Адронный коллайдер что с ним сейчас


Цель самого дорогого в мире ускорителя — Большого адронного коллайдера, что расположен в Женеве,  — разогнать протоны до огромных скоростей. Если при этом они столкнутся, то проявятся их первоначальные составляющие — кварки и глюоны. Это будет доказательством модели Большого взрыва, то есть зарождения нашей Вселенной. Проводя исследования на БАКе, в 2012 году ученые обнаружили последнюю из недостающих элементарных частиц Стандартной модели  (рождения Вселенной) — бозон Хиггса. Но свободные кварки и глюоны, так называемая кварк-глюонная плазма, пока экспериментально не наблюдалась.

Также не понятен и сам процесс перехода ядерной материи в кварк-глюонную плазму. В БАКе этот мгновенный процесс не удается «отловить» из-за слишком большой энергии (в 13 тераэлектронвольт — 13ТэВ), а в российском новом кольцевом укорителе NIСA при 9 миллиардах электронвольт ученые надеются этот переход зарегистрировать в моменты столкновения частиц.

Комплекс NICA состоит из двух источников частиц, двух линейных ускорителей для тяжелых ионов и протонов, кольцеобразного бустера (предускорителя для тяжелых ионов), нуклотрона (второго предускорителя) и собственно самого коллайдера, где разогнанные пучки частиц будут сталкиваться между собой. Предускорители нужны для поэтапного их разгона.


20 ноября в ОИЯИ дали старт испытаниям бустера для предразгона тяжелых частиц, к примеру, ионов золота, до 500 миллионов электронвольт (эВ). Открытие всего комплекса ускорителей ожидается в 2022 году.

— На нашем коллайдере мы хотим добиться максимально достижимой в лабораторных условиях плотности барионной материи (вещества Вселенной), — говорит руководитель 4-ого отделения лаборатории  физики высоких энергий ОИЯИ Дмитрий Пешехонов.  — Хотим смоделировать процесс, в котором находилась наша Вселенная на самых ранних этапах возникновения и тех, что, по мнению ученых, существуют в недрах нейтронных звезд.  

После Большого взрыва появилось вещество и антивещество. Но при абсолютной симметрии не могла бы родиться Вселенная, поскольку, взаимодействуя, частицы и античастицы просто уничтожили бы друг друга. Наша Вселенная существует благодаря нарушению симметрии и, по сути, вся она и есть то превышение материи над антиматерией.

И теперь мы надеемся при помощи комплекса NICA понять процессы происходившие на ранней стадии образования Вселенной и в недрах нейтронных звезд. Чтобы вам было понятнее, сила сжатия материи в NICA будет такой, как если бы мы Солнце сжали до размеров Москвы.


Кроме разгадки тайны мироздани, на новом ускорительном комплекса NICA планируется осуществлять прикладные и фундаментальные исследования в радиобиологии и космической медицине, терапии раковых заболеваний, развитии реакторов и создании новых материалов.

Источник: www.mk.ru

Научные эксперименты на Большом адронном коллайдере не будут возобновлены в 2021 году, как планировалось ранее. Запуск коллайдера отложен из-за пандемии коронавирусной инфекции и связанных с этим задержек с подготовкой к работе главных детекторов CMS и ATLAS, говорится в материалах, опубликованных на сайте ЦЕРНа. Ученые рассчитывают, что в следующем году в кольце коллайдера будут некоторое время циркулировать тестовые пучки протонов на небольших энергиях, но экспериментов на высоких энергиях не будет до 2022 года.

Работа Большого адронного коллайдера была прекращена в декабре 2018 года. Предполагалось, что в следующие два года ученые и инженеры займутся модернизацией и ремонтом ускорителя, чтобы увеличить его светимость примерно в два раза и сделать шаг к превращению его в коллайдер высокой светимости (High Luminosity LHC, HL-LHC). В 2021 году должен был стартовать трех-четырехлетний сеанс работы коллайдера с постепенным повышением светимости вдвое. За этот сеанс планировалось накопить интегральную светимость 300 обратных фемтобарн (против 150 в предыдущем сеансе). После этого должна была последовать новая остановка для модернизации на два с половиной года, после чего коллайдер должен был достичь светимости в шесть-семь раз выше прежней.


Теперь стало известно, что коллайдер вернется к набору данных не раньше, чем в конце января 2022 года, что связано с задержками в работах на двух главных детекторах — CMS и ATLAS. В частности, необходимо дополнительное время для установки на CMS защиты от радиации и одного из элементов системы детекции мюонов — на ATLAS. В ноябре началось охлаждение магнитов коллайдера, к весне 2021 года они все должны быть охлаждены до рабочей температуры, а летом будут начаты эксперименты, не связанные с большим кольцом БАКа, в частности, эксперимент ISOLDE.

Ожидается, что тестовые пучки протонов на низких энергиях будут циркулировать в кольце коллайдера в начале осени 2021 года — когда это позволят работы на детекторах, но затем их придется прекратить до февраля 2022 года, когда будет начат полноценный сеанс работы коллайдера — Run 3.

Вместе с тем остановка коллайдера не мешает физикам извлекать новые сведения из набора данных, которые БАК набрал раньше. В частности, ученые увидели отклонения от Стандартной модели в распаде B-мезонов, а также следы топ-кварков в столкновениях ядер. О том, какие инженерные системы обслуживают БАК, насколько сложно их техническое обслуживание, можно прочитать в нашем материале «Большой ремонт большой машины».


Сергей Кузнецов


Источник: nplus1.ru

Оборудование фиксирует странное излучение из космоса, направленное прямиком в БАК, сообщил специалист.

Адронный коллайдер что с ним сейчас

Большой адронный коллайдер или БАК, создан учеными для анализа поведения частиц при столкновении на сверхскоростях. Его периодически включают, получают данные, а затем выключают. Однако последние сообщения экспертов говорят о том, что БАК внезапно включился.

С их слов, коллайдер начал разгонять частицы на скоростях близких к скорости света, а в периметре началась накапливаться энергия. Эта информация стала поводом для уфологического сообщества направить антенны их «специального» оборудования в сторону Женевы – именно рядом с этим городом находится БАК.

Эксперты не на шутку перепугались, когда обнаружили странные сигналы из космоса, «бьющие» прямо в адронный коллайдер.


Адронный коллайдер что с ним сейчас

Опасность кроется в том, что если столкнуть частицы на скорости более субсветовой, то результат будет, мягко говоря, непредсказуем. Сами ученые предполагали, что при неправильной настройке оборудования есть вероятность создания микроскопической черной дыры. Отнюдь размеры этого космического тела не повлияют на разрушения, которые будут причинены планете. Силы гравитации будет достаточно, чтобы поглотить всю планету.

Также ученые предполагают возможность появления нового вещества, разрыв пространства и прочие фантастические вещи. Иными словами, могут произойти вещи которые невозможно объяснить с точки зрения классической физики.

Адронный коллайдер что с ним сейчас

Как писалось выше, накопление энергии – первый шаг к переходу на сверхсветовые скорости. Эксперты считают, что «кто-то сверху» решил показать человечеству, чем могут закончиться эксперименты с тем, чего люди не понимают. Один из специалистов даже прокомментировал ситуацию одним словом: «Доигрались!»


Официальной информации тем временем пока не поступало, поэтому вполне вероятно, что вся история не получит подтверждения.

Источник: vladtime.ru

Европейский центр ядерных исследований, или просто ЦЕРН, – место, где рядом с вами в столовой запросто может обедать нобелевский лауреат по физике. Он известен во всем мире благодаря самому мощному ускорителю частиц – Большому адронному коллайдеру. Спустя почти десять лет работы пришло время подвести итог – оправдал ли надежды ученых один из самых амбициозных научных проектов современности?

В 2008 году я училась в десятом классе. Несмотря на то, что в те годы я еще совершенно не интересовалась физикой, волна ажиотажа не смогла обойти меня стороной: из каждого утюга трубили, что вот-вот запустят «машину судного дня». Что как только Очень Важный Директор поднимет рубильник, образуется черная дыра и нам всем конец. В день официального старта Большого адронного коллайдера некоторые учителя даже позволили на своих уроках посмотреть репортаж с места событий.

Самого страшного не произошло. По большому счету, не произошло ничего – рубильник был поднят, на экране компьютера заскакали непонятные простому обывателю цифры, а ученые начали праздновать. В общем, зачем запускали, было непонятно.

Несомненно, без Большого адронного коллайдера ученые не смогли бы совершить некоторые знаменательные открытия – в том числе речь идет об обнаружении бозоне Хиггса. Но все ли из запланированного удастся реализовать, и есть ли еще перспективы у БАК – об этом и расскажем.


Адронный коллайдер что с ним сейчас

Эксперимент DELPHI Большого электрон-позитронного коллайдера

Старший брат: Большой электрон-позитронный коллайдер

В конце семидесятых годов XX века физика элементарных частиц развивалась семимильными шагами. Для проверки предсказаний Стандартной модели в 1976 году был предложен проект Большого электрон-позитронного коллайдера (БЭП или LEP – от англ. Large Electron-Positron Collider) в Европейском центре ядерных исследований (ЦЕРН, от фр. CERN – Conseil Européen pour la Recherche Nucléaire). Среди множества различных конфигураций был выбран вариант расположения будущего эксперимента в подземном тоннеле длиной 27 километров. Ему предполагалось ускорять электроны и позитроны до энергий порядка десятков и сотен гигаэлектронвольт: встречные пучки пересекались в четырех точках, в которых впоследствии расположились эксперименты ALEPH, DELPHI, OPAL и L3.

С точки зрения физиков энергии никогда не бывает мало: выбранный в итоге для реализации вариант БЭП был компромиссом между стоимостью и мощностью; рассматривались и туннели большей длины, способные сильнее ускорять частицы.
оговая энергия могла использоваться для проверки Стандартной модели, но была слишком мала для поиска так называемой «новой физики» – явлений, которые не предсказываются ее законами. Гораздо лучше для таких целей подходят адронные коллайдеры – ускорители составных частиц вроде протонов, нейтронов и атомных ядер. Еще в 1977 году, в момент обсуждения БЭП, Джон Адамс, директор ЦЕРН в то время, предлагал сделать туннель шире, и разместить там сразу оба ускорителя – и электрон-позитронный, и адронный. Однако, совет, принимающий итоговые решения, эту идею отклонил, и в 1981 году был утвержден проект Большого электрон-позитронного коллайдера.

Адронный коллайдер что с ним сейчас

Туннель Большого адронного коллайдера

На смену приходит LHC

БЭП проработал больше десяти лет: с 1989 по 2000 год. Этому времени принадлежит ряд знаменательных экспериментов, таких как подтверждение предсказанных масс переносчиков слабого взаимодействия – W- и Z-бозонов, а также измерение различных параметров Стандартной модели с беспрецедентной точностью. И уже в 1984 году была проведена конференция «Большой адронный коллайдер в туннеле LEP», посвященная вопросу строительства нового коллайдера после прекращения работы предшественника.

В 1991 году был окончательно утвержден проект Большого адронного коллайдера (БАК или LHC – от англ. Large Hadron Collider), при помощи которого планировалось достигнуть суммарной энергии сталкивающихся частиц в 14 тераэлектронвольт, то есть в сто раз большей, чем развивал Большой электрон-позитронный коллайдер.


В 1992 году была проведена встреча, посвященная научной программе Большого адронного коллайдера: всего было получено двенадцать заявок на различные эксперименты, которые могли бы быть построены на месте четырех точек столкновения пучков. В течении последующих лет были одобрены два эксперимента общей направленности – ATLAS и CMS, эксперимент ALICE по изучению тяжелых ионов и LHCb, посвященный физике частиц, содержащих b-кварки. Сооружение Большого адронного коллайдера началось в 2000 году, а первые пучки были получены уже в 2008 году: с тех пор и по сей день, помимо планового отключения, LHC в рабочем режиме ускоряет частицы и набирает данные.

Россия в ЦЕРН

Российская Федерация с 1993 года является страной-наблюдателем в ЦЕРН, что дает право ее представителями присутствовать на заседаниях, но не дает права голосовать при принятии важных решений. В 2012 году от имени Правительства РФ было внесено заявление о намерении вступления Российской Федерации в ассоциированные члены ЦЕРН, которое на настоящий момент не было поддержано.

Всего в проектах ЦЕРН участвует около 700 российских ученых из двенадцати научных организаций, таких как Объединенный институт ядерных исследований, Российский научный центр «Курчатовский институт», Институт ядерных исследований Российской академии наук и Московский государственный университет имени М.В. Ломоносова.


Адронный коллайдер что с ним сейчас

Инжекционная цепь Большого адронного коллайдера

Как выгодно ускорять частицы?

Схема работы Большого адронного коллайдера состоит из множества этапов. Перед тем как попасть непосредственно в БАК, частицы проходят ряд стадий пред-ускорения: таким образом набор скорости происходит быстрее и при этом с меньшими затратами энергии. Сначала в линейном ускорителе LINAC2 протоны или ядра достигают энергии в 50 мегаэлектронвольт; затем они поочередно попадают в бустерный синхротрон (PSB), протонный синхротрон (PS) и протонный суперсинхротрон (SPS), и на момент инжекции в коллайдер итоговая энергия частиц составляет 450 гигаэлектронвольт.

Помимо основных четырех экспериментов в тоннеле Большого адронного коллайдера, предускорительная система является площадкой для более чем десяти экспериментов, которым не требуется столь большая энергия частиц. В их число входят, в частности, эксперимент NA61/SHINE, исследующий параметры взаимодействия тяжелых ионов с фиксированной мишенью; эксперимент ISOLDE, исследующий свойства атомных ядер, а также AEGIS, исследующий гравитационное ускорение Земли при помощи антиводорода.

Адронный коллайдер что с ним сейчас

Поиски частицы Бога и новой физики

Еще в самом начале, на этапе разработки, была заявлена претенциозная научная программа Большого адронного коллайдера. В первую очередь, вследствие указаний, полученных на БЭП, планировался поиск бозона Хиггса – еще гипотетической в то время составляющей Стандартной модели, отвечающей за массу всех частиц. В том числе в планы ученых входил и поиск суперсимметричного бозона Хиггса и его суперпартнеров, входящих в минимальное суперсимметричное расширение Стандартной модели.

В целом как отдельное направление планировался поиск и проверка моделей «новой физики». Для проверки суперсимметрии, в которой каждому бозону сопоставляется фермион, и наоборот, предполагалось вести поиски соответствующих партнеров для частиц Стандартной модели. Для проверки теорий с дополнительными пространственными измерениями, таких как теория струн или М-теория, были заявлены возможности постановки ограничений на число измерений в нашем мире. Именно поиск отклонений от Стандартной модели считали, и до сих пор считают одной из основных задач БАК.

Адронный коллайдер что с ним сейчас

Менее громкие задачи: исследование кварк-глюонной плазмы и нарушения CP-инвариантности

Топ-кварк, самый тяжелый из шести кварков Стандартной модели, до Большого адронного коллайдера наблюдался лишь на ускорителе Тэватрон в Национальной ускорительной лаборатории имени Энрико Ферми в США из-за своей крайне большой массы в 173 гигаэлектронвольта. При столкновениях в БАК, благодаря его мощности, ожидалось рождение большого числа топ-кварков, которые интересовали ученых в двух аспектах. Первый был связан с изучением иерархии частиц: на данный момент наблюдается три поколения кварков (топ-кварк завершил третье), но не исключено, что их все же больше. С другой стороны, рождение бозона Хиггса при распаде топ-кварка считалось основным способом его экспериментального детектирования.

В 1964 году было открыто нарушение комбинированной CP-инвариантности (от англ. «charge» – заряд и «parity» – четность), которое соответствует зеркальному отображению нашего мира с полной заменой всех частиц на соответствующие античастицы. Данный факт играет важную роль в теориях образования Вселенной, которые пытаются объяснить, почему все наше вещество состоит именно из материи, а не из антиматерии. В том числе нарушение CP-четности проявляется в поведении B-мезонов – частиц, активное рождение которых предполагалось в процессе столкновений в БАК, и с их помощью ученые надеялись пролить свет на причины данного явления.

Работа Большого адронного коллайдера в режиме столкновения тяжелых ядер должна была приводить к воссозданию состояния кварк-глюонной плазмы, которое, по современным представлениям, наблюдается через 10-5 секунд после Большого взрыва – состоянию настолько «горячему», что кварки и глюоны не взаимодействуют друг с другом, и не образуют частицы и ядра, как это происходит в нормальном состоянии. Понимание процессов возникновения и охлаждения кварк-глюонной плазмы необходимо для изучения процессов квантовой хромодинамики – раздела физики, ответственного за описание сильных взаимодействий.

Адронный коллайдер что с ним сейчас

Схема открытия бозона Хиггса в эксперименте ATLAS

Открытие новых частиц на LHC

Итак, чем же может похвастаться за целое десятилетие своей работы Большой адронный коллайдер?

Во-первых, конечно же, самое известное из открытий – обнаружение в июле 2012 года бозона Хиггса массой 126 гигаэлектронвольт. Всего годом позднее Питер Хиггс и Франсуа Энглер были удостоены Нобелевской премии по физике за теоретическое предсказание существования «частицы Бога», ответственной за массу всего вещества во Вселенной. Теперь, однако, перед физиками стоит новая задача – понять, почему искомый бозон имеет именно такую массу; также продолжаются и поиски суперсимметричных партнеров бозона Хиггса.

В 2015 году в эксперименте LHCb были обнаружены стабильные пентакварки – частицы, состоящие из пяти кварков, а годом позднее – кандидаты на роль тетракварков – частиц, состоящих из двух кварков и двух антикварков. До этих пор считалось, что наблюдаемые частицы состоят не более чем из трех кварков, и физикам еще предстоит уточнить теоретическую модель, которая бы описала подобные состояния.

Адронный коллайдер что с ним сейчас

Все еще в пределах Стандартной модели

Физики надеялись, что БАК сможет решить проблему суперсимметрии – либо полностью ее опровергнуть, либо уточнить, в каком направлении стоит двигаться, поскольку вариантов подобного расширения Стандартной модели огромное количество. Пока что не удалось сделать ни того, ни другого: ученые ставят различные ограничения на параметры суперсимметричных моделей, которые могут отсеять самые простые варианты, но точно не решают глобальных вопросов.

Не было получено так же и явных указаний на физические процессы вне Стандартной модели, на которые, пожалуй, рассчитывало большинство ученых. Однако, стоит отметить, что в эксперименте LHCb также было получено указание на то, что B-мезон, тяжелая частица, содержащая в себе b-кварк, распадается не таким образом, как предсказывает Стандартная модель. Подобное поведение само по себе может служить, например, указанием на существование еще одного нейтрального переносчика слабого взаимодействия – Z’ бозона. Пока что ученые работают над набором экспериментальных данных, которые позволят ограничить различные экзотические сценарии.

Адронный коллайдер что с ним сейчас

Возможная схема будущего 100-километрового коллайдера

Пора начинать рыть новый туннель?

Смог ли Большой адронный коллайдер оправдать вложенные в него силы и средства? Несомненно, хоть и не все поставленные цели по итогам десятилетия пока что достигнуты. В настоящий момент идет второй этап работы ускорителя, после чего будет произведена плановая установка и начнется третья стадия набора данных.

Ученые не теряют надежды произвести следующие великие открытия и уже планируют новые коллайдеры, например, с длиной туннеля в целых 100 километров.

Источник: futurist.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.