Что называется звездной величиной



Звёздная величина́

(видимая)

мера освещённости, создаваемой небесным светилом (звездой, планетой, Солнцем и т.п.) на Земле на плоскости, перпендикулярной падающим лучам; мера блеска небесного светила. Обычно предполагается, что в значения З. в. внесены поправки, учитывающие ослабление света в земной атмосфере, и З. в. являются, т. о., внеатмосферными. Впервые понятие З. в. было введено во 2 в. до н. э. Гиппархом, который все звёзды, видимые невооружённым глазом, разделил на 6 величин. К 1-й З. в. были отнесены самые яркие звёзды, а к 6-й — самые слабые (из доступных невооружённому глазу). З. в. m связаны с соответствующими им освещённостями Е зависимостью

m = k lg E + Co.

Значение коэффициента k, по предложению английского астронома Н. Р. Погсона (середина 19 в.), принято равным — 2,5; оно определяет шаг шкалы звёздных величин, а постоянная С0 — её нульпункт.


менению З. в. на 5 единиц соответствует изменение освещённости в 100 раз, причём, чем ярче светило, тем меньше число, выражающее его З. в.; З. в. могут иметь как положительные, так и отрицательные значения. Постоянная С0 определяется по результатам измерений некоторой совокупности звёзд, выбранных в качестве стандартных. На практике произвести измерения блеска со строгим соблюдением общепринятого нульпункта и шага шкалы довольно трудно. В связи с этим параметры k и С0 в различных фотометрических каталогах небесных светил могут несколько отличаться друг от друга, что выявляется при их сравнении.

В зависимости от методики измерений различают З. в. визуальные (определяются непосредственно глазом с помощью визуального фотометра), фотографические (по фотоснимкам), фотоэлектрические (с помощью фотоэлектрического фотометра) и радиометрические (с помощью болометров). З. в., полученные фотографированием светил на фотопластинке с ортохроматической или панхроматической эмульсией через жёлтый светофильтр, называются фотовизуальными (такие З. в. близки к визуальным). Применение различных приёмников радиации и светофильтров даёт возможность измерять блеск светил в разных участках их спектра и тем самым определять З. в., относящиеся к разным фотометрическим системам. В интернациональных фотографических и фотовизуальной системах (в синей и жёлтой частях спектра) стандартом являются 96 звёзд в районе Северного полюса мира, т. н. Северный полярный ряд; по всему небу располагаются площадки, в которых установлены вторичные стандарты. Более употребительна система UBV, в которой звёздные величины даются в ультрафиолетовой U (3500 Å), синей В (4350 Å) и жёлтой V (5550


Звёздная величина ) частях спектра. Величины В близки к фотографическим, а величины V совпадают с фотовизуальными величинами интернациональной системы. В дополнение к системе UBV употребляют З. в. в красной и инфракрасной областях спектра: R (0,7 мкм), I (0,90 мкм), J (1,25 мкм), К (2,2 мкм) и L (3,7 мкм) и т.д. При установлении любых новых систем З. в. принято, что для нескольких выбранных звёзд главной последовательности Герцшпрунга — Ресселла диаграммы (См. Герцшпрунга — Ресселла диаграмма) спектрального класса АО все виды З. в. совпадают. Стандартами З. в. в системе UBVRIJKL… служат несколько десятков звёзд, расположенных на всём небе. Разности З. в., полученных в различных фотометрических системах, характеризуют распределение энергии в спектрах звёзд. Они называются показателями цвета, например B — V, U — В и др.

Фотоэлектрически измерены З. в. и показатели цвета свыше 20 тыс. звёзд. Точность измерений составляет около 0,01—0,02 З. в. Точность фотографических и визуальных измерений около 0,05—0,1 З. в. Самая яркая звезда неба Сириус имеет З. в. V = —1,46, наиболее слабые из измеренных звёзд относятся к 23-й З. в. Звёздная величина Солнца V = —26,78, полной Луны V = —12,71. З. в. источника света, создающего освещённость в 1 люкс, V = —13,78.


Абсолютной З. в. называется З. в., которую имело бы небесное светило, находясь на стандартном расстоянии 10 парсек. Абсолютные З. в. (в отличие от видимых) характеризуют физические свойства самих светил, их светимости. Абсолютная З. в. М связана с видимыми З. в. m зависимостью:

М = m + 5 — 51gr,

где r — расстояние до светила, выраженное в Парсеках.

Лит.: Паренаго П. П., Шкалы и каталоги звёздных величин, «Успехи астрономических наук», 1948, т. 4; Шаров А. С., Современное состояние проблемы фотометрических систем и стандартов звёздных величин и показателей цвета, «Бюл. Абастуманской астрофизической обсерватории», 1962, т. 27.

А. С. Шаров.

Источник: gufo.me


Звёздная величина́

(видимая)

мера освещённости, создаваемой небесным светилом (звездой, планетой, Солнцем и т.п.) на Земле на плоскости, перпендикулярной падающим лучам; мера блеска небесного светила. Обычно предполагается, что в значения З. в. внесены поправки, учитывающие ослабление света в земной атмосфере, и З. в. являются, т. о., внеатмосферными. Впервые понятие З. в. было введено во 2 в. до н. э. Гиппархом, который все звёзды, видимые невооружённым глазом, разделил на 6 величин. К 1-й З. в. были отнесены самые яркие звёзды, а к 6-й — самые слабые (из доступных невооружённому глазу). З. в. m связаны с соответствующими им освещённостями Е зависимостью


m = k lg E + Co.

Значение коэффициента k, по предложению английского астронома Н. Р. Погсона (середина 19 в.), принято равным — 2,5; оно определяет шаг шкалы звёздных величин, а постоянная С0 — её нульпункт. Изменению З. в. на 5 единиц соответствует изменение освещённости в 100 раз, причём, чем ярче светило, тем меньше число, выражающее его З. в.; З. в. могут иметь как положительные, так и отрицательные значения. Постоянная С0 определяется по результатам измерений некоторой совокупности звёзд, выбранных в качестве стандартных. На практике произвести измерения блеска со строгим соблюдением общепринятого нульпункта и шага шкалы довольно трудно. В связи с этим параметры k и С0 в различных фотометрических каталогах небесных светил могут несколько отличаться друг от друга, что выявляется при их сравнении.

В зависимости от методики измерений различают З. в. визуальные (определяются непосредственно глазом с помощью визуального фотометра), фотографические (по фотоснимкам), фотоэлектрические (с помощью фотоэлектрического фотометра) и радиометрические (с помощью болометров).


в., полученные фотографированием светил на фотопластинке с ортохроматической или панхроматической эмульсией через жёлтый светофильтр, называются фотовизуальными (такие З. в. близки к визуальным). Применение различных приёмников радиации и светофильтров даёт возможность измерять блеск светил в разных участках их спектра и тем самым определять З. в., относящиеся к разным фотометрическим системам. В интернациональных фотографических и фотовизуальной системах (в синей и жёлтой частях спектра) стандартом являются 96 звёзд в районе Северного полюса мира, т. н. Северный полярный ряд; по всему небу располагаются площадки, в которых установлены вторичные стандарты. Более употребительна система UBV, в которой звёздные величины даются в ультрафиолетовой U (3500 Å), синей В (4350 Å) и жёлтой V (5550 ) частях спектра. Величины В близки к фотографическим, а величины V совпадают с фотовизуальными величинами интернациональной системы. В дополнение к системе UBV употребляют З. в. в красной и инфракрасной областях спектра: R (0,7 мкм), I (0,90 мкм), J (1,25 мкм), К (2,2 мкм) и L (3,7 мкм) и т.д. При установлении любых новых систем З. в. принято, что для нескольких выбранных звёзд главной последовательности Герцшпрунга — Ресселла диаграммы (См. Герцшпрунга — Ресселла диаграмма) спектрального класса АО все виды З. в. совпадают. Стандартами З. в. в системе UBVRIJKL… служат несколько десятков звёзд, расположенных на всём небе. Разности З. в., полученных в различных фотометрических системах, характеризуют распределение энергии в спектрах звёзд. Они называются показателями цвета, например B — V, U — В и др.


Фотоэлектрически измерены З. в. и показатели цвета свыше 20 тыс. звёзд. Точность измерений составляет около 0,01—0,02 З. в. Точность фотографических и визуальных измерений около 0,05—0,1 З. в. Самая яркая звезда неба Сириус имеет З. в. V = —1,46, наиболее слабые из измеренных звёзд относятся к 23-й З. в. Звёздная величина Солнца V = —26,78, полной Луны V = —12,71. З. в. источника света, создающего освещённость в 1 люкс, V = —13,78.

Абсолютной З. в. называется З. в., которую имело бы небесное светило, находясь на стандартном расстоянии 10 парсек. Абсолютные З. в. (в отличие от видимых) характеризуют физические свойства самих светил, их светимости. Абсолютная З. в. М связана с видимыми З. в. m зависимостью:

М = m + 5 — 51gr,

где r — расстояние до светила, выраженное в Парсеках.

Лит.: Паренаго П. П., Шкалы и каталоги звёздных величин, «Успехи астрономических наук», 1948, т. 4; Шаров А. С., Современное состояние проблемы фотометрических систем и стандартов звёздных величин и показателей цвета, «Бюл. Абастуманской астрофизической обсерватории», 1962, т. 27.


А. С. Шаров.

Источник: gufo.me

Неодинаковая яркость (или блеск) различных объектов на небе – наверно первое, что замечает человек при наблюдениях; потому, в связи с этим, ещё давно, возникла необходимость во введении удобной величины, которая позволяла бы классифицировать светила по яркости.

История

Впервые такую величину для своих наблюдений невооружённым глазом применил древнегреческий астроном, автор первого европейского звёздного каталога – Гиппарх. Все звёзды в своём каталоге он классифицировал по яркости, обозначив самые яркие – звёздами 1-ой величины, а самые тусклые – звёздами 6-ой величины.Данная система прижилась, а в середине XIX-го века была усовершенствована до своего современного вида английским астрономом Норманом Погсоном.

Таким образом, получили безразмерную физическую величину, логарифмически связанную с освещённостью, которую создают светила (собственно звёздную величину):

m1-m2 =-2,5*lg(L1/L2)

где m1 и m2 звёздные величины светил, а L1 и L2 – освещённости в люксах (лк – единица измерения освещённости в системе СИ), создаваемые этими объектами. Если подставить в левую часть данного уравнения значение m1-m2 = 5, то произведя несложное вычисление, обнаружится, что освещённости в этом случае соотносятся как 1/100, так что разница в блеске на 5 звёздных величин, соответствует разнице в освещённости от объектов в 100 раз.


Продолжая решать эту задачу, извлечём корень 5-ой степени из 100 и мы получим изменение освещённости при разнице в блеске в одну звёздную величину, изменение освещённости составит 2,512 раза.

Это весь основной математический аппарат, необходимый для ориентации в данной шкале яркости.

Шкала звёздных величин

С введением этой системы также нужно было задать начало отсчёта шкалы звёздных величин. Для этого за нулевую звёздную величину (0m), изначально был принят блеск звезды Вега (альфа Лиры). В настоящее же время наиболее точным началом отсчёта является блеск звезды, которая на 0,03m ярче Веги. Однако глаз такую разницу не заметит, так что для визуальных наблюдений – блеск, соответствующий нулевой звёздной величине по-прежнему можно принимать по Веге.

Что ещё важно помнить касаемо данной шкалы – чем меньше звёздная величина, тем ярче объект. К примеру, та же Вега со своим блеском в +0,03 m будет почти в 100 раз ярче звезды с блеском в +5m. Юпитер же со своим максимумом блеска в -2,94m, будет ярче Веги в:

-2,94-0,03 = -2,5*lg(L1/L2)
L1/L2 = 15,42 раз

Можно решить эту задачу и другим способом – просто возведя 2,512 в степень, равную разнице звёздных величин объектов:

2,512^(-2,94-0,03) = 15,42

Классификация звёздной величины

Теперь, окончательно разобравшись с матчастью, рассмотрим классификацию применяемых в астрономии звёздных величин.


Первая классификация – по спектральной чувствительности приёмника излучения. В этом плане звёздная величина бывает: визуальной (яркость учитывается только в видимом глазу диапазоне спектра); болометрической (яркость учитывается во всём диапазоне спектра, не только видимый свет, а также ультрафиолетовый, инфракрасный и остальные спектры вместе взятые); фотографической (яркость с учётом чувствительности к спектру фотоэлементов).

Сюда же можно отнести и звёздные величины в конкретном участке спектра (например, в диапазоне голубого света, жёлтого, красного или ультрафиолетового излучения).

Соответственно, визуальная звёздная величина предназначена для оценки блеска светил при визуальных наблюдениях; болометрическая – для оценки общего потока всего излучения от светила; а фотографическая и узкополосные величины – для оценки показателей цвета светил в какой-либо фотометрической системе.

Звездные величины

Видимая и абсолютная звёздные величины

Второй тип классификации звёздных величин – по количеству зависимых физических параметров. В этом плане звёздная величина может быть – видимой и абсолютной. Видимая звёздная величина – это тот блеск объекта, который глаз (или другой приёмник излучения) воспринимает непосредственно со своего текущего положения в пространстве.


Зависит этот блеск сразу от двух параметров – это мощность излучения светила и расстояние до него. Абсолютная звёздная величина зависит только от мощности излучения и не зависит от расстояния до объекта, поскольку последнее принимается общим для конкретного класса объектов.

Абсолютная звёздная величина для звёзд определяется, как их видимая звёздная величина если бы расстояние до звезды составляло бы 10 парсек (32,616 световых лет). Абсолютная звёздная величина для объектов Солнечной системы определяется как их видимая звёздная величина, если бы они находились на расстоянии в 1 а.е. от Солнца и показывали бы для наблюдателя свою полную фазу, а сам бы наблюдатель при этом также бы находился в 1 а.е. (149,6 млн. км) от объекта (т.е. в центре Солнца).

Абсолютная звёздная величина метеоров определяется как их видимая звёздная величина, если бы они находились от наблюдателя на расстоянии 100 км и в точке зенита.

Звездные величины

Применение звёздных величин

Данные классификации могут применяться совместно. Например, абсолютная визуальная звёздная величина Солнца составляет M(v) = +4,83. а абсолютная болометрическая M(bol) = +4,75, поскольку Солнце светит не только в видимом диапазоне спектра. В зависимости от значения температуры фотосферы (видимой поверхности) звезды, а также её принадлежности к классу светимости (главная последовательность, гигант, сверхгигант и т.д.).

Различаются визуальные и болометрические абсолютные звёздные величины звезды. Например, горячие звёзды (спектральные классы B и О) светят в основном в невидимом глазу ультрафиолетовом диапазоне. Так что их болометрический блеск куда сильнее, чем визуальный. То же касается и холодных звёзд (спектральные классы K и М), которые светят преимущественно в инфракрасном диапазоне.

Абсолютная визуальная звёздная величина самых мощных звёзд (гипергиганты и звёзды Вольфа-Райе) порядка -8, -9. Абсолютная болометрическая может доходить до -11, -12 (что соответствует видимой звёздной величине полной Луны).

Мощность излучения (светимость) при этом в миллионы раз превышает мощность излучения Солнца. Видимая визуальная звёздная величина Солнца с орбиты Земли составляет -26,74m; в районе орбиты Нептуна будет -19,36m. Видимая визуальная звёздная величина самой яркой звезды – Сириуса, составляет -1,5m, а абсолютная визуальная звёздная величина данной звезды +1,44, т.е. Сириус почти в 23 раза ярче Солнца в видимом спектре.

Планета Венера на небе всегда ярче всех звёзд (её видимых блеск колеблется в пределах от -3,8m до -4,9m); несколько менее ярок Юпитер (от -1,6m до -2,94m); Марс во время противостояний имеет видимую звёздную величину порядка -2m и ярче. В общем и целом, большинство планет в большинстве случаев являются самыми яркими объектами неба после Солнца и Луны. Поскольку в окрестностях Солнца нет звёзд с большой светимостью.

В. Грибков

Источник: dsastro.ru

История

Древнегреческий ученый Гиппарх Никейский, который жил на территории Турции во II веке до н. э., считается одним из влиятельнейших астрономов античности. Он составил объемный каталог звезд, первый в Европе, описав расположения более чем тысячи небесных светил. Также Гиппарх ввел такую характеристику как звездная величина. Наблюдая невооруженным  глазом за звездами, астроном решил разделить их по яркости на шесть величин, где первая величина – самый яркий объект, а шестая — наиболее тусклый.

В XIX веке, британский астрономом Норман Погсон усовершенствовал шкалу измерений звездных величин. Он расширил диапазон ее значений и ввел логарифмическую зависимость. То есть с повышением звездной величины на единицу, яркость объекта уменьшается в 2.512 раза. Тогда звезда 1-й величины (1m) в сто раз ярче, нежели светило 6-й величины (6m).

За эталон небесного светила с нулевой звездной величиной изначально брался блеск Веги, самой яркой точки в созвездии Лиры. Несколько позже было изложено более точное определение объекта нулевой звездной величины – его освещённость должная равняться 2,54·10−6 люкс, а световой поток в видимом диапазон 106 квантов/(см²·с).

Видимая звездная величина

Описанная выше характеристика, которую определил Гиппарх Никейский, впоследствии стала носить название «видимая» или «визуальная». Имеется в виду, что ее можно наблюдать как при помощи человеческих глаз в видимом диапазоне, так и с использованием различных инструментов вроде телескопа, включая ультрафиолетовый и инфракрасный диапазон. Звездная величина созвездия Большой Медведицы равна 2m. Однако мы знаем, что Вега с нулевым блеском (0m) не самая яркая звезда на небосводе (пятая по блеску, третья для наблюдателей с территории СНГ). Поэтому более яркие звезды могут иметь отрицательную звездную величину, к примеру, Сириус (-1.5m). Также сегодня известно, что среди небесных светил могут быть не только звезды, но и тела, отражающие свет звезд – планеты, кометы или астероиды. Звездная величина полной Луны составляет −12,7m.

Абсолютная звездная величина и светимость

Для того чтобы была возможность сравнить истинную яркость космических тел, была разработана такая характеристика как абсолютная звездная величина. Согласно ней вычисляется значение видимой звездной величины объекта, если бы этот объект располагался на за 10 парсек (32,62 световых лет) от Земли. В таком случае отсутствуют зависимость от расстояния до наблюдателя при сравнении различных звезд.

Абсолютная звездная величина для космических объектов в Солнечной системе использует иное расстояние от тела к наблюдателю. А именно 1 астрономическую единицу, при этом, в теории, наблюдатель должен находиться в центре Солнца.

Более современной и полезной величиной в астрономии стала «светимость». Эта характеристика определяет полную энергию, которую излучает космическое тело за определенный отрезок времени. Для ее вычисления как раз и служит абсолютная звездная величина.

Спектральная зависимость

Как уже говорилось ранее, звездная величина может быть измерена для различных видов электромагнитного излучения, а потому имеет разные значения для каждого диапазона спектра. Для получения картинки какого-либо космического объекта астрономы могут использовать фотопластинки, которые более чувствительны к высокочастотной части видимого света, и на изображении звезды получаются голубыми. Такая звездная величина называется «фотографической», mPv. Чтобы получилось значение близкое к визуальному («фотовизуальное», mP), фотопластинку покрывают специальной ортохроматической эмульсией и используют желтый светофильтр.

Учеными была составлена так называемая фотометрическая система диапазонов, благодаря которой можно определять основные характеристики космических тел, такие как: температура поверхности, степень отражения света (альбедо, не для звезд), степень межзвездного поглощения света и прочие. Для этого производится фотографирование светила в разных спектрах электромагнитного излучения и последующие сравнение результатов. Для фотографии наиболее популярны следующие фильтры: ультрафиолетовый, синий (фотографическая звездная величина) и желтый (близкий к фотовизуальному диапазону).

Фотография с запечатленными энергиями всех диапазонов электромагнитных волн определяет так называемую болометрическую звездную величину (mb). С ее помощью, зная расстояние и степень межзвездного поглощения, астрономы вычисляют светимость космического тела.

Источник: SpaceGid.com

Шкала звездных величин

Такое определение дал в XIX астроном Норман Погсон. Он заметил, что разница в одну звездную величину соответствует изменению светового потока примерно в 2,5 раза. То есть звезда 0m освещает наши глаза в 2,5 раза сильнее, чем звезда 1m. Получается, что звезда 1-й величины в 100 раз ярче, чем звезда 6-й.

Для кого-то этот момент может показаться странным. Субъективное ощущение подсказывает, что звезды звезды 6-й величины всего в 6-10 раз слабее, чем звезды 1-й. Руководствуясь этим ощущением, Гиппарх, собственно, и разработал шкалу звездных величин.

Но наше зрение, как и слух, устроены по-другому. Когда сила источника света изменяется в геометрической прогрессии, мы принимаем ее за прогрессию арифметическую! Нам кажется, что две звезды 6-й величины дадут нам звезду 3m, а две звезды 3m дадут звезду 1m. Но если мы в реальности приблизим две звезды одинакового блеска друг к другу (в их роли могут выступить фонарики), то это отношение работать не будет!

Погсон предложил логарифмическую шкалу величин — разница в 5 единиц по шкале звездных величин точно соответствует 100-кратному различию светового потока. То есть звезда 1-й величины ровно в 100 раз ярче звезды 6-й величины и в 100 × 100 = 10000 раз ярче звезды 11-й величины. Это правило в точности соответствует действительности.

Осталось определить стандарт, по отношению к которому можно измерять звездные величины всех других звезд. Таким стандартом долгое время считалась звезда Вега, блеск которой был взят за нуль-пункт звездных величин (0m).

На практике блеск звезд измеряются фотоэлектрическим способом при помощи фотометров. Следовательно, звездные величины неплохо бы привязать к общепринятой физической величине потока излучения. В физике освещенность измеряется в люксах. Связь между звездной величиной (m) и люксом (J) выражается формулой: m = -14 — 2,5lgJ. Так, Солнце имеет звездную величину -26,75m или 125000 люкс. Блеск полной Луны -12,74m, что соответствует 0,3 люкса.

Источник: skygazer.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.