состояния идеального газа.

   В полученной нами форме оно было впервые записано Д. И. Менделеевым. Поэтому уравнение состояния газа называется уравнением Клапейрона–Менделеева.`

   Для одного моля любого газа это соотношение принимает вид: pV=RT

   Установим физический смысл молярной газовой постоянной. Предположим, что в некотором цилиндре под поршнем при температуре Е находится 1 моль газа, объем которого V. Если нагреть газ изобарно (при постоянном давлении) на 1 К, то поршень поднимется на высоту Δh, а обьем газа увеличится на ΔV.

   Запишем уравнение pV=RT для нагретого газа: p ( V + ΔV ) = R (T + 1)

   и вычтем из этого равенства уравнение pV=RT , соответствующее состоянию газа до нагревания. Получим   pΔV = R

   ΔV = SΔh, где S – площадь основания цилиндра. Подставим в полученное уравнение:

   pSΔh = R

   pS = F – сила давления.

   Получим FΔh = R, а   произведение силы на перемещение поршня FΔh = А – работа по перемещению поршня, совершаемая этой силой против внешних сил при расширении газа.

   Таким образом, R = A.

   Универсальная (молярная) газовая постоянная численно равна работе, которую совершает 1 моль газа при изобарном нагревании его на 1 К.

Источник: infofiz.ru

Как известно, все вещества в природе имеют свое агрегатное состояние, одним из которых является газ. Составляющие его частицы – молекулы и атомы – расположены друг от друга на большом расстоянии. При этом они находятся в постоянном свободном движении. Это свойство указывает на то, что взаимодействие частиц происходит только в момент сближения, резко увеличивая скорость сталкивающихся молекул и их величину. Этим газообразное состояние вещества отличается от твердого и жидкого.

Само слово «газ» в переводе с греческого звучит как «хаос». Это отлично характеризует движение частичек, которое на самом деле беспорядочно и хаотично. Газ не образует определенной поверхности, он заполняет весь доступный ему объем. Такое состояние веществ — самое распространенное в нашей Вселенной.

Законы, которые определяют свойства и поведение такого вещества, легче всего формулировать и рассматривать на примере состояния, в котором относительная плотность молекул и атомов низкая. Оно получило название «идеальный газ». В нем расстояние между частицами больше, чем радиус взаимодействия межмолекулярных сил.

Итак, идеальный газ — это теоретическая модель вещества, в которой почти полностью отсутствует взаимодействие частиц. Для него должны существовать следующие условия:

  1. Очень маленькие размеры молекул.

  2. Нет силы взаимодействия между ними.

  3. Столкновения происходят как столкновения упругих шариков.

Хорошим примером такого состояния вещества можно назвать газы, в которых давление при низкой температуре не превышает атмосферное в 100 раз. Они причисляются к разряженным.

Само понятие «идеальный газ» дало возможность науке выстроить молекулярно-кинетическую теорию, выводы которой находят подтверждение во многих экспериментах. По этому учению различаются идеальные газы классические и квантовые.

Характеристики первого находят свое отражение в законах классической физики. Движение частиц в этом газе не зависит друг от друга, оказываемое давление на стенку равняется сумме импульсов, которые при столкновении передаются отдельными молекулами за определенное время. Их энергия же в сумме составляет объединенную отдельными частицами. Работа идеального газа в этом случае рассчитывается уравнением Клапейрона p = nkT. Ярким примером этого служат законы, выведенные такими учеными-физиками, как Бойль-Мариотт, Гей-Люссак, Шарль.

Если идеальный газ понижает температуру или увеличивает плотность частиц до определенного значения, повышаются его волновые свойства. Происходит переход к газу квантовому, при котором длина волн атомов и молекул сравнима с расстоянием между ними. Здесь различают два типа идеального газа:

  1. Учение Бозе и Эйнштейна: частицы одного вида имеют целочисленный спин.

  2. Статистика Ферми и Дирака: другой тип молекул, имеющих полуцелый спин.

Отличие классического идеального газа от квантового состоит в том, что даже при абсолютно нулевой температуре значение плотности энергии и давления отличаются от нуля. Они становятся больше при увеличении плотности. В этом случае частицы имеют максимальную (другое название — граничную) энергию. С этой точки зрения рассматривается теория строения звезд: в тех из них, в которых плотность выше 1—10 кг/см3, ярко выражен закон электронов. А где она превышает 109кг/см3, вещество превращается в нейроны.

В металлах использование теории, при которой классический идеальный газ переходит в квантовый, позволяет объяснить большую часть металлических свойств состояния вещества: чем плотнее частицы, тем это ближе к идеалу.

При сильно выраженных низких температурах различных веществ в жидких и твердых состояниях коллективное движение молекул можно рассматривать как работу идеального газа, представленного слабыми возбуждениями. В таких случаях виден вклад в энергию тела, который добавляют частицы.

Источник: FB.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.