Космический мир


Космос – это область, которая находится за пределами земной атмосферы. Она включает планеты, галактики, солнечные системы, звёзды, астероиды и прочее.

Космический мир

Мы живём в космосе, поэтому мы должны изучать его. Он настолько огромен, что вмещает триллионы звёзд, а также бесчисленное множество галактик и планет. Однако это только видимая вселенная. Учёные сходятся во мнении, что исследовать неизвестную вселенную можно гораздо больше, чем мы можем себе представить. Эта статья посвящена любопытным фактам о космосе. Начнём!

1. Космос берёт начало на определённой высоте над нашей планетой. Границу между земной атмосферой и космосом называют линией Кармана; она находится на высоте 100 километров над уровнем моря.

2. Самый крупный объект, находящийся в космосе с экипажем на борту – это Международная космическая станция.


3. Космос – это на самом деле пустота, которая содержит очень мало материи.

4. Космические аппараты посетили все планеты Солнечной системы.

5. Возраст Вселенной составляет 13,8 миллиарда лет. С момента своего возникновения (в результате Большого взрыва) она расширяется.

6. В видимой или известной вселенной насчитывается почти два триллиона галактик.

7. В галактике Млечный Путь насчитывается от ста до четырёхсот миллиардов звезд.

8. В космосе нет звука, потому что молекулы расположены так далеко друг от друга, что не могут передавать звук. Однако бесшумным его также не назовёшь. В космосе можно посылать и принимать радиоволны!

9. Космическое пространство между галактиками не пустое. В среднем на один кубический метр приходится один атом.

10. Вулкан на Марсе в три раза выше Эвереста. Олимп – это вулкан на Марсе, ширина которого составляет 600 километров, а высота – 21. Это самая высокая гора из всех планет Солнечной системы. Центральный пик астероида Весты, Реасильвия (высота 22 километра), выше горы Олимп на один километр. Основание горы Олимп – размером с Аризону!

11. На Солнце приходится 99,86% массы всей солнечной системы. Масса Солнца в 330 000 раз больше массы Земли.

12. Карликовая планета Церера считается самым крупным астероидом. Она находится в Поясе астероидов между Марсом и Юпитером. Она была открыта итальянским астрономом Джузеппе Пиацци в 1801 году. Её ширина составляет 965 километров. Тем не менее, это самая маленькая карликовая планета солнечной системы.


13. Знаете ли вы, что в космосе существует огромное облако водяного пара? В нём содержится в 140 триллионов раз больше воды, чем во всех океанах Земли. Оно находится на расстоянии около 10 миллиардов световых лет.

14. Если два куска одного и того же металла или материала сталкиваются друг с другом в космосе, то они навсегда соединяются. Это называется холодной сваркой, при этом атомы двух частей понятия не имеют о том, что они разделены. Это явление нельзя наблюдать на Земле, поскольку между кусками присутствуют вода и воздух.

15. Галактики Млечный Путь и Андромеда столкнутся в ближайшие 3,75 миллиарда лет. Галактика Андромеда приближается к нашей галактике со скоростью 110 километров в секунду!

16. Существует планета под названием 55 Cancri e. Её радиус в два раза больше, чем у Земли, а масса – в восемь раз. Согласно исследованиям, проведённым Йельским университетом, поверхность этой планеты состоит из алмаза и графита. Он находится на расстоянии сорока световых лет от Земли, но видна невооружённым глазом. Она расположена в созвездии Рака.

17. Скафандр НАСА стоит 12 000 000 долларов. 70% стоимости приходится на модуль управления и резервную копию.

18. Самые плотные и мельчайшие начала в известной Вселенной – это нейтронные звезды. Они имеют радиус около 10 километров но их масса в несколько раз больше, чем у Солнца. Они вращаются до шестидесяти раз в секунду после рождения. Затем скорость вращения увеличивается до 600-712 раз в секунду. Они рождаются в результате взрыва ядра сверхновой звезды.


19. Базз Лайтер из «Истории игрушек» провёл 15 месяцев на Международной космической станции. Он вернулся на Землю 11 сентября 2009 года.

20. Комета Галлея снова пройдёт мимо Земли 26 июля 2061 года. Комета была открыта Эдмондом Галлеем в 1705 году. Последний раз её видели 9 февраля 1986 года.

21. В нашей солнечной системе есть пять признанных карликовых планет. Это Церера, Плутон, Эрида, Макемаке и Хаумеа.

22. Китайцы заметили комету Галлея ещё в 240 году до нашей эры. Начиная с 164 года до нашей эры, они отмечали каждое её появление.

23. Центральная часть кометы называется ядром, а потоки пыли, которые видны за ней, называются хвостом.

24. На нашем небе – 88 признанных звёздных созвездий.

25. Лунному свету требуется всего 1,3 секунды, чтобы достичь Земли. Расстояние между Землёй и Луной составляет 384 400 километров.

26. Обычные ручки работают благодаря принципу гравитации. Чернила вытекают под действием силы тяжести. Поскольку гравитация в космосе отсутствует, ручки там не пишут.

27. Гравитационная сила Юпитера настолько сильна, что он притягивает большой процент астероидов, комет и прочих космических объектов.

28. Красное пятно на Юпитере в три раза больше, чем на Земле, но оно уменьшается, пока вы читаете эти факты.


29. Красный карлик – это звезда, которая меньше и холоднее других звёзд. Это поздняя стадия её жизни. Температура поверхности красного карлика составляет около 7200 Кельвина. Они могут гореть непрерывно в течение 10 триллионов лет.

30. Галактика Млечный Путь известна в Китае как «Серебряная Река». В Японии и Корее «Серебряную Реку» вообще называют просто галактиками.

31. Геннадий Падалка провёл в космосе больше времени, чем любой другой человек. Он был космонавтом Федерального космического агентства России. Он провёл в космосе 879 дней. Он работал и на Международной космической станции, и на «Мире».

32. Все слышали о НАСА, но знаете ли вы, что означает название «НАСА»? Оно расшифровывается как Национальное управление по аэронавтике и исследованию космического пространства. Оно было создано в 1958 году федеральным правительством Соединённых Штатов.

33. Слово «астронавт» происходит от двух греческих слов – astron («звезда») и nautes («моряк»). Таким образом, астронавт – это звёздный моряк.

34. Первым млекопитающим, которого отправили в космос, была Лайка, бродячая собака. Это произошло 3 ноября 1957 года. К сожалению, она умерла спустя 5-7 часов после начала полёта из-за стресса и перегрева.

35. Земля в 81 раз тяжелее Луны.

36. Из-за отсутствия гравитации астронавты не могут отрыгнуть в космосе. Это происходит потому, что воздух не может отделиться от пищи и подняться вверх.


37. Единственная планета, которая может плавать на поверхности воды – это Сатурн. Это также самая лёгкая планета. Она может плавать на поверхности воды потому, что состоит из газа (в основном).

38. Меркурий продолжает сжиматься даже спустя 4,5 миллиарда лет после образования солнечной системы.

39. Кометы – это остатки материи после образования солнечной системы. Они состоят из углекислого газа, льда и песка.

40. Шимпанзе, собаки, морские свинки и обезьяны летали в космос.

41. Ось Земли меняется со временем. Это явление называется прецессией. Изменение оси происходит очень медленно и постепенно. Из-за прецессии примерно через 13 000 лет Поляриссима перестанет быть нашей полярной звездой. Её заменит звезда Вега. Один цикл прецессии занимает 26 000 лет.

42. Япет, один из спутников Сатурна, имеет двухцветную окраску. Одна сторона спутника темнее другой. Такого явления не наблюдается ни на одном другом спутнике солнечной системы. Причина такой двухцветной окраски заключается в том, что Япет находится далеко за пределами колец Сатурна и, следовательно, его атакует космический мусор. Именно столкновения создают тёмные области на Япете.

43. Земля получает от Солнца за час больше энергии, чем использует за целый год.

44. На Луне нет атмосферы, ветра и воды, которые могли бы стереть следы астронавтов, отпечатки космических кораблей и лунных автомобилей. Они просуществуют миллионы лет. Однако микрометеориты продолжают бомбардировать поверхность Луны, что в конечном итоге приведёт к эрозии. Но скорость эрозии очень медленная.


45. Если вы окажетесь на экваторе Марса, температура у ваших ног будет тёплой, а у вашей головы – холодной.

46. Если объединить все известные астероиды солнечной системы, то их общая масса составит менее 10% от массы Луны.

47. Долины Маринер – самая большая система каньонов в солнечной системе. Её длина составляет около 4000 километров. Она в девять раз длиннее и в четыре раза глубже Большого каньона.

48. Ио, один из спутников Юпитера, является самым вулканически активным небесным телом во всей солнечной системе. Его вздутая желтоватая поверхность напоминает пиццу пепперони.

49. Кратеры южного полюса Луны могут быть самыми холодными областями солнечной системы. Дневная температура не поднимается выше -238 градусов по Цельсию.

50. Центр галактики Млечный Путь пахнет ромом и имеет вкус малины. Откуда мы знаем? Эта информация была обнаружена радиотелескопом IRAM, когда он сфокусировался на газовом облаке под названием Стрелец B2. IRAM обнаружил этилформиат, который придаёт рому характерный запах, а малине – вкус.
©

Источник: dymontiger.livejournal.com

Как и где можно можно наблюдать за МКС?

Увидеть станцию с помощью телескопа сложно. Но ее можно увидеть невооруженным взглядом за южным небосклоном. Об этом написал Шкаплеров на своей странице в Instagram космонавт Роскосмоса Антон Шкаплеров. Как отметил космонавт, быстрое движение МКС по небосводу с запада на восток обращает на себя внимание наблюдателей.


Чтобы рассчитать время пролета для конкретного города, вам нужно перейти на сайт heavens-above.com, ввести местоположение, и в разделе «МКС» будет показана таблица с временами.

Что предоставляет собой МКС? 

МКС — крупнейший международный научно-технический проект, участниками которого являются 14 стран: Россия, США, Япония, Канада, Италия, Бельгия, Нидерланды, Дания, Норвегия, Франция, Испания, Германия, Швеция и Швейцария.

Строительство космической станции на околоземной орбите было начато 23 года назад  — 20 ноября 1998 года. В этот день с космодрома Байконур с помощью российской ракеты-носителя «Протон-К» был выведен первый модуль станции — российский функциональный грузовой блок «Заря».

Первый постоянный экипаж в составе Уильяма Шепарда, Юрия Гидзенко и Сергея Крикалева прибыл на станцию 2 ноября 2000 года. За 23 года на МКС отработали более 50 экспедиций, на станции побывали свыше 300 человек из 18 стран мира.

24 ноября этого года ракета «Союз-2.1б» выведет на орбиту грузовик «Прогресс» с последним модулем для российского сегмента МКС «Причал».
к говорится в сообщении госкорпорации «Роскосмос», корабль-модуль доставит на борт МКС около 700 кг различных грузов, в том числе ресурсную аппаратуру и расходные материалы, средства водоочистки, медицинского контроля и санитарно-гигиенического обеспечения, средства технического обслуживания и ремонта, а также стандартные рационы питания для экипажа 66-й основной экспедиции.

Источник: aif.ru

Космический мир

Орбитальные транспортные хабы, лунные базы, двигатели на воде, транспортировка и разработка астероидов. Звучит как бы фантастически, но по факту все это уже проектируется или существует в опытных образцах. А конечная материализация планов зависит, по сути, лишь от финансирования и обкатки. С финансированием, кстати, особых проблем нет. Частные и государственные инвесторы за последние 10 лет увеличили объемы инвестиций в разы, причем деньги вкладываются в долгосрочные проекты.

Ниже много всяких деталей про то, зачем все это вообще нужно и что там такого «нафантазировали» товарищи из индустрии.

В основе статьи лекция генерального директора «Орбита Капитал Партнерз» и представителя Singularity University Евгения Кузнецова, которую он прочел в рамках Архипелага 2121 в Точке кипения в Великом Новгороде.


Космический мир

Зачем нам экспансия и что с этим было в истории

В свое время Ангус Мэддисон научился считать исторический ВВП — оценивать, насколько богатыми были государства в прошлом. Большую часть истории Индия и Китай были самыми богатыми государствами. Но потом Европа и Северная Америка начали буквально экспоненциальный рост и сумели стать гораздо богаче. Только сейчас Китай ринулся догонять, осваивая новую модель:

Космический мир

Что происходило перед промышленными революциями, которые стали мощнейшим драйвером роста?

Это были великие географические открытия, которые принесли то, чего мы не ждали. 

Когда Колумб и Васко да Гама плыли за океан, они преследовали военно-политические или экономические цели. Но никто не знал, что они найдут новые ресурсы. Сильнее всего цивилизацию изменила простая картошка, которая через некоторое время после своего появления в Европе помогла победить голод. В итоге Европа стала бурно растущим регионом.


Сейчас мы находимся на пороге такого же взлета, когда космос откроет возможность почти неограниченного роста и расширения.

Четыре этапа освоения космоса

Я разделил историю освоения космоса на четыре стадии:

Космический мир
  • Космос 1.0. Первая стадия освоения была демонстрацией возможностей, когда страны преследовали в основном военно-политические цели. Главное было установить флаг. После этого все ждали Марса, спутников Юпитера и далеких звезд. Но процесс почти остановился на многие десятилетия. Государства решили свои задачи, а для бизнеса это было слишком дорого и сложно.

  • Космос 2.0. Далее началась волна скрытого освоения космоса, когда туда вылетели многие земные инфраструктуры — связь, телекоммуникации, телевидение. Скрытое освоение превратило космос в мощную индустрию. Чуть позже я покажу, насколько она велика. Эта стадия подарила нам возможность инвестировать в технологические проекты, связанные с новыми задачами освоения.

  • Космос 3.0. Прямо сейчас мы вступили в новую историю, когда в космос ринулись крупные компании и начали создавать космическую инфраструктуру. Грубо говоря, чтобы плыть через океаны, нужны порты и верфи. И сейчас такие «порты и верфи» создают уже не на Земле, а в космосе.

  • Космос 4.0. Когда космос наполнится инфраструктурой, он станет локомотивом роста. Это будет открытое пространство для освоения и добычи огромного количества полезных ресурсов. Тогда начнется новый экспоненциальный рост, который изменит наше представление о земной экономике: она станет экономикой Земли и космоса. 

Кто сейчас хозяйничает в космосе

Мы уже совершили важнейшие прорывы в развитии земной инфраструктуры:

  • научились строить низкоорбитальные группировки, которые позволяют переносить в космос значимые инфраструктурные объекты с Земли;

  • начали эпоху космического туризма;

  • запустили доступные космические сервисы. 

Все это происходит прямо сейчас. В 2019 году (по 2020 году данных еще нет) экономика космоса достигла отметки 366 миллиардов. Не более четверти составляют научные, военные и иные программы государств. Три четверти — это коммерческое освоение — спутники и наземная инфраструктура для них:

Космический мир

Но на эту инфраструктуру завязано значительно больше. Только в США это примерно пятитриллионная индустрия, куда входит интернет, финансовые сервисы, предсказания погоды, безопасность и многое другое. И эта индустрия постоянно растет — космос становится ареной для очень важных сервисов: 

Космический мир

Вместе с этим космос становится значительно доступнее, потому что его начинают осваивать все меньшие космические аппараты. Если раньше спутники были тяжелыми, мощными, сложными структурами, которые создавались годами, то сейчас за освоение орбиты взялись средние и малые аппараты весом до тонны: 

Сравнительные размеры малых, средних и больших спутников
Сравнительные размеры малых, средних и больших спутников

Поднимается вопрос о создании серийных спутников. 

Чтобы развернуть OneWeb или StarLink, необходимо производить по несколько спутников в день.

После запуска такого серийного производства нам останется всего один или два технологических шага до ремонтопригодных спутников, состоящих из заменяемых частей, которые можно ремонтировать прямо на орбите (об этом расскажу чуть позже). Я думаю, мы увидим их до конца десятилетия.

В последние годы количество запусков спутников, особенно малых — до 600 кг, — резко возросло, и этот рост продолжается. По прогнозам, за следующие 8–9 лет количество спутников, выводимых в космос, вырастет в 4–5 раз.

Создав полномасштабную группировку на орбите, мы сможем решать задачи, которые ранее казались невозможными. Например, сейчас при дистанционном зондировании Земли приходится выбирать: либо быстро и с низким качеством (частые снимки), либо редко, но с высоким качеством (сверхчеткие снимки). 

Задача для новой группировки спутников — выход на непрерывный мониторинг Земли в декасантиметровом разрешении, а в перспективе и в сантиметровом. Если сейчас Starlink и OneWeb еще не решают такую задачу, то, я уверен, массовые низкоорбитальные группировки следующего поколения уже будут среди прочего нести на себе оптику, чтобы мы могли перейти к очень детальному и точному мониторингу всего, что происходит на Земле.

Разрешение спутников и частота, с которой можно запрашивать изображения нужных участков Земли
Разрешение спутников и частота, с которой можно запрашивать изображения нужных участков Земли

Возможность добавить к любому земному сервису мониторинг из космоса открывает новые горизонты для бизнеса. Например, уже сейчас наблюдения применяют для контроля роста сельскохозяйственных растений, мониторинга строительства и перевозок, для спасения на водах и решения других морских задач. Не хватает только широкой доступности этого сервиса.

Есть разные прогнозы роста космической экономики. Один из наиболее авторитетных источников — конгломерат Morgan Stanley. Он предполагает, что к 2040 году оборот космоса превысит триллион долларов:

Космический мир

Я думаю, что это консервативная оценка. Вполне возможно, космос будет расти значительно быстрее. Обратите внимание, самый быстрорастущий сегмент (салатовые столбики) — это Second Order Impacts, вторичные возможности, когда аппарат, выведенный на орбиту для решения конкретных задач, например для обеспечения связи, параллельно выполняет дополнительную работу — фотосъемку.

Революция стоимости доставки грузов на орбиту

Почти 50 лет, начиная с первых полетов, космос был очень дорогим удовольствием. Стоимость вывода килограмма на орбиту начиналась от 5–6 тысяч долларов и практически не снижалась, пока не наступила эра SpaceX:

Космический мир

SpaceX — это революция в космонавтике, потому что проект на несколько порядков уронил стоимость запуска. Даже первый Falcon 9 обрушил цену почти в два раза, а запуск Starship снизит ее до нескольких сотен долларов за килограмм.

В будущем эта кривая обещает фантастическую траекторию. 

Обратите внимание, что вертикальная шкала — логарифмическая
Обратите внимание, что вертикальная шкала — логарифмическая

Если верить прогнозу, уже к 2040 году вывод груза на орбиту будет стоить меньше 100 долларов за килограмм, а к 2050 меньше десяти долларов за килограмм.

Космос становится на три порядка дешевле.

При этом ракеты становятся мощнее и совершеннее. 

Космический мир

Мы видим, что советские и российские ракеты вполне вписываются по грузоподъемности и качеству. Но ключевая задача для нас — достичь той же стоимости запуска. Это возможно только при фундаментальном удешевлении компонентов ракеты, создании заменяемых систем корабля и так далее. Необходима полная пересборка всей ракетостроительной индустрии на фундаменте новых технологий. Это и сделал Маск, чтобы обрушить цену.

Есть еще проблема космического мусора и перенаселенности орбит

У человеческой деятельности в космосе есть последствия: мы чрезвычайно быстро заполняем околоземное пространство разными объектами. На данный момент в космосе болтается уже почти 21 тыс. предметов диаметром более десяти сантиметров. Большая часть из них — это мусор, который занимает важные функциональные орбиты. 

График роста числа крупных объектов космического мусора
График роста числа крупных объектов космического мусора

Схема распространения обломков после испытания Китаем в 2007 году противоспутниковой ракеты
Схема распространения обломков после испытания Китаем в 2007 году противоспутниковой ракеты

Здесь показаны результаты китайского эксперимента по уничтожению спутника. Его осколки расползлись практически по всей орбите и сейчас представляют опасность для всех аппаратов, находящихся на этой же высоте. 

С учетом запуска новых многотысячных группировок спутников (только у SpaceX будет 42 тыс.) задача очистки орбиты становится все важнее. Поэтому мир обратился в сторону спутников, которые можно ремонтировать и заправлять прямо на орбите. Сейчас идут первые эксперименты. Сразу несколько компаний провели пробные дозаправки. В ближайшее время это станет мощной индустрией.

Чего ждать к 2035 году

Следующий рубеж, который нам предстоит преодолеть, — это выход коммерческих и промышленных проектов за рамки околоземной орбиты. У так называемой «межлунной экономики» (CisLunar economy) три важных ориентира:

  • резкое удешевление запусков — уже сбывающийся прогноз по падению стоимости в 10–100 раз;

  • добыча ресурсов и топлива в космосе;

  • создание космической энергетики и инфраструктуры. 

Луна — это сырьевая база для дальнейшего освоения космоса

В последнее время много говорят о лунных базах. Их уже проектируют, и некоторые рендеры, в частности NASA, хорошо известны:

В соответствии с программой «Артемида» после 2028 года NASA приступит к созданию лунной базы, рассчитанной на 15-летнюю эксплуатацию
В соответствии с программой «Артемида» после 2028 года NASA приступит к созданию лунной базы, рассчитанной на 15-летнюю эксплуатацию

Но лунная база нужна вовсе не для экспериментов. Луна — это огромное ресурсное пространство, обладающее колоссальным преимуществом по сравнению с Землей — значительно меньшей гравитацией и, как следствие, неглубоким гравитационным колодцем. С Луны намного легче забрасывать грузы и оборудование в открытый космос. 

С учетом этого в компании United Launch Alliance проектируют так называемую CisLunar Railroad — «межлунную железную дорогу»:

Инфраструктурная схема покорения ближайших планет
Инфраструктурная схема покорения ближайших планет

В свое время именно железные дороги в России и США связали между собой океаны — от Петербурга до Владивостока и от Восточного до Западного побережий. Именно вокруг железных дорог строили экономику и создавали программы государственного развития. Сейчас то же самое необходимо сделать в космосе. Чтобы решать фундаментальные задачи обеспечения космических миссий, нужно построить транспортный путь, опирающийся на объекты базовой инфраструктуры. 

По формуле Циолковского, чтобы запустить груз в космос, нужно сжечь количество топлива, равное почти 90% веса ракеты.

Тысячи килограмм топлива ради десятков килограмм груза. Чтобы запустить Starship на Марс, необходимо сделать несколько запусков Starship с Земли, чтобы он вынес на орбиту все необходимое. Это крайне неэффективно и бессмысленно, особенно если это простые виды грузов.

Для освоения космоса нужен металл (как основа строительства), топливо для полетов (вода, водород), кислород, какие-то минеральные ресурсы. Все эти грузы крайне дороги, если уводить их с Земли. Но все это есть на Луне и в космосе.

На снимке — AI-реконструкция минералогической карты Луны:

Эта мозаика из 53 изображений была получена космическим аппаратом Галилео, направлявшимся к Юпитеру в 1992 г. Сами изображения сделаны с помощью трех фильтров, выделивших разные области спектра
Эта мозаика из 53 изображений была получена космическим аппаратом Галилео, направлявшимся к Юпитеру в 1992 г. Сами изображения сделаны с помощью трех фильтров, выделивших разные области спектра

На Луне много привычных нам металлов, включая титан и железо. Это строительные материалы, которые помогут создать на орбите Земли базовые конструкции космических станций и миссий к дальним планетам. Немало и редких элементов, таких как иридий, который попадает на Землю с метеоритами и находит применение в двигателестроении.  

Поскольку тяготение на Луне в шесть раз меньше земного, потребуется значительно меньше топлива для того, чтобы вывести все это на орбиту Земли.

Для получения этих ресурсов в ближайшие 15–25 лет понадобится так называемая трансферная станция на орбите Луны, а также базовая станция на ее поверхности — для проведения ремонтных работ и других функций. 

А станция в точке Лагранжа между Землей и Луной, наверное, будет первым крупнейшим портом, с которого начнется дальнейшая колонизация Солнечной системы.

Уже сейчас крупнейшие мировые компании проектируют роботов, которые смогут быстро и дешево построить базу на Луне. Один из таких проектов развивают в России — на базе Самарского университета. Здесь создают 3D-принтер, способный печатать в лунных условиях. Но таким проектам еще предстоит длительный этап тестирования.

Ключевой момент — водяной двигатель

Одно из прорывных изобретений в контексте освоения космоса — водяной двигатель Momentus. Это российская разработка, которую пытаются реализовать в США. Сейчас там есть определенные проблемы, но сама технология имеет колоссальное будущее. Пожалуй, это ключевой момент для освоения Солнечной системы.

Первый спутник Vigoride-1 с этим двигателем уже полностью собрали. Запуск намечен на 2022 год
Первый спутник Vigoride-1 с этим двигателем уже полностью собрали. Запуск намечен на 2022 год

Тут прямая аналогия с плазменным двигателем, построенным по образцу применяемых на спутниках ионных установок. Но если обычный двигатель использует ксенон — земной газ, который необходимо сначала вывести на орбиту, — то этот двигатель использует более доступную воду, которая присутствует и в космосе.

В мире есть несколько групп, которые занимаются поиском воды в космосе. Например, прорабатывают освоение лунных полюсов, где с очень высокой вероятностью есть чистый лед. Воду можно использовать в таком двигателе или разложить на водород и кислород, чтобы заправить более традиционные установки с водородно-кислородной парой.

Ключевая задача на ближайшее десятилетие — сделать водяные и водородно-кислородные двигатели настолько надежными и массовыми, чтобы приступить к освоению Солнечной системы на внеземном топливе.

Астероиды как главный приз

Астероиды — еще одна кладовая космоса, причем содержит она иногда фантастические объемы ресурсов. Об этом задумывались еще в 1960-е годы. Но подобные проекты оказались недешевыми даже на бумаге. Сейчас ситуация меняется. Если найти воду на самом астероиде и использовать водяной двигатель, то можно двигать астероид, не доставляя туда топливо. Этот подход оказывается на 3–4 порядка дешевле традиционного и открывает совершенно новый путь к освоению космоса.

В этот момент мы все, конечно, думаем о Поясе астероидов между Марсом и Юпитером. Но есть более близкие астероиды, которые вращаются на орбите Земли или иногда ее пересекают. Например, на иллюстрации астероид Ryugu. К нему отправили уже две миссии японских космических кораблей Хаябуса, которые подтвердили и наличие минералов, и саму возможность таких миссий.

Космический мир

Ryugu практически полностью состоит из железа и никеля — строительных материалов, которые можно использовать для создания конструкций на орбите.

Общая оценка стоимости этого астероида — почти 80 миллиардов долларов. Если добыть такое количество этих металлов на Земле и доставить на орбиту, это обойдется в тысячу раз дороже.

Стоимость миссии к этому астероиду с целью подтолкнуть его поближе к Земле — 50 миллиардов долларов. 30 миллиардов долларов — чистая прибыль. 

И совершенно необязательно «кидать» его на Землю. Это опасно и бессмысленно. Гораздо полезнее оставить его в точке Лагранжа, где он будет поддерживать свою траекторию и где его можно постепенно — десятилетиями — разрабатывать, доставляя на орбиту сверхдешевые металлы для строительства.

В космосе есть и более фантастические объекты. Один из наиболее популярных — астероид Психея. Его оценивают почти в 10 квинтиллионов долларов. Квинтиллион — это триллион миллиардов — фантастическая сумма. 

Художественное изображение Психеи, созданное на основе компьютерной модели после обработки множества радарных снимков ее поверхности
Художественное изображение Психеи, созданное на основе компьютерной модели после обработки множества радарных снимков ее поверхности

Значительную долю его веса составляет платина, золото и другие ценные металлы, не говоря о том, что остальная часть практически полностью железо-никелевая. Скорее всего, это ядро бывшей протопланеты, которая развалилась на орбите между Марсом и Юпитером.

По весу это почти десятая часть всего астероидного пояса. К нему тоже можно отправлять миссии, и NASA уже сейчас планирует это сделать. Его, конечно, нереально приблизить к Земле, но можно использовать, чтобы создавать необходимые конструкции для освоения более дальнего космоса — Марса, лун Юпитера и Сатурна.

Иными словами, в космосе разбросано очень много ценных камней. Наша задача — научиться к ним летать и разрабатывать их.

В свое время Bank of America оценил потенциал этих «камней» почти в 700 квинтиллионов долларов. Это астрономическая сумма, которая означает только одно: сколько бы денег ни вложили в космос, получим значительно больше. 

Список ключевых астероидов Солнечной системы и их предполагаемый состав. Самый дорогой и самый крупный из них — Davida. По данным базы Asterank, его стоимость составляет 15,38 * 10^18 долларов
Список ключевых астероидов Солнечной системы и их предполагаемый состав. Самый дорогой и самый крупный из них — Davida. По данным базы Asterank, его стоимость составляет 15,38 * 10^18 долларов

Общий ВВП космоса в тысячи и миллионы раз больше, чем ВВП Земли. Иными словами, если мы создадим человечество, которое опирается не только на Землю, оно сможет быть более богатым и иметь значительно больше ресурсов для того, чтобы расширяться — осваивать все более дальний космос. И если мы научимся разрабатывать ресурсы космоса, у нас не будет ограничений по ресурсам.

Одна из схем добычи ресурсов на астероидах. Буксиры разгружают на орбите Земли и они возвращаются к астероидам, а доставленные ими ресурсы перерабатывают в топливо для спутников без отправки на Землю
Одна из схем добычи ресурсов на астероидах. Буксиры разгружают на орбите Земли и они возвращаются к астероидам, а доставленные ими ресурсы перерабатывают в топливо для спутников без отправки на Землю

Чтобы это реализовать, необходимо создать сложную инфраструктуру. Например, чтобы приблизить астероид к точке Лагранжа, нужно иметь мощные буксиры на воде и другом топливе, добываемом из самого астероида. И создавать развитую транспортную сеть с разными орбитальными точками базирования, которая сможет переводить грузы с орбиты на орбиту, доставляя их в нужную точку. Для этого нужны двигатели, системы ориентации, то есть довольно много интеллектуального оборудования.

Что в планах на следующие 30 лет

Обширный roadmap, сформулированный американцами, охватывает ближайшие 30 лет и приводит к почти десятикратному росту космической экономики, а также 200–300-кратному росту числа людей в космосе:

Космический мир

Мы здесь видим важные вехи:

  • начало сборки и ремонта спутников на орбите примерно в 2023–2024 годах;

  • лунная база в 2027 году;

  • добыча лунного топлива годом позднее;

  • создание отеля или станции с искусственной гравитацией к концу 2030-х годов.

Это все довольно амбициозные задачи, но они выполнимы. Более далекие горизонты пока просматриваются не столь определенно, поскольку эти проекты еще не запущены. А вот в уже описанные проекты — космические артерии, лунные станции и т. п. — уже инвестируют либо государства, либо частные структуры. У всех этих проектов есть свой таймлайн, который можно контролировать. 

Так что истории про космические орбитальные станции, населенные людьми, или про лунное топливо уже вполне реалистичны.

Куда все двинется после 2050 года 

К 2050 году, когда будет реализована первая задача (строительство космической инфраструктуры), начнут говорить:

  • О создании полноценных космических производств, которые могут выпускать товары, реализуемые на Земле. Пока идей немного: например, новые типы полупроводников или искусственные органы. До недавнего времени производить что-либо на орбите было нерентабельно. Всю прибыль съедала бы стоимость доставки продукции на Землю. Эта стоимость уже упала в сто раз и упадет еще в сто, тогда космическое производство станет реалистичным. К тому моменту появится много проектов, которые будут экспериментировать с выпуском разных видов продукции на орбите. Именно поэтому сейчас огромное значение имеет развитие космических лабораторий.В ближайшие 10–15 лет будет волна запусков тестирований разных продуктов, которые производить в невесомости дешевле, чем на Земле. Такие продукты появятся, поскольку космос — это уникальная среда с микрогравитацией, где нет экологических рисков. Например, в космос можно перенести тяжелые производства без рисков для атмосферы.Все это необходимо, чтобы у будущих космических станций появилась экономика.

  • О жилых орбитальных станциях. Когда стоимость поездки упадет с сотен тысяч до тысяч долларов, на орбиту будет летать не два человека в год. Это будут делать все, кто сейчас может потратить 10 000 долларов, например, на поездку в Европу. И это только одна задача. Но у космоса есть много применений помимо банального туризма, которые раскроются со временем.

  • О достижении дальнего космоса — о нашей общей мечте. Можем ли мы достичь чего-то большего, чем Земля, Луна, спутники Юпитера и Сатурна? Кто увлекается космосом, конечно, знает о замечательном проекте — двигатель Алькубьерре, который когда-то пообещал нам межзвездные путешествия (решение уравнений Эйнштейна, которое предполагает достижение сверхсветовой скорости за счет сжатия и растяжения пространства).

Это не более чем теоретическая игра — нетривиальное решение уравнений, в соответствии с которым для перемещения требуется фантастическое количество энергии. Но буквально в прошлом году вышла статья, которая удешевила энергетику пузыря Алькубьерре сразу на несколько порядков. Теперь для его формирования нужна энергия не всей нашей Галактики, а лишь одного Юпитера. Это большой прорыв в математике.

Я почти уверен, что подобные прорывы еще будут происходить, поскольку общее развитие цивилизации идет экспоненциально. Если в какой-то сфере есть прогресс, он неизбежно со временем ускоряется.

Конечно, это не прогноз, а лишь надежда, что достижения математики и физики приблизят нас к прототипу сверхсветового передвижения уже до конца столетия.

Источник: habr.com

Идею искусственного спутника сформулировал ещё Исаак Ньютон в своей фундаментальной работе «Математические начала натуральной философии» (1687). Он предложил разогнать пушечное ядро до такой скорости, что оно не упадёт на Землю, а будет бесконечно долго вращаться по орбите. Идею много позже обыграли французские фантасты Жюль Верн и Андре Лори в романе «Пятьсот миллионов бегумы» (1879).

Однако за десять лет до французов американский писатель и теолог Эдвард Хейл в дилогии, состоящей из повестей «Кирпичная луна» (1869) и «Жизнь на кирпичной луне» (1870), описал куда более смелый проект: не просто спутник на орбите, а обитаемый спутник.

Хейла называют «литературным вундеркиндом»: он очень рано начал писать и публиковаться, причём отдавал предпочтение реалистическим рассказам. «Кирпичная Луна» стала исключением, хотя и в этом тексте автор постарался придать вымышленным событиям достоверность. Персонажи дилогии задумали отправить на орбиту искусственный объект диаметром двести футов (61 метр), сделанный из кирпича: они полагали, что при пролёте через атмосферу этот объект раскалится настолько, что такую температуру не сможет выдержать ни один существующий металл. Для запуска использовались гигантские маховики, однако они случайно сработали раньше времени, и вместе с «луной» в космос отправились её строители — причём они не только уцелели, но и основали процветающую колонию.

Следующим идею высказал немецкий фантаст и философ Курт Лассвиц в романе «На двух планетах», впервые опубликованном в октябре 1897 года. Высокоразвитая цивилизация марсиан организовала тайную базу на северном полюсе Земли. Над базой на высоте 6356 километров находится космическая станция: гигантское колесо с внешним диаметром 120 метров и внутренним — 50 метров. Станция служит «перевалочным пунктом» для кораблей марсиан. По сути, Курт Лассвиц был первым автором, который предположил, что орбитальную станцию можно использовать как базу для обслуживания и заправки межпланетных кораблей.

Дальнейшее развитие идея орбитальной станции получила в трудах основоположников теоретической космонавтики. Константин Циолковский впервые коснулся этой темы в научно-фантастической повести «Вне Земли», первые главы которой были опубликованы в популярном журнале «Природа и люди» в 1918 году.

Циолковский предполагал, что в будущем (ориентировочно после 2017 года) учёные придумают, как запустить на геостационарную орбиту тысячи ракет с пассажирами, которые начнут строить станцию в виде цилиндрической оранжереи. Она должна будет медленно вращаться, но не для создания искусственной силы тяжести, а для регулирования внутренней температуры. Такие станции-оранжереи, по замыслу Циолковского, можно будет соединять друг с другом, создавая в космосе более крупные сооружения — в виде пятиконечных звёзд или простых геометрических фигур.

Для калужского мыслителя строительство обитаемых станций на орбите было одним из обязательных этапов на пути к освоению космоса. Он верил, что, когда население станций достигнет десятков тысяч человек, они отправятся в межпланетное путешествие, используя ресурсы встречных астероидов и комет. Вырвавшись из гравитационного «колодца», земляне станут поистине галактической цивилизацией. Идеи Циолковского нашли отражение в более поздней советской фантастике — например, в романе Александра Беляева «Звезда КЭЦ» (1936).

Другой основоположник космонавтики, немец Герман Оберт, прагматичнее подошёл к идее орбитальной станции. В двух своих книгах «Ракета в межпланетное пространство» (1923) и «Пути осуществления космического полёта» (1929) он изложил проект большой ракеты массой 300–400 тонн, которая могла бы оставаться на высокой орбите сколь угодно долго. При необходимости, писал Оберт, можно запустить две одинаковые ракеты, связать их тросом и раскрутить друг относительно друга, чтобы создать внутри искусственную силу тяжести. Предполагалось, что станция облегчит морскую навигацию, связь, картографирование, отслеживание айсбергов. Кроме того, Оберт предлагал собрать рядом со станцией огромное зеркало, которое могло бы концентрировать солнечные лучи на любой точке земной поверхности для воздействия на климат или для уничтожения вражеских войск и даже городов.

Проект Оберта тоже пользовался успехом у фантастов. Например, он описан в романе Карла фон Лаффета «Мировой пожар» (1926). Действие происходит в будущем, все цивилизованные страны подчиняются Лиге Мира, которая среди прочего построила и запустила на орбиту «Эфирную станцию» с зеркалом, способным воздействовать на климат. Однако большевистский диктатор захватывает один из космических кораблей, обслуживающих станцию, и собирается использовать её как оружие. К счастью, его зловещие планы терпят крах, а «Эфирная станция» спасает Европу от глобального пожара, вызванного аномальной вспышкой на Солнце.

В романе Отто Гейла «Лунный камень» (1926) орбитальную станцию строят немецкие инженеры из Межпланетного общества. Её назначение — не только управлять климатом, но и обеспечить сборку пилотируемого космического корабля «Икар», который должен отправиться на Венеру.

В 1929 году появился ещё более оригинальный проект — космической станции на гелиоцентрической орбите (то есть искусственной планеты). Его предложил английский физик Джон Бернал, известный как автор термина «научно-техническая революция». Станция представляла собой сферу диаметром 16 километров, изготовленную из материала астероидов и способную вместить от 20 до 30 тысяч человек — они должны были жить на её внутренней поверхности. Бернал полагал, что выход в космос даже на примитивных ракетах настолько мощно стимулирует прогресс, что строительство внеземной колонии станет неизбежным. Она могла бы служить площадкой для старта и ремонта межпланетных кораблей, для астрономических наблюдений и для космического туризма.

Но главной целью сферической станции должно было стать снижение демографического давления на Земле. Джон Бернал, как и многие учёные первой половины ХХ века, полагал, что скоро наша планета окажется перенаселена, природные ресурсы будут исчерпаны, и возникнет нужда в строительстве искусственных планет. Когда и их окажется слишком много на орбите вокруг Солнца, некоторые из сфер-колоний отправятся в полёт к соседним звёздам.

Эти масштабные проекты сейчас кажутся наивными. Но их авторов извиняет то, что они и представить не могли, с какими трудностями столкнётся реальная космонавтика.

В 1928 году австро-венгерский военный инженер Герман Ноордунг (Поточник) развил проект орбитальной станции Германа Оберта в своей книге «Проблема преодоления космического пространства. Ракетный двигатель». Станция Ноордунга состояла из трёх модулей: «жилого колеса» диаметром 30 метров, вращающегося для создания искусственной силы тяжести, электростанции с параболическим зеркалом и обсерватории. Инженер предлагал запустить станцию на высокую геостационарную орбиту, удобную для научных исследований.

Параллельно с Ноордунгом над концепцией орбитальной станции работал австрийский инженер-изобретатель Гвидо фон Пирке. В своей статье «Межпланетные маршруты» (1928) он на цифрах показал, что старт межпланетного корабля с орбитальной станции энергетически выгоднее, чем с земного или лунного космодрома. При этом, подчёркивал фон Пирке, строительство такой станции будет необычайно трудным и затратным делом, однако позднее, когда начнутся полёты к Венере и Марсу, все усилия окупятся сторицей. Убедительные выкладки австрийца способствовали тому, что «наблюдательная станция» в работах теоретиков была вытеснена концепцией «космического порта».

С книгами Оберта, Ноордунга и статьями фон Пирке был, без сомнения, знаком молодой немецкий инженер Вернер фон Браун, возглавивший ракетную программу Третьего рейха. Ещё в школе он под впечатлением от их трудов написал фантастический рассказ «Лунетта» (1929), в котором подробно обрисовал устройство станции, построенной по проекту Оберта. Чтобы мечты предшественников стали реальностью, фон Браун посвятил себя ракетостроению и добился немалых успехов: под его руководством в центре Пенемюнде была сконструирована и построена тяжёлая баллистическая ракета «А-4», ныне известная как «Фау-2». В 1944 году она стала первой ракетой в истории, которая преодолела условную границу космоса на высоте 100 километров. Однако, вопреки планам Вернера фон Брауна и его соратников, гитлеровцы использовали «А-4» не для проникновения в околоземное пространство, а для обстрела Лондона.

После войны инженерные таланты немецких ракетчиков оказались востребованы в странах-победительницах. Вернера фон Брауна с группой специалистов вывезли в США, где они занялись привычным делом — изготовлением военных ракет. При этом немецкий конструктор не забыл о своих юношеских мечтах: в резюме, составленном для американских «кураторов» в 1946 году, он привёл описание космической станции в виде вращающегося колеса с зеркалом.

Широкую известность идеям фон Брауна принёс Первый симпозиум по космическим полётам, который состоялся 12 октября 1951 года в планетарии Хейдена (Нью-Йорк). По его итогам в марте 1952 года журнал Collier’s опубликовал серию материалов о грядущих полётах в космос, проиллюстрированных Чесли Боунстеллом. Среди прочего, была опубликована и статья немецкого конструктора о вращающейся тороидальной станции, облик которой на два десятилетия определил представления учёных и фантастов о покорении ближнего космоса.

Идеи фон Брауна и других энтузиастов оказались востребованы ещё и потому, что с 1950 года в США начался настоящий космический бум. Ему способствовали фантастические журналы и романы для юношества. Среди ведущих авторов того времени был Роберт Хайнлайн, по сценарию которого сняли превосходный фильм «Место назначения — Луна» (1950), поразивший зрителей революционными спецэффектами.

На волне интереса к теме Хайнлайну предложили принять участие в создании фантастического сериала «Внешний мир» о грядущей космической экспансии. К сожалению, затея провалилась и до экранов дошёл только пилотный эпизод, озаглавленный «Кольцо вокруг Луны». Но в итоге его доработали до полнометражного фильма, получившего название «Проект «Лунная база» (1953). Хайнлайн остался недоволен результатом и потребовал убрать своё имя из титров. И, наверное, зря, потому что и этот фильм был довольно революционным для своего времени. Например, в нём впервые была показана женщина-президент и… орбитальная станция, которая служила промежуточным пунктом при полёте на Луну.

Новые образы понравились кинематографистам. В феврале 1954 года на американских экранах появился телесериал «Рокки Джонс, космический рейнджер». Конечно, это была далеко не первая «космическая опера» на телевидении. Но примечательна она была тем, что её создатели обратились к дизайну космических проектов, которые предлагали немецкие учёные. Действие сериала происходит в далёком будущем. Солнечная система полностью освоена, земляне расселились по планетам, их спутникам и даже искусственным планетоидам, но при этом пилотируемые ракеты летают на химическом топливе, а искусственная сила тяжести на тороидальных станциях создаётся за счёт вращения.

Ещё более дотошно подошли к визуализации технологий будущего авторы фильма «Покорение космоса» (1955). Режиссёр Байрон Хэскин, прославившийся любовью к масштабным спецэффектам, пригласил техническим консультантом самого Вернера фон Брауна. Поэтому в кадре можно увидеть полный комплект проектов, которые предложил немецкий конструктор и проиллюстрировал Чесли Боунстелл, включая вращающуюся тороидальную станцию.

Больше того, вскоре и сам фон Браун появился в научно-популярных фильмах «Человек в космосе» и «Человек и Луна», выпущенных студией Диснея ради рекламы тематической зоны Tomorrowland («Земля будущего») в «Диснейленде». Благодаря всему этому немецкий конструктор стал считаться «главным по космосу», хотя как раз к реальной космической программе его с учётом нацистского прошлого не допускали. Только после неудачного запуска спутника «Авангард», который должен был стать ответом на советский «Спутник-1», фон Брауну наконец-то позволили наверстать упущенное.

В то же время кинематографисты продолжали тиражировать проекты фон Брауна и дизайнерские решения Боунстелла. Их можно увидеть в фильмах «Гог» (1954), «Королева космоса» (1958), «Мятеж в космосе» (1965), «Дикая-дикая планета» (1965), «Война между планетами» (1966), «Диафаноиды с Марса» (1966), «Зелёная слизь» (1968).

Разумеется, не обошёл тему космического «колеса» и Стэнли Кубрик в знаменитом фильме «Космическая одиссея 2001 года» по одноимённому роману Артура Кларка. Фильм вышел в 1968 году, незадолго до первых полётов кораблей «Аполлон» к Луне. В этой киноленте, которая давно стала классикой, вращающаяся тороидальная станция предстаёт как высшее и самое совершенное произведение человечества.

Инженерная мысль не стояла на месте. Запуски искусственных спутников, орбитальные полёты космонавтов и астронавтов, подготовка к высадке на Луну — казалось, что быстрая космическая экспансия уже началась. Фантасты и футурологи 1960-х годов были уверены, что в течение ближайших десятилетий земляне доберутся до соседних планет и астероидов, развернут там обитаемые базы и начнут подготовку к межзвёздной экспедиции. Под стать этим ожиданиям менялись и проекты станций.

В 1969 году американский физик Джерард О’Нил, который увлекался космонавтикой и даже подавал документы в отряд астронавтов, предложил проект космической колонии в виде вращающихся сферы или цилиндра. Он предложил разместить их в либрационных точках пространства, где силы гравитации Земли и Луны взаимно уравновешиваются.

На основе своих изысканий О’Нил написал статью «Колонизация космоса», но сумел опубликовать её только в 1974 году. За это время он прочитал о собственном проекте несколько лекций, которые вызвали интерес в научных кругах. Физик говорил, что его «цилиндры» способны решить многие проблемы человечества: расширить пространство обитания, гарантировать цивилизационное разнообразие, снизить демографическое давление, улучшить экологию и так далее. Неожиданную поддержку О’Нил получил от Артура Кларка, который пришёл к сходной концепции в романе «Свидание с Рамой» (1972).

Космические станции 11

В мае 1974 года О’Нилу удалось организовать в стенах Принстонского университета двухдневную конференцию по вопросам космической колонизации, в работе которой приняли участие научные журналисты и представители NASA. После неё о проекте узнала массовая аудитория, а также влиятельные политики. О’Нил получил грант на исследования и смог тщательнее проработать идею.

Колонизацию космоса физик разделил на три этапа, каждый из которых был связан со строительством большой обитаемой станции: шарообразных «Острова-1» и «Острова-2», а также состоящего из двух цилиндров «Острова-3». Последнее сооружение поражало своими размерами: 8 километров в диаметре и 32 километра длиной. Изготовить его должны были из материала Луны, доставленного в либрационную точку с помощью электромагнитных катапульт. Хотя стоимость строительства «островов» оценивалась в сотни миллиардов долларов, О’Нил утверждал, что они вполне могут окупиться, если будут служить как солнечные электростанции, передавая энергию на Землю с помощью микроволнового излучения.

В качестве альтернативы проекту О’Нила группа студентов из Стэнфордского университета предложила вращающееся космическое колесо диаметром 1,8 километра с населением 10 тысяч человек. Сооружение, прозванное в литературе «Стэнфордским тором», понравилось фантастам: его можно увидеть, например, в фильмах «Господин Никто» (2009) и «Элизиум» (2013), в играх Mass Effect (2007) и Elite: Dangerous (2014).

Космические станции 12

Для развития проекта Джерард О’Нил учредил Институт космических исследований, а вскоре издал книгу «Высокие рубежи» (1976), которая вызвала множество восторженных отзывов. Дело дошло до того, что инициативу О’Нила одобрил президент Рональд Рейган, и в 1985 году NASA провело исследование, посвящённое возможности построить колонию в течение пятидесяти лет. Однако гибель шаттла «Челленджер» поставила крест на дискуссиях о массовом прорыве в космос.

Реальность разошлась с фантастикой ещё раньше. Несмотря на обилие разнообразных проектов, американским специалистам удалось запустить только одну орбитальную станцию — Skylab. С мая 1973 по февраль 1974 года на ней побывали три экспедиции; при этом значительную часть времени астронавтам приходилось ремонтировать свой космический дом.

Источник: www.MirF.ru

Строение Солнечной системы

В состав солнечной системы входит восемь основных планет и пять карликовых, вращающихся приблизительно в одной плоскости. По своим физическим свойствам планеты делятся на земную группу и планеты-гиганты.

Планеты земной группы относительно небольшие и плотные, состоят из металлов и минералов. К ним относятся:

  • Меркурий, 
  • Венера, 
  • Земля, 
  • Марс. 

Планеты-гиганты во много раз больше других планет, они состоят из газов и льда. Это:

  • Юпитер, 
  • Сатурн, 
  • Уран 
  • Нептун. 

Орбита Земли делит солнечную систему на две условные области. Во внутренней находятся ближайшие к Солнцу планеты — Меркурий и Венера. Во внешней области — более удалённые от Солнца, чем Земля: Марс, Юпитер, Сатурн, Уран и Нептун.

Пространство между орбитами Марса и Юпитера, а также за Нептуном (пояс Койпера) занимают малые небесные тела: малые планеты и астероиды. Также по пространству Солнечной системы курсируют кометы и потоки метеороидов. 

Рассмотрим планеты солнечной системы по порядку.

Состав Солнечной системы

Объекты Солнечной системы в сравнительном масштабе
Источник: livejournal.com

Солнце

Источник: stock.adobe.com

Звезда класса «жёлтый карлик». 98% массы Солнца приходится на водород и гелий, но в нём также содержатся все известные химические элементы. Солнце ярче, чем 85% звёзд в галактике, а температура его поверхности превышает 5 700°C. 

Солнце почти в 110 раз больше Земли, а его масса в тысячу раз превосходит массу всех планет, вместе взятых. Именно благодаря солнечному свету и теплу на Земле существует жизнь. 

<<Форма демодоступа>>

Меркурий

Самая близкая к Солнцу и самая маленькая планета солнечной системы — Меркурий лишь немного больше Луны. Меркурий получает в семь раз больше тепла и света, чем Земля, поэтому температура его поверхности колеблется от +430°C днём до −190°C ночью. Это самый большой температурный перепад в солнечной системе. 

Несмотря на то что люди наблюдали Меркурий на небе с древнейших времён, известно о нём немного. Первый снимок его поверхности был получен только в 1974 году. Она оказалась покрыта многочисленными кратерами и скалами.

Фото с поверхности Меркурия, выполненное аппаратом «Маринер-10», 1974 
Источник: mks-onlain.ru

Атмосфера практически отсутствует — возможно, причиной тому солнечное излучение, а может быть, небесное тело такого размера просто не в состоянии удерживать плотную газовую оболочку. 

Поскольку для оборота вокруг Солнца Меркурию нужно пройти гораздо меньшее расстояние, чем Земле, год на нём значительно короче — всего 88 земных суток. За один меркурианский день успевает пройти более двух местных лет. Поскольку ось вращения планеты почти не наклонена, год на ней не делится на сезоны. 

Меркурий назван по имени древнеримского бога торговли и хитрости. 

Венера

Венера — вторая планета от Солнца и ближайшая к Земле. Венеру иногда называют «близнецом» нашей планеты: её размеры и масса очень близки к земным. Однако на этом сходство заканчивается.

Венера окутана очень плотным слоем облаков, за которыми невозможно разглядеть поверхность. Из-за парникового эффекта она нагревается до 480°C — абсолютный рекорд для солнечной системы. Облака проливаются кислотными дождями и пропускают только 40% солнечного света, поэтому на планете царит вечный сумрак.

Из-за сильнейшего атмосферного давления (как на глубине 900 метров в земных океанах) ни один исследовательский аппарат, отправленный на Венеру, не просуществовал дольше двух часов. Тем не менее учёным удалось узнать, что атмосфера планеты на 94% состоит из углекислого газа, а состав грунта не отличается от других планет земной группы. На Венере много вулканов, но почти нет кратеров — все метеориты сгорают в плотной атмосфере.

Фото с поверхности Венеры, выполненные аппаратом «Венера-13», 1982 
Источник: mks-onlain.ru

День на Венере длится дольше, чем на любой другой планете — около 243 земных суток. Продолжительность года чуть уступает дню — 225 земных суток. Как и на Меркурии, сезонов на Венере нет. 

Облака Венеры хорошо отражают солнечный свет, поэтому на земном небе планета светится ярче других. Возможно, именно поэтому древние римляне связали её с богиней красоты и любви.  Примечательно, что Венера — одна из двух планет солнечной системы, вращающихся вокруг оси по часовой стрелке. 

Земля

Земля — третья планета от Солнца и крупнейшая в земной группе. Уникальные условия Земли позволили развиться на планете жизни.

Атмосфера Земли состоит из азота (78%), кислорода (21%), углекислого и других газов (1%). Кислород и азот — необходимые вещества для строительства ДНК. Озоновый слой атмосферы поглощает солнечную радиацию. Кислород на Земле синтезируют растения из углекислого газа. Не будь их, наша планета напоминала бы Венеру. С другой стороны, некоторое количество CO2 в атмосфере обеспечивает на Земле комфортную для жизни температуру. 

70% поверхности Земли покрыты водой. В отличие от Луны и Меркурия, на Земле очень мало кратеров. Учёные считают, что они исчезли под воздействием ветра и эрозии почвы. 

Из-за наклона Земной оси (23,45°) на Земле хорошо различимы сезоны года. Для оборота вокруг своей оси Земле требуется чуть менее 24 часов — это самый короткий день среди планет земной группы.

Земля имеет спутник — Луну. Её размер составляет ¼ земного диаметра, что довольно много для спутника. Притяжение Луны влияет на земную воду, вызывая приливы и отливы. Вращение Луны вокруг своей оси и вокруг Земли синхронно, поэтому Луна всегда обращена к Земле только одной стороной. 

Восход Земли над Луной. Фото астронавта Уильяма Андерса, 1968
Источник: wikipedia.org

Земля — единственная планета, название которой не связано с мифологией. И русское «земля», и английское «earth», и латинское «terra» обозначают почву или сушу.

Марс

Марс — четвертая планета от Солнца — меньше Земли почти в два раза. Долгое время считалось, что на красной планете существует жизнь. Люди наблюдали на его поверхности объекты, казавшиеся им постройками, дорогами и даже гигантскими скульптурами. Однако на поверку марсианская цивилизация оказалась обманом зрения. Многочисленные исследовательские миссии пока тоже не подтвердили наличие какой-либо жизни на поверхности планеты.

Фото с поверхности Марса, выполненное марсоходом «Curiosity», 2017 
Источник: nasa.gov

Атмосфера Марса по составу напоминает венерианскую — 95% углекислого газа. Но поскольку она очень тонкая и разреженная, парникового эффекта не возникает, поэтому максимальная температура поверхности планеты — около 0°C, а атмосферное давление в 160 раз меньше, чем на Земле. В составе марсианской атмосферы есть водяной пар, а на полюсах лежат шапки ледников, но жидкой воды на поверхности нет.

И всё же учёные считают Марс самой перспективной планетой для освоения, поскольку погодные условия на ней довольно приемлемы для человека. Если не считать низкое содержание кислорода в атмосфере, радиацию и пылевые бури, длящиеся по несколько месяцев. На Марсе находится самая высокая гора в солнечной системе — вулкан Олимп, высота которого 27 километров. Это в три раза выше Эвереста, высочайшей горы Земли. 

Из-за удалённости от Солнца год на Марсе почти в два раза длинней земного. Скорость вращения вокруг своей оси почти такая же, как на Земле, так что сутки длятся 24 часа 40 минут. Наклон оси Марса составляет 25,2°, а значит, на нём, как и на Земле, существуют сезоны. 

Марс имеет два спутника — Фобос и Деймос, представляющие собой бесформенные каменные глыбы сравнительно небольших размеров. Из-за красного цвета древние римляне назвали планету именем бога войны. 

Юпитер

Юпитер, самая большая из планет-гигантов, отделена от Марса поясом астероидов. Масса Юпитера в два раза больше, чем масса всех остальных планет, лун, комет и астероидов системы вместе взятых. По яркости на земном небе он уступает только Венере. Люди наблюдали его с древнейших времён и связывали с сильнейшими богами своих пантеонов. Юпитер — имя римского царя богов. 

Юпитер является газовым гигантом. Коричневые и белые полосы — это облака соединений серы, которые движутся в атмосфере планеты с чудовищной скоростью. Большое красное пятно Юпитера — гигантский вихрь. С момента его обнаружения в 1664 году он стал заметно меньше, но и теперь в несколько раз превосходит Землю по размерам. 

О структуре планеты учёные пока только догадываются. Предположительно она состоит из газов, плавно переходящих в металлическое состояние по мере приближения к ядру. Считается, что ядро Юпитера каменное. Сильнейшее в системе магнитное поле Юпитера воздействует на частицы в миллионах километрах вокруг и даже достигает орбиты Сатурна. Это одна из причин огромного числа спутников у планеты.

Крупнейшие спутники Юпитера.
Источник: mks-onlain.ru

В 1610 году астроном Галилео Галилей обнаружил четыре крупнейших спутника Юпитера. В наше время известно 79 объектов, вращающихся вокруг планеты. Некоторые из них напоминают Луну, другие выглядят как большие астероиды. Особый интерес представляет Ио — планета с мощнейшими в системе вулканами. Более мелкие частицы образуют вокруг Юпитера кольца, хотя они не так заметны, как у соседнего Сатурна.

Сатурн

Шестая планета от Солнца. Как и спутники Юпитера, Сатурн был обнаружен Галилеем в начале XVII века. На сегодняшний день эта планета остаётся одной из наименее изученных. 

Атмосфера Сатурна состоит из водорода (96%) и гелия (4%) с незначительными вкраплениями других газов. Скорость ветра на Сатурне достигает 1 800 км/ч — это самые сильные ветра в системе. Облака в его атмосфере тоже образуют полосы и пятна гигантских вихрей, хоть и менее заметные, чем на Юпитере. 

О происходящем за атмосферным слоем планеты известно мало. Предположительно, в центре находится металлосиликатное ядро, окружённое спрессованными до состояния металла газами, плотность которых уменьшается по мере удаления от ядра.

Планета находится в 9,5 раз дальше от Солнца, чем Земля, и делает оборот вокруг звезды за 29,5 земных лет. Наклон оси Сатурна напоминает земной. По скорости вращения вокруг своей оси Сатурн уступает только Юпитеру. Как и у других газовых гигантов, скорость вращения на разных широтах у планеты разная. Это происходит потому, что поверхность Сатурна текучая, а не твёрдая. Плотность Сатурна так мала, что он мог бы плавать на поверхности воды. 

Главная особенность Сатурна — впечатляющая система из семи колец. Они состоят из миллиардов ледяных осколков, которые отлично отражают свет, а потому хорошо заметны. Радиус колец огромен — 73 000 километров, а толщина — всего 1 километр. Считается, что эти кольца — осколки спутника, разрушенного гравитацией планеты. 

Недавние исследования показали, что вокруг Сатурна вращаются 82 спутника — на данный момент это рекорд солнечной системы (до 2016 года лидером считался Юпитер). Все спутники покрыты льдом. Крупнейший, Титан, имеет плотную азотистую атмосферу и озёра жидкого метана на поверхности. На другом спутнике, Энцеладе, обнаружена жидкая вода, выталкиваемая на поверхность гейзерами. Это делает его крайне интересным объектом для изучения. 

Сатурн назван именем древнеримского бога времени, отца Юпитера. 

Уран

Седьмая планета от Солнца. Уран был открыт сравнительно недавно — в 1781 году. В 1986 году его достиг единственный космический аппарат — «Вояджер-2». 

Атмосфера планеты окрашена в однородный сине-зелёный цвет. Учёные предполагают, что такой её делает метан. Ядра Урана и Нептуна предположительно состоят изо льдов, поэтому их называют «ледяными гигантами». Уран — самая холодная планета в системе: средняя температура его поверхности составляет −224°C. Скорость ветра на Уране достигает 900 км/ч. Солнечный свет летит до Урана чуть менее трёх часов, а год на планете равен 84 земным. 

Как и Сатурн, Уран окружён кольцами. Они не столь яркие и расположены под углом около 90° к орбите, в то время как сама планета вращается «на боку» (угол отклонения оси — 99°). В результате половину уранианского года на южном полушарии длится день, а на южном — ночь. А следующие полгода — наоборот. 

Подобно Венере, Уран вращается вокруг своей оси по часовой стрелке. На настоящий момент известно 23 спутника Урана, все покрыты льдом. Уран назван именем древнегреческого бога неба, отца Сатурна, и продолжает «семейную» линию.

Нептун

Нептун находится так далеко, что его нельзя увидеть с Земли невооружённым глазом. Он был открыт в 1846 году, когда астрономы искали планету, вызывающую орбитальные отклонения Урана. 

Достоверные данные о Нептуне получены «Вояджером-2» в 1989 году. Верхние слои его атмосферы состоят из водорода (80%), гелия (19%) и метана (1%). Именно обилием метана объясняется сине-голубое свечение планеты. 

Раз в несколько лет в атмосфере планеты появляются и исчезают тёмные пятна штормов. Предположительно в центре Нептуна — ледяное ядро, а мантия состоит из жидкой смеси воды и аммиака. Средняя температура поверхности — −214°С. 

Солнечный свет достигает Нептуна почти за 5 часов, а нептунианский год равен 165 земным. Полный оборот вокруг своей оси планета делает довольно быстро — сутки длятся всего 17 часов. Наклон оси Нептуна близок к земному — 28°. 

На настоящий момент учёные знают о 14 спутниках Нептуна, лишь один из которых (Тритон) обладает сферической формой. Это единственный в системе крупный спутник с обратным вращением. У Нептуна есть три кольца, хотя выражены они слабо. 

За глубокий синий цвет планета была названа именем древнеримского бога морей. 

Учите астрономию вместе с домашней онлайн-школой «Фоксфорда»! По промокоду ASTRO10112021 вы получите бесплатный доступ на одну неделю к курсу астрономии за 10 и 11 классы.

Другие объекты Солнечной системы

Помимо планет и их спутников, в солнечную систему входит множество малых небесных тел — карликовых планет, астероидов, комет и метеороидов. 

Большинство астероидов сосредоточено в поясе между орбитами Марса и Юпитера. Это объекты неправильной формы, состоящие из металлов и силикатов. Хотя некоторые астероиды даже имеют собственные спутники, их масса слишком мала, чтобы удерживать атмосферу. Крупнейшие — карликовая планета Церера, астероиды Паллада, Веста и Гигея. 

Фото объектов астероидного пояса; NASA, 2011
Источник: wikipedia.org

За орбитой Нептуна расположен пояс Койпера — средоточие ещё почти неизученных объектов. Самым крупным из них являются карликовая планета Плутон со спутником Хароном.

Фото поверхности Плутона, выполненное аппаратом New Horizons, 2015
Источник: wikipedia.org

Под действием гравитации планет орбиты астероидов могут меняться и пересекаться. Иногда это приводит к столкновению. Планеты притягивают метеорные тела — обломки небесных тел. Если атмосфера планеты плотная — они сгорают при падении, но самые крупные всё же достигают поверхности, образуя кратеры. Последний известный случай падения метеорита на Землю произошёл в Челябинской области в 2013 году. 

Кометы — малые небесные тела, движущиеся по вытянутым орбитам. Они состоят из замёрзших газов и космической пыли. По мере приближения к Солнцу частицы вещества нагреваются, образуя горящую голову и хвост кометы. Самая известная комета — Галлея — обращается вокруг Солнца за 76 лет. 

Постепенно кометы разрушаются, превращаясь в поток более мелких частиц — метеороидов. Из-за небольших размеров они легко притягиваются планетами, но сгорают в плотной атмосфере. Горящие метеоры выглядят с Земли как падающие звёзды. Поэтому метеорный поток в просторечии называют звездопадом. 

Движение объектов солнечной системы

Все объекты солнечной системы вращаются вокруг Солнца по эллиптическим орбитам. Наиболее близкую к Солнцу точку орбиты называют перигелием, а самую удалённую — афелием

Орбиты планет расположены приблизительно в одной плоскости, поэтому периодически на Земном небе можно наблюдать Парад планет — явление, при котором несколько небесных тел будто бы выстраиваются в одну линию на небольшом угловом расстоянии друг от друга.

Межпланетное пространство

Планеты вращаются не в абсолютной пустоте — пространство между ними заполнено малыми небесными телами, вращающимися по собственным орбитам, блуждающими кометами, потоками метеорных тел и космической пылью.

Кроме того, Солнце излучает мощнейший поток заряженных частиц, называемый «солнечным ветром». Он распространяется по системе с чудовищной скоростью — до 1 200 км/с. Именно солнечный ветер порождает магнитные бури, полярные сияния и радиационные пояса планет. 

Расположение Солнечной системы в Галактике

Положение Солнечной системы в Галактике

Солнце — одна из 200 миллиардов звёзд Млечного Пути, оно находится в одном из его спиральных рукавов — рукаве Ориона — на расстоянии 27 000 световых лет от центра Галактики. 

Как планеты вращаются вокруг Солнца, так и Солнце вращается вокруг центра Галактики. Солнечная система движется сквозь космическое пространство со скоростью в 250 км/с — это в сотни тысяч раз быстрее самого мощного сверхзвукового самолёта. 

Полный оборот вокруг центра Млечного Пути солнечная система совершает за 226 миллионов лет — эта величина называется галактическим годом

Изучение Солнечной системы

Долгое время человечество было убеждено, что все звёзды и планеты вращаются вокруг Земли. Система мира с неподвижной Землёй в центре была разработана греческим учёным Птолемеем во 2 веке до нашей эры и просуществовала более полутора тысяч лет. 

В 1453 году польский астроном Николай Коперник доказал, что Земля, как и другие планеты (на тот момент их было известно шесть), вращаются вокруг Солнца. Однако вплоть до XVII века церковь считала это учение ересью и боролась с его последователями. 

Одним из них был итальянский монах Джордано Бруно. В 1584 году он опубликовал исследование, в котором утверждал, что Вселенная бесконечна, а Солнце подобно остальным звёздам, просто находится гораздо ближе к Земле. Бруно был схвачен инквизицией и приговорён к сожжению на костре как еретик. 

Другим последователем Коперника стал итальянский учёный Галилео Галилей. Он создал первый телескоп, который позволил увидеть кратеры Луны, пятна на Солнце, открыть четыре спутника Юпитера и установить, что планеты вращаются вокруг своей оси. Чтобы не повторить судьбу Бруно, Галилей был вынужден отречься от своих идей.

В XVII веке немецкий астроном Иоганн Кеплер открыл законы движения планет — ему удалось установить связь между скоростью вращения планеты и её расстоянием от Солнца. Его идеи воспринял знаменитый английский физик Исаак Ньютон, создатель теории всемирного тяготения. 

В XVIII—XIX веках открытия в области оптики позволили создать более мощные телескопы, которые позволили учёным узнать больше о солнечной системе. Были открыты планеты Уран и Нептун. 

В 1951 году Советский Союз вывел на орбиту Земли первый искусственный спутник. С этого момента началась Космическая эра — эпоха практического изучения солнечной системы. 

В 1961 году Юрий Гагарин стал первым человеком, побывавшем в космосе, а в 1969 году космический корабль «Аполлон-11» доставил людей на Луну. 

В 1970-х годах Советский Союз и США запустили несколько десятков аппаратов для исследования Марса, Венеры и Меркурия, а запущенные в 1980-х аппараты «Вояджер-1» и «Вояджер-2» позволили получить данные о дальних планетах — Юпитере, Сатурне, Уране, Нептуне и их спутниках. Большую роль в изучении солнечной системы сыграл вывод на орбиту Земли космического телескопа «Хаббл» в 1990 году. 

В нынешнем десятилетии космические агентства разных стран планируют пилотируемый полёт на Марс. Экспедиция на другую планету станет величайшим событием в истории освоения солнечной системы. И всё же пока человечество находится в самом начале пути изучения космоса.

Источник: externat.foxford.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.