Период вращения меркурия


МЕРКУ́РИЙ, бли­жай­шая к Солн­цу пла­не­та Сол­неч­ной сис­те­мы, наи­мень­шая из пла­нет зем­ной груп­пы; ас­тро­но­мич. знак ☿. Пред­по­ла­га­ет­ся, что на М. мо­гут быть най­де­ны стёр­шие­ся на др. пла­не­тах сле­ды про­цес­сов, со­пут­ст­во­вав­ших фор­ми­ро­ва­нию Сол­неч­ной сис­те­мы. М. был из­вестен с глу­бо­кой древ­но­сти в чис­ле пя­ти др. пла­нет и вы­де­лял­ся сре­ди них бы­ст­рым дви­же­ни­ем на фо­не не­ба. В др.-греч. ми­фо­ло­гии М. счи­тал­ся звез­дой бо­га Гер­ме­са, в др.-рим. ми­фо­ло­гии – бо­га Мер­ку­рия. По­это­му в англо­языч­ной на­уч. лит-ре с су­ще­ст­ви­тель­ны­ми, имею­щи­ми от­но­ше­ние к М., ис­поль­зу­ют­ся два при­ла­га­тель­ных-си­но­ни­ма: mercurian и her­mean (мер­ку­ри­ан­ский).

Уг­ло­вое рас­стоя­ние М. от Солн­ца в наи­боль­шей элон­га­ции не пре­вы­ша­ет 28,3°. На­блю­дать М. мож­но толь­ко в пе­рио­ды, про­дол­жаю­щие­ся ок. 10 сут и на­сту­паю­щие неск. раз в го­ду (наи­луч­ших пе­рио­дов, как пра­ви­ло, два в го­ду). На­блю­де­ния воз­мож­ны обыч­но ме­нее ча­са в су­тки в ве­чер­ние или ут­рен­ние ча­сы, ко­гда М. ста­но­вит­ся за­ме­тен на фо­не су­ме­реч­но­го не­ба. В вы­со­ких ши­ро­тах на­блю­де­ния М. прак­ти­че­ски не­воз­мож­ны. В днев­ное вре­мя М. мож­но ви­деть толь­ко с по­мо­щью те­ле­ско­па, при­чём раз­ли­чить к.-л. де­та­ли на его поверхно­сти прак­ти­че­ски не уда­ёт­ся.


Общая характеристика планеты

Мас­са М. со­став­ля­ет 3,302·1023 кг (0,055 мас­сы Зем­ли), эк­ва­то­ри­аль­ный ра­ди­ус – 2440±1 км (0,38 ра­диу­са Зем­ли), ус­ко­ре­ние сво­бод­но­го па­де­ния – 3,72 м/с2 (0,38 зем­но­го), пер­вая и вто­рая кос­мич. ско­ро­сти рав­ны со­от­вет­ст­вен­но 3,0 км/с и 4,25 км/с. Ор­би­та Мер­ку­рия на­кло­не­на к плос­ко­сти эк­лип­ти­ки на 7° и силь­но вы­тя­ну­та (экс­цен­три­си­тет ор­би­ты 0,206). Боль­шая по­лу­ось ор­би­ты (ср. рас­стоя­ние от Солн­ца) со­став­ля­ет 0,387 а. е. (58 млн. км); в пе­ри­ге­лии рас­стоя­ние от М. до Солн­ца рав­но 0,31 а. е., в афе­лии – 0,47 а. е.

Си­де­рич. пе­ри­од об­ра­ще­ния М. 87,9694 сут, ор­би­таль­ная ско­рость в ср. со­став­ля­ет 48 км/с, а в пе­ри­ге­лии дос­ти­га­ет 54 км/с, что поч­ти вдвое пре­вы­ша­ет ор­би­таль­ную ско­рость Зем­ли.
. по­ток сол­неч­но­го из­лу­че­ния у по­верх­но­сти М. 9,08 кВт/м2 (в 6,6 раза боль­ше, чем на ор­би­те Зем­ли). Гео­мет­рич. аль­бе­до со­став­ля­ет 0,106, сфе­ри­че­ское – 0,119. Име­ют­ся сле­ды край­не раз­ре­жен­ной ат­мо­сфе­ры (эк­зо­сфе­ры) с не­по­сто­ян­ной плот­но­стью ок. 107 ато­мов/см3. Ср. темп-ра по­верх­но­сти пла­не­ты со­став­ля­ет 340 К, мак­сималь­ная – до 710 К, ми­ни­маль­ная – 88 К. Спут­ни­ков у М. нет.

Си­де­рич. пе­ри­од вра­ще­ния ра­вен 58,6461 сут; ось вра­ще­ния М. прак­ти­че­ски пер­пен­ди­ку­ляр­на к плос­ко­сти ор­би­ты. До 2-й пол. 20 в. пред­по­ла­га­лось, что пе­ри­од вра­ще­ния М. син­хро­ни­зи­ро­ван с пе­рио­дом его об­ра­ще­ния во­круг Солн­ца. В 1965 ме­то­да­ми меж­пла­нет­ной ра­дио­ло­ка­ции ус­та­нов­ле­но, что М. на­хо­дит­ся в ре­зо­нанс­ном, но не син­хрон­ном вра­ще­нии: за вре­мя двух обо­ро­тов во­круг Солн­ца М. со­вер­ша­ет ров­но три обо­ро­та во­круг сво­ей оси. Из-за ре­зо­нанс­но­го вра­ще­ния и вы­со­ко­го экс­цен­три­си­те­та ор­би­ты на М. мож­но вы­де­лить т. н. го­ря­чие дол­го­ты – сек­то­ры у двух про­ти­во­по­лож­ных ме­ри­диа­нов, ко­то­рые по­пе­ре­мен­но об­ра­ще­ны к Солн­цу при про­хо­ж­де­нии пе­ри­ге­лия. Здесь по­верх­ность М. под­вер­га­ет­ся наи­бо­лее ин­тен­сив­но­му на­гре­ву.


Из-за вы­со­ко­го экс­цен­три­си­те­та ор­би­ты ско­рость ор­би­таль­но­го дви­же­ния М. ме­ня­ет­ся, в то вре­мя как ско­рость соб­ст­вен­но­го вра­ще­ния пла­не­ты ос­та­ёт­ся по­сто­ян­ной. Эти ско­ро­сти срав­ни­мы, и в пе­ри­ге­лии ор­би­таль­ное дви­же­ние в те­че­ние при­мер­но 8 сут об­го­ня­ет вра­ще­ние пла­не­ты, из-за че­го на дол­го­тах, от­стоя­щих от «го­ря­чих дол­гот» на 90°, на­блю­да­ют­ся дву­крат­ные вос­хо­ды и за­ка­ты.

Поверхность Меркурия

Оби­ли­ем ме­тео­рит­ных кра­те­ров на по­верх­но­сти М. на­по­ми­на­ет об­рат­ную сто­ро­ну Лу­ны. Од­на­ко здесь нет об­шир­ных ла­во­вых рав­нин, соз­даю­щих лун­ные мо­ря (рис. 1). Рав­ни­на, по­кры­тая мно­го­числ. пе­ре­кры­ваю­щи­ми­ся ме­тео­рит­ны­ми кра­те­ра­ми (рис. 2), яв­ля­ет­ся наи­бо­лее древ­ним ти­пом рель­е­фа М. Боль­шин­ст­во кра­те­ров об­ра­зо­ва­лось ок. 3,9 млрд. лет на­зад в пе­ри­од мак­си­му­ма вы­па­де­ния круп­ных ме­тео­рит­ных тел. Ана­ло­гич­ные лун­ные кра­те­ры име­ют зна­чи­тель­но бóльшие диа­мет­ры, чем кра­те­ры на М., об­ра­зо­ван­ные та­ки­ми же по мас­се ме­тео­рои­да­ми. Это объ­яс­ня­ет­ся тем, что ус­ко­ре­ние сво­бод­но­го па­де­ния на М. в 2,4 раза вы­ше, чем на Лу­не. По­это­му вы­бро­шен­ный при уда­ре ма­те­ри­ал вы­па­дал бли­же к цен­тру кра­те­ра: при оди­на­ко­вой энер­гии пло­щадь, ко­то­рую по­кры­ва­ет вы­брос на М., в 5 раз мень­ше, чем на Лу­не.


. тип по­верх­но­сти – бес­кра­тер­ные рав­ни­ны (об­шир­ные про­ме­жут­ки ме­ж­ду кра­те­ра­ми), ха­рак­тер­ные толь­ко для М. Не­обыч­ная де­таль рель­е­фа М. – эс­кар­пы (об­ры­вы) – ус­ту­пы выс. 1–2 км, раз­де­ляю­щие два ни­чем не от­ли­чаю­щих­ся рай­она. Про­тя­жён­ность та­ких об­ры­вов – мн. сот­ни ки­ло­мет­ров. Напр., эс­карп Дис­ка­ве­ри тя­нет­ся от 56° ю. ш., 38° в. д. до 50° ю. ш., 36° в. д. Мес­та­ми он пе­ре­се­ка­ет­ся круп­ны­ми кра­те­ра­ми. Эс­кар­пы об­ра­зо­ва­лись при ох­ла­ж­де­нии пла­не­ты, ко­гда про­ис­хо­ди­ло её сжа­тие, по­влёк­шее за со­бой сдви­ги отд. уча­ст­ков утол­щаю­щей­ся ко­ры. По-ви­ди­мо­му, имен­но этот про­цесс пре­дот­вра­тил мощ­ные вы­бро­сы ла­вы.

М. по­крыт мел­ко раз­дроб­лен­ным ма­те­риа­лом (ре­го­ли­том), ко­то­рый име­ет при­мер­но та­кие же от­ра­жат. свой­ст­ва, как и ре­го­лит Лу­ны. Ко­ра М. обед­не­на ми­не­ра­ла­ми, со­дер­жа­щи­ми FeO (ме­нее 3%), и обо­га­ще­на по­ле­вы­ми шпа­та­ми; воз­мож­но при­сут­ст­вие ще­лоч­ных ба­заль­тов, а так­же гор­ных по­род, вклю­чаю­щих обед­нён­ные же­ле­зом пи­рок­се­ны. На по­верх­но­сти М. рас­про­стра­не­ны та­кие по­ро­ды, как анор­то­зи­ты. ИК-спек­тры ука­зы­ва­ют так­же на при­сут­ст­вие не­фе­ли­но­вых сие­ни­тов. Дли­ны волн мак­си­му­мов спек­тров со­от­вет­ст­ву­ют гор­ным по­ро­дам сред­не­го и ос­нов­но­го со­ста­ва со зна­чит. сте­пе­нью не­од­но­род­но­сти.

Особенности строения Меркурия


Вы­со­кая ср. плот­ность М. (5430 кг/м3, чуть ни­же ср. плот­но­сти Зем­ли) и боль­шое зна­че­ние без­раз­мер­но­го мо­мента инер­ции (ха­рак­те­ри­зую­ще­го кон­цен­тра­цию ве­ще­ст­ва к цен­тру М. и со­став­ляю­ще­го ок. 0,324) ука­зы­ва­ют на мас­сив­ное ме­тал­лич. яд­ро пла­не­ты. Ра­ди­ус ме­тал­лич. яд­ра М. дос­ти­га­ет 0,75 ра­диу­са пла­не­ты. Оно за­ни­ма­ет ок. 45% объ­ё­ма пла­не­ты, на его до­лю при­хо­дит­ся 75–80% мас­сы М. (у Зем­ли – 32%), при­чём т. н. ос­во­бо­ж­дён­ная (от сжа­тия в не­драх пла­не­ты) плот­ность М. зна­чи­тель­но вы­ше зем­ной. Над ядром рас­по­ло­же­на си­ли­кат­ная обо­лоч­ка тол­щи­ной 500–600 км, а плот­ность по­верх­но­ст­ных по­род М., ве­ро­ят­но, име­ет тот же по­ря­док, что и у Лу­ны. Т. о., М. не уда­ёт­ся от­не­сти ни к ти­пу Зем­ли, ни к ти­пу Лу­ны: по­верх­ность пла­не­ты по­хо­жа на лун­ную, но же­лез­ное яд­ро по сво­им раз­ме­рам срав­ни­мо с зем­ным.

М. об­ла­да­ет маг­нит­ным по­лем (от­кры­то КА «Ма­ри­нер-10» в 1974), что ука­зы­ва­ет на на­ли­чие у пла­не­ты жид­ко­го яд­ра. Жид­кое со­стоя­ние яд­ра (или его сфе­рич. слоя) бы­ло под­твер­жде­но в 2007 ра­дио­ло­кац. на­блю­де­ния­ми, а так­же ис­сле­до­ва­ния­ми, про­ве­дён­ны­ми КА «Мес­сенд­жер» в 2008. Вме­сте с тем рас­чё­ты по­ка­зы­ва­ют, что за вре­мя су­ще­ст­во­ва­ния пла­не­ты ис­ход­но жид­кое яд­ро долж­но бы­ло за­твер­деть, при­чём на его за­сты­ва­ние хва­ти­ло бы все­го 1,5–2 млрд. лет. Что­бы объ­яс­нить этот па­ра­докс, пред­по­ла­га­ют, что в ме­тал­лич. яд­ре при­сут­ст­ву­ют ле­ги­рую­щие эле­мен­ты, сни­жаю­щие темп-ру за­твер­де­ва­ния.


Соб­ст­вен­ное маг­нит­ное по­ле М. име­ет ди­поль­ный ха­рак­тер. Ин­дук­ция ди­поль­но­го маг­нит­но­го по­ля М. на эк­ва­то­ре дос­ти­га­ет 300 нТ, а у по­лю­сов – 700 нТ, что со­став­ля­ет ок. 1% ин­дук­ции зем­но­го маг­нит­но­го по­ля. На­клон оси маг­нит­но­го ди­по­ля к оси вра­ще­ния М. оце­ни­ва­ет­ся в пре­де­лах 5–12° (что близ­ко к на­кло­ну ди­по­ля Зем­ли), на­прав­ле­ние маг­нит­ных ди­по­лей у М. и Зем­ли сов­па­да­ет. От­сут­ст­вие ат­мо­сфе­ры в со­че­та­нии с за­мет­ным соб­ст­вен­ным маг­нит­ным по­лем пла­не­ты по­зво­ля­ет ис­сле­до­вать яв­ле­ния об­те­ка­ния маг­ни­то­сфе­ры сол­неч­ным вет­ром в ус­ло­ви­ях, ко­то­рые не реа­ли­зу­ют­ся боль­ше ни у од­ной пла­не­ты Сол­неч­ной сис­те­мы.

Бла­го­да­ря бли­зо­сти к Солн­цу фи­зич. про­цес­сы на М. во мно­гих от­но­ше­ни­ях уни­каль­ны. Ло­каль­ное маг­нит­ное по­ле Солн­ца, вмо­ро­жен­ное в плаз­му сол­неч­но­го вет­ра, взаи­мо­дей­ст­ву­ет с маг­ни­то­сфе­рой М. Кро­ме то­го, сол­неч­ный ве­тер про­ни­ка­ет не­по­сред­ст­вен­но к по­верх­но­сти пла­не­ты, при­но­ся в эк­зо­сфе­ру М.


­до­род и ге­лий, ко­то­рые мо­гут вре­мен­но им­план­ти­ро­вать­ся в ос­тыв­шую по­верх­ность ноч­ной сто­ро­ны М. В ус­ло­ви­ях вы­со­кой темп-ры днев­ной сто­ро­ны с по­верх­но­сти М. вы­де­ля­ют­ся ато­мы на­трия, ка­лия и каль­ция, по­пол­няя раз­ре­жен­ную и не­по­сто­ян­ную по плот­но­сти эк­зо­сфе­ру М. По весь­ма при­бли­зит. оцен­кам, эк­зо­сфе­ра М. име­ет сле­дую­щий со­став: ато­мы ка­лия (32%), на­трия (25%), ки­сло­ро­да (ок. 10%), ар­го­на (7%), ге­лия (6%), а так­же мо­ле­ку­лы азо­та и ки­сло­ро­да (по 5%), ди­ок­си­да уг­ле­ро­да, во­ды и во­до­ро­да (по 3%). М. не­пре­рыв­но те­ря­ет ато­мы и мо­ле­ку­лы эк­зо­сфе­ры и во­зоб­нов­ля­ет их из ука­зан­ных вы­ше ис­точ­ни­ков.

Про­бле­ма об­ра­зо­ва­ния М. от­но­сит­ся к глав­ным те­мам его ис­сле­до­ва­ний. Со­глас­но тео­рии по­сле­до­ва­тель­ной ак­кре­ции, од­ним из осн. ме­ха­низ­мов фор­миро­ва­ния пла­нет бы­ли ка­та­ст­ро­фич. со­уда­ре­ния с ни­ми круп­ных про­то­пла­нет­ных тел. Пред­по­ла­га­ет­ся, что в ре­зуль­та­те это­го ве­ще­ст­во внеш­ней обо­лоч­ки М. бы­ло вы­бро­ше­но в око­ло­пла­нет­ное про­стран­ст­во и уте­ря­но. Яд­ро М. мож­но рас­смат­ри­вать как ос­тат­ки струк­ту­ры бо­лее круп­ной пла­не­ты.

Исследования Меркурия в 20–21 вв.

Из-за бли­зо­сти М.
Солн­цу обес­пе­чить сбли­же­ние КА с М. на­мно­го слож­нее, чем с Мар­сом или Ве­не­рой. В этом слу­чае в хо­де по­лё­та КА дол­жен вы­пол­нять гра­ви­тац. ма­нёв­ры (напр., об­мен уг­ло­вым мо­мен­том с Ве­не­рой). В 1973 за­пу­щен пер­вый КА для ис­сле­до­ва­ния М. – «Ма­ри­нер-10» (США), в 2004 – КА «Мес­сенд­жер» (США). «Ма­ри­нер-10» три­ж­ды сбли­жал­ся с пла­не­той в 1974–1975, при­чём по­втор­ные сбли­же­ния, зна­чи­тель­но уве­ли­чив­шие ре­зуль­та­тив­ность мис­сии, не бы­ли пре­ду­смот­ре­ны про­ек­том и ока­за­лись ре­зуль­та­том ор­би­таль­ных ре­зо­нан­сов. По­ми­мо от­кры­тия маг­нит­но­го по­ля, из­ме­ре­ний в УФ- и ИК-диа­па­зо­нах спек­тра и ис­сле­до­ва­ний маг­ни­то­сфе­ры М., те­ле­ви­зи­он­ной съём­кой бы­ло ох­ва­че­но ок. 45% по­верх­но­сти пла­не­ты. В янв. 2008 «Мес­сенд­жер» по­сле не­сколь­ких гра­ви­тац. ма­нёв­ров при­бли­зил­ся к М. и за­тем ещё два­ж­ды сбли­жал­ся с пла­не­той. Уже при пер­вом сбли­же­нии на по­верх­но­сти М. бы­ли об­на­ру­же­ны со­еди­не­ния ок­си­дов же­ле­за и ти­та­на. Ла­зер­ная ло­ка­ция по­зво­ли­ла с вы­со­кой точ­но­стью по­лу­чить све­де­ния о рель­е­фе пла­не­ты. В даль­ней­шем пре­ду­смот­ре­на пол­ная съём­ка по­верх­но­сти М. В мар­те 2011 ап­па­рат стал пер­вым ис­кусств. спут­ни­ком пла­не­ты. Ре­зуль­та­ты, по­лу­чен­ные в 2011, по­зво­ли­ли сде­лать вы­во­ды об эво­лю­ции пла­не­ты, релье­фе и со­ста­ве по­вер­х­но­сти, эк­зо­сфе­ре, ис­то­рии вул­ка­низ­ма М., его маг­нит­ном по­ле и др.


Ев­роп. кос­мич. агент­ст­вом со­вме­ст­но с Япон. аэ­ро­кос­мич. агент­ст­вом раз­ра­ба­ты­ва­ет­ся мис­сия «BepiColombo», со­стоя­щая из двух КА, один из ко­то­рых ори­ен­ти­ро­ван на ис­сле­до­ва­ние по­верх­но­сти М., а дру­гой – на на­блю­де­ния маг­нит­но­го по­ля и маг­ни­то­сфе­ры пла­не­ты. За­пуск мис­сии пла­ни­ру­ет­ся на 2016.

В нач. 21 в. в Рос­сии раз­ра­бо­тан но­вый ме­тод ас­тро­но­мич. на­блю­де­ний М. Вы­со­кая чув­ст­ви­тель­ность ПЗС-мат­риц по­зво­ли­ла со­кра­тить экс­по­зи­ции изо­бра­же­ний М. до мил­ли­се­кунд, в те­че­ние ко­то­рых не­ста­биль­ность зем­ной ат­мо­сфе­ры не ус­пе­ва­ет раз­мыть изо­бра­же­ния. По­сле от­бо­ра и со­вме­ст­ной об­ра­бот­ки ме­то­дом кор­ре­ля­ци­он­но­го со­вме­ще­ния не­сколь­ких ты­сяч наи­бо­лее удач­ных элек­трон­ных сним­ков уда­ёт­ся син­те­зи­ро­вать сним­ки, чёт­кость ко­то­рых в 20–50 раз пре­вы­ша­ет чёт­кость ис­ход­но­го ма­те­риа­ла.

Эф­фек­тив­ным ме­то­дом ис­сле­до­ва­ний М. ста­ла на­зем­ная ра­дио­ло­ка­ция. С её по­мо­щью об­на­ру­же­ны не­обыч­ные свой­ст­ва грун­та не­ко­то­рых кра­те­ров вбли­зи сев. по­лю­са пла­не­ты: воз­мож­но, в этих мес­тах есть во­дя­ной лёд. По­сколь­ку ось вра­ще­ния М. пер­пен­ди­ку­ляр­на к плос­ко­сти ор­би­ты, дно кра­те­ров вбли­зи по­лю­сов ни­ко­гда не ос­ве­ща­ет­ся Солн­цем. Пред­по­ла­га­ют, что в та­ких кра­те­рах под сло­ем ре­го­ли­та мог на­ко­пить­ся слой льда, при­не­сён­но­го на М. ко­ме­та­ми или др. со­уда­ряю­щи­ми­ся с пла­не­той те­ла­ми.

Источник: bigenc.ru

Общие сведения о Меркурии


Первое описание Меркурия в XIV в. до н.э. сделали астрономы из Ассирии, которые назвали его прыгающей планетой. За высокую скорость движения древние римляне дали ему имя быстроногого бога торговли и обогащения. Исследование планеты с помощью телескопа начал Галилео Галилей, современные же ученые изучают ее методами радиолокации и радиоастрономии. Копилка знаний о Меркурии была пополнена в 1974 г., когда космический аппарат «Маринер-10» трижды пролетел около небесного объекта.

Тем не менее Меркурий остается малоизученной планетой Солнечной системы. Его радиус составляет 2440 км, а плотность — немного ниже плотности Земли. Температура поверхности днем достигает +349,9°С, ночью она опускается до -170°С.

Меркурий обладает сильно разряженной атмосферой, которая состоит в основном из атомов кислорода, водорода и гелия.

Однако сравнительно высокая дневная температура поверхности в совокупности с малым весом планеты и мощными солнечными ветрами не позволяют атмосфере удержаться вокруг небесного тела.

Примечательными особенностями Меркурия являются отсутствие спутника и наличие хвоста, который делает планету похожей на комету. Длина хвоста составляет более 2 млн км.

Снимки поверхности Меркурия, сделанные в 1974 г., позволяют составить представление о ее строении. Планетарный ландшафт здесь напоминает лунный. Для него характерно наличие гор, долин, равнин, старых и молодых кратеров. Наибольшая по размеру равнина Жара образовалась в кратере с высотой вала более 2 км. Длина равнины составляет 1530 км, ширина 1320 км.

Затем на небесном теле началась вулканическая активность, которая привела к появлению на поверхности лавовых равнин. Застывшая лава образовала на Меркурии характерные наплывы, складки, напоминающие набегающие морские волны.

Но все-таки меркурианский пейзаж имеет характерные только для него черты и детали.

К ним относятся:

  • грабены — длинные впадины с плоским дном;
  • эскарпы — уступы, напоминающие впечатляющие по размерам лопасти.

Ядро Меркурия достаточно массивно, оно составляет примерно 82% всей общей массы небесного тела. Предположительно, ядро находится в жидком состоянии и является источником слабого магнитного поля.

Орбита и период обращения

Орбита Меркурия имеет сильно вытянутую эллипсоидную форму, из-за которой планета то приближается к Солнцу на расстояние 46 млн км, то отдаляется от него на 70 млн км. В связи с этим планетарная поверхность испытывает разительные температурные перепады. Орбита Меркурия перпендикулярна плоскости оси его вращения. Поэтому здесь не существует понятия смены сезонов и погодных изменений. Кроме того, на планете есть участки, куда ни разу не проникали солнечные лучи. По предположениям ученых, там может находиться лед.

Долгое время астрономы были уверены, что Меркурий всегда обращен к Солнцу только одной, сильно раскаленной солнечными лучами, стороной, поскольку периоды его обращения вокруг своей оси и Солнца синхронизированы. В Солнечной системе это явление присуще только Меркурию.

Продолжительность года и суток на Меркурии

Период обращения Меркурия вокруг Солнца составляет 88 земных суток, а полный оборот вокруг своей оси планета делает за 58 земных суток. Таким образом, меркурианский год длится примерно 1,5 меркурианских суток.

День на Меркурии

Днем на Меркурии можно наблюдать интересное явление, когда небесное тело встречает два восхода и два заката. Проходя по небосклону Меркурия Солнце через некоторый промежуток времени останавливается, а затем начинает движение в противоположную сторону. Это связано с особенностями движения вокруг своей оси главного светила. Таким образом, на долготах, отстоящих на 90° от меридианов, закат и рассвет происходят дважды за сутки.

Источник: o-kosmose.ru

Среднее расстояние от Солнца 57,93 миллионов км
Экваториальный диаметр 4879 км
Период вращения 58,65 земных суток
Период обращения 87,97 земных суток
Скорость движения по орбите 47,89 км/сек
Температура на поверхности от -180 до +4300 C
Масса (Земля=1) 0,056
Средняя плотность вещества (вода=1) 5,43
Сила тяжести на поверхности (Земля=1) 0,38
Количество спутников

Период вращения меркурия

Меркурий — самая близкая к солнцу планета. Поверхность Меркурия покрыта кратерами, большинство из которых возникло около 3,5 миллиардов лет назад, когда планета подвергалась массированным бомбардировкам метеоритов. Диаметр кратеров варьируется от нескольких метров до более чем 1000 км. Крупнейшие кратеры называют котловинами, среди которых выделяется котловина Калорис или Равнина Зноя (ее диаметр равен 1300 км) . Котловина была так названа потому, что когда Меркурий приближается к Солнцу, котловина периодически оказывается повернутой к нему. В такие дни это самое горячее место на планете.Среди особенностей кратеров можно назвать центральные пики, кольца, террасные стены и изверженную породу (вещество, выброшенное в результате удара). Все особенности кратеров зависят от размеров, скорости и направления полета метеорита. Наличие темного вещества в бассейнах и заполненных лавой кратерах свидетельствует, что в начальный период своей истории планета испытала сильное внутреннее разогревание, за которым последовала одна или несколько эпох интенсивного вулканизма. 80 % массы Меркурия сосредоточено в его железо-никелевом ядре, диаметром 3600 км. Кора и мантия (толщиной около 600 км.) состоят из кремниевых пород.

У Меркурия обнаружена очень разреженная гелиевая атмосфера, создаваемая " солнечным ветром". В среднем каждый атом гелия находится в его атмосфере около 200 дней, а затем покидает планету. Давление такой атмосферы у поверхности в 500 млрд. раз меньше, чем у поверхности Земли. Кроме гелия выявлено ничтожное количество водорода, следы аргона и неона. Поскольку планета очень близко от Солнца, и практически не имеет атмосферы, способной сохранять тепло ночью, температура ее поверхности колеблется от -180 оC до +440 оC.

Период вращения меркурия

Teм нe мeнee, нaблюдaтeли нeoднoкpaтнo зaмeчaли y пoлюcoв Mepкypия… oблaкa.Bпepвыe этoт фeнoмeн зaмeтил в тeлecкoп И.И.Шpeтep eщe в 1800 гoдy. Toгдa y южнoгo poгo cepпa Mepкypия, нa eгo нoчнoй cтopoнe, нo опpeдeлeннo нaд кpaeм диcкa плaнeты, блecтeлo нeбoльшoe пятнышкo. Bыcoтa тoгo oбpaзoвaния, ocвeщeннoгo Coлнцeм, былa oцeнeнa в 20 км. Haблюдaтeль видeл явнo нe гopy. Beдь гopa пoявлялacь бы кaк тoчкa cнoвa и cнoвa, нo втopoй paз нeчтo пoдoбнoe былo зaмeчeнo лишь 140 лeт cпycтя. B июлe 1885 г. Дж. Бaллo видeл нeбoльшoe вытянyтoe oблaчкo, выдaвaвшeecя зa пpeдeлы Mepкypия. Oнo ocтaвaлocь 8 днeй, пocтeпeннo cливaяcь c плaнeтoй и нeмнoгo мeняя фopмy. Любoпытнo, чтo "пpитyплeния" зaмeчaли тoлькo y южнoгo пoлюca, нo никoгдa — y ceвepнoгo.

Из — за скорости своего вращения и кратчайшей из всех больших планет орбиты, у Меркурия самый короткий год: со средней скоростью 48 км/сек он совершает полный оборот вокруг Солнца за 88 земных суток. За это время планета совершает всего полтора оборота вокруг своей оси. По этой причине звездные сутки длятся очень долго — 59 земных суток. Солнечные сутки Меркурия, которые длятся от одного восхода Солнца до другого, равняются 176 земным суткам. Фотографирование поверхности Меркурия американским космическим аппаратом "Маринер-10" в 1974-1975 гг позволило составить карту западного полушария меркурия и обнаружить магнитное поле. Его напряженность составляет примерно около 1% от напряженности земного магнитного поля. Наклон оси диполя к оси вращения Меркурия почти такой же, как у Земли — 12 градусов.

Ceнcaциoннoe oткpытиe y пoлюcoв Mepкypия былo cдeлaнo aмepикaнcкими yчeными в 1991 гoдy. Kaк извecтнo, нa caмoй близкoй к Coлнцy плaнeтe пoвepxнocть pacкaляeтcя дo тeмпepaтypы +430′ C. Ho изoбpaдeния диcкa Mepкypия, пoлyчeнныe c пoмoщью нaзeмнoгo paдapa, пoкaзaли ocлeпитeльнo яpкиe пoляpныe шaпки, пo-видимoмy, из вoдянoгo льдa. Bcкope cпeциaлиcтaм yдaлocь пoвыcить paзpeшeниe изoбpaжeний дo 15 км, и шaпки pacпaлиcь нa 2 дecяткa пятeн. Cpaвнeниe c фoтoгpaфиями, пoлyчeнными "Mapинepoм-10" пoзвoлилo oтoждecтвить тe пятнa c кpyпными пoляpными кpaтepaми Mepкypия, днo кoтopый никoгдa нe ocвeщaeтcя coлнeчными лyчaми. Пo oцeнкaм тeopeтикoв, тaм, в вeчнoм мpaкe вce peмя цapит жecтoкий мopoз -213’C. Этoгo впoлнe дocтaтoчнo для coxpaннocти льдa в тeчeнии миллиapдoв лeт.

Венера

Среднее расстояние от Солнца 108,20 миллионов км
Экваториальный диаметр 12104 км
Период вращения(звёздные сутки) 243,01 земных суток
Период обращения 224,70 земных суток
Скорость движения по орбите 35,03 км/сек
Температура на поверхности до 480 гр C
Масса (Земля=1) 0,81
Средняя плотность вещества (вода=1) 5,25
Сила тяжести на поверхности (Земля=1) 0,93
Кол-во спутников

Период вращения меркурия

Венера, вторая по близости к Солнцу планета, почти такого же размера, как Земля. Орбита Венеры ближе к окружности, чем у любой другой планеты Солнечной Системы. Временами Венера подходит к Земле на расстояние, меньшее 40 млн. км. Венера вращается в обратном направлении — с востока на запад, а не с запада на восток, как Земля и большинство других планет, кроме Венеры и Урана. Период вращения Венеры вокруг оси относительно звёзд, звёздные сутки — длительный, около 243 земных суток,

Однако следует обратить внимание на то — что сутки, которые обычно сравнивают с годом — это солнечные сутки, синодический период вращения. Его несложно вычислить — он равен: 1/(1/243 + 1/224.7) = 116,7 земных суток. Знак "плюс" взят с учетом противоположного направления вращения. Именно столько и длятся солнечные сутки на Венере. Плотность атмосферы Венеры в 35 раз больше Земной. Давление на поверхности планеты составляет около 95 атмосфер! Состоит эта атмосфера, в основном, из углекислого газа с примесями азота и кислорода. Углекислый газ, пропуская солнечные лучи позволяет нагреваться поверхности, и не выпускает тепло обратно в космос, что является причиной явления, которое называется парниковым эффектом. Из-за этого поверхность Венеры сильно разогрета.

Облачный слой Венеры, скрывающий от нас ее поверхность, расположен на высотах 49-68 км. над поверхностью, по плотности напоминает легкий туман и состоит, в основном, из паров 80 %-ной серной кислоты. Облака Венеры движутся с востока на запад с преобладающими на планете ветрами, совершая полный оборот вокруг ее оси за 4 дня, а освещенность на поверхности в дневное время подобна земной в серый Период вращения меркурия пасмурный день.

Большая протяженность облачного слоя делает его совершенно непрозрачным для земного наблюдателя, поэтому изучение планеты ведется в основном радиолокационными методами. Американские радиолокационные исследования показали, что на поверхности Венеры имеются большие по размеру, но мелкие кратеры. Происхождение кратеров неизвестно, но, поскольку в такой плотной атмосфере должна быть сильная эрозия, по "геологическим" стандартам они вряд ли могут быть очень старыми. Причиной возникновения кратеров может быть и вулканизм, поэтому гипотезу о том, что на Венере происходят вулканические процессы, пока нельзя исключить. Также на Венере найдено несколько горных областей. Самый большой горный район — Иштар, по площади вдвое превышает Тибет. В центре его на высоту 11 км поднимается гигантский вулканический конус. Состав материала поверхности Венеры, определенный в нескольких местах посадки, оказался близким к составу базальтов Земли. Hо распределение высот поверхности по планете, что косвенно говорит о характере ее геологического строения, на Венере и на Земле оказалось разным. Hа Земле это распределение бимодальное — есть два максимума распространенности, отражающие деление поверхности нашей планеты на выступы материков и океанические бассейны. А на Венере распределение высот одномодальное.

Период вращения меркурия

Из анализа изображений обозначились основные черты геологии планеты. Было установлено, что в зоне съемки наиболее широко распространены равнины нескольких типов, сложенные наслоениями вулканических лав. Морфология лавовых потоков в сочетании с результатами определения химического состава в местах посадки космических аппаратов серии "Венера" — "Вега" свидетельствуют о том, что это — базальтовые лавы, широко развитые на Земле, Луне, и, очевидно, на Меркурии и Марсе. В пределах этих равнин наблюдаются специфические кольцевые вулканотектонические структуры поперечником в сотни километров, получившие название "венцы".

Среди равнин находятся "острова" и "континенты" сильно пересеченной

местности, не типичной для других планет. Структурный рисунок такой поверхности, определяемый пересечениями многочисленных тектонических разломов, напоминает вид черепичной кровли, и потому местность этого типа получила название "тессера", что по-гречески значит "черепица".

Период вращения меркурия

Период вращения меркурия

В зоне съемки "Венеры-15, -16" было обнаружено около 150 ударных кратеров диаметром от 8 до 140 км. Зная, хотя и очень приблизительно, частоту столкновений с Венерой астероидов и комет, по количеству кратеров на единице площади поверхности можно было, тоже очень приблизительно, оценить средний возраст геологических образований в зоне съемки. Он был определен в 0.5-1 млрд. лет. Это отличает Венеру от Земли, где 2/3 твердой поверхности занимает дно океанов с возрастом подстилающих осадки базальтов моложе 100-200 млн. лет. Прекрасная сохранность всех наблюдаемых на изображениях вулканических, тектонических и ударных (кратеры) образований, большой возраст поверхности говорят об очень низкой интенсивности изменений различных форм рельефа ветровой эрозией или аккумуляцией, химическим выветриванием и другими поверхностными факторами. Анализ данных "Венеры-15,16" привел к выводу о том, что в пределах зоны съемки нет признаков "тектоники плит" — типичной для Земли глобальной организации геологической активности, для которой характерно разделение верхней жесткой оболочки — литосферы — на несколько крупных, горизонтально передвигающихся относительно друг друга, плит. Главной движущей силой вулканических тектонических процессов на Венере, по результатам анализа данных "Венеры-15,16", представлялись вертикальные, восходящие и нисходящие, движения вещества недр планеты за счет тепловых неоднородностей — так называемых "горячих пятен" Горячие пятна существенны и в геологии Земли, но роль их все-таки второстепенна.

Они обычно проявляются на фоне движущихся литосферных плит, например, в виде цепочки вулканов внутри одной плиты. Hа Венере "горячие точки", очевидно, являются причиной формирования упоминающихся выше венцов и некоторых других образований. Результаты съемки "Венеры-15,16" привели к открытию ключевых элементов геологии Венеры. Впервые в этой области на смену догадкам пришло твердое знание. Было установлено, что эндогенные геологические процессы — базальтовый вулканизм и разломная тектоника — господствуют над экзогенными процессами. Hе обнаружено никаких следов деятельности жидкой воды на планете. Это обстоятельство и некоторые особенности распределения ударных кратеров по размеру показали, что условия, близкие к современным, были на Венере на протяжении всего прослеженного в глубь отрезка геологической истории планеты.

И равнины, и тессеры рассекаются протяженными (тысячи километров), сложно построенными желобами, образованными роями тектонических разломов. По топографии и морфологии они похожи на так называемые рифтовые зоны Земли и, видно, имеют ту же природу.Hа поверхности равнин планеты в ряде мест, зафиксированных на снимках "Магеллана" обнаружены загадочные "русла" длиной от сотен до нескольких тысяч километров и шириной от 2-3 до 10-15 км. Они имеют типичные признаки долин, прорезанных течением какой-то жидкости, — меандровидные извилины, расхождение и схождение отдельных "проток", а в редких случаях — нечто вроде дельты. В начале самого длинного русла, названного долиной Балтис, протяженностью около 7000 км при очень выдержанной (2-3 км) ширине находится вулкан поперечником около 100 км. Морфология его — типичная для базальтовых вулканов. Остается загадкой, какая жидкость прорезала эти русла. Проще всего было бы считать, что они — результат термической эрозии текущим потоком базальтовой лавы. Hо расчеты показывают, что на пути длиной 7000 км у потока базальтовой лавы не хватит запаса тепла, чтобы безостановочно течь и подплавлять вещество базальтовой же равнины, прорезая в ней русло. Вероятнее всего это, например, сильно перегретые коматиитовые лавы или еще более экзотические жидкости вроде расплавленных карбонатов или расплавленной серы.

Открытые в ходе съемки "Венеры-15, -16" кольцевые структуры венцов на снимках "Магеллана" обнаружили существенные детали их строения. Кольцевое обрамление этих структур, обычно поперечником от 150 до 1000 км, состояло из систем густой или разреженной трещиноватости широких или узких гряд с общим концентрическим или радиально-концентрическим рисунком. Часть этих структурных элементов моложе окружающих равнин, часть — древнее, что говорит о многоактном характере образования венцов. Явные аналоги венцов Венеры на других планетных телах земной группы не известны. Hа заснятых "Магелланом" 98% поверхности планеты удалось обнаружить около 930 ударных кратеров диаметром от 2 до 280 км. Hа его снимках удалось увидеть некоторые неожиданные стороны процесса образования ударных кратеров в условиях Венеры.
Оказалось что у многих кратеров часть выбросов ведет как жидкотекучая субстанция, образуя направленные обычно в одну сторону от кратера обширные потоки длиной в десятки километров, а иногда и больше. Hеясно, что это течет — перегретый ударный расплав или суспензия тонкообломочного твердого вещества и капелек расплава, взвешенная в плотном (65 кг/м3) газе приповерхностной атмосферы.

Важным свойством популяции ее ударных кратеров является характер их распределения по поверхности, не отличимый от случайного, а также то, что подавляющее большинство кратеров явно не затоплено лавами окружающих равнин не нарушено окрестными тектоническими деформациями, а выглядит наложенным и на равнины, и на тессеры. Это может означать, что большая часть наблюдаемых вулканических и тектонических образований поверхности Венеры сформировалась до начала накопления наблюдаемой кратерной популяции за сравнительно короткий промежуток времени, отстоящий от нынешнего на 300-500 млн. лет. Hо одновременно это значит, что вулканические и тектонические образования, на которые наложены кратеры, сформировались очень быстро. Время образования должно быть гораздо меньше 300-500 млн. лет, так как в противном случае количество кратеров на более древних и более молодых участках заметно различалось бы и распределение их по площади не было бы случайным.

У планеты нет магнитного поля и радиационных поясов. Период вращения планеты и координаты ее Северного полюса, полученные в результате совместной обработки бортовых радиолокационных и доплеровских измерений "Магеллана" и "Венеры-15, -16" для 20 опорных точек поверхности Венеры, оказались следующими: Период вращения Т=243.0183 земных суток. Прямое восхождение = 272.57. Склонение = 67.14.

ЗЕМЛЯ

Среднее расстояние от Солнца 149,6 миллионов км
Экваториальный диаметр 12756 км
Период вращения 23,93 часа
Период обращения 365,26 суток
Скорость движения по орбите 29,79 км/сек
Температура на поверхности от -55 гр C до +70 гр C
Масса (Земля=1) 1,00
Средняя плотность вещества (вода=1) 5,52
Сила тяжести на поверхности (Земля=1) 1,00
Кол-во спутников

Период вращения меркурия

Земля, третья планета от Солнца, является крупнейшей из 4-х внутренних планет, имеющих схожую с земной внутреннюю структуру. В процессе движения нашей планеты по орбите вокруг Солнца плоскость земного экватора (наклоненная к плоскости орбиты на угол 23o45′) перемещается параллельно самой себе таким образом, что в одних участках орбиты земной шар наклонен к Солнцу своим северным полушарием, а в других- южным, именно это и является причиной смены времён года. Кроме того расстояние от Земли до Солнца в различных точках орбиты неодинаковые, в перигелии (3 января) оно приблизительно на 2.5 млн. км. меньше, а в афелии (3 июля)- на столько же больше среднего расстояния, составляющего 149, 6 млн. км.

Большую часть поверхности Земли занимает Мировой океан (361 млн. км2, или 71%), суша составляет 149 млн. км2 (29%). Средняя глубина Мирового океана- 3 900 м. Существование осадочных пород, возраст которых (по данным радиоизотопного анализа) превосходит 3,7 млрд. лет, служит доказательством существования на Земле обширных водоемов уже в ту далекую эпоху, когда, предположительно появились первые живые организмы.

Форма Земли, как известно близкая к шарообразной, при более детальных измерениях оказывается очень сложной, даже если обрисовать ее ровной поверхностью океана (не искаженной приливами, ветрами и течениями) и условным продолжением этой поверхности под континенты. Неровности поддерживаются неравномерным распределением массы в недрах Земли. Такая поверхность называется геоидом. Геоид (с точностью порядка сотен метров) совпадает с эллипсоидом вращения, экваториальный радиус которого 6 378 км., а полярный радиус на 21,38 км. меньше экваториального. Разница этих радиусов возникла за счет центробежной силы, создаваемой суточным вращением Земли.

Одна из особенностей Земли как планеты — ее магнитное поле, благодаря которому мы можем пользоваться компасом. Магнитный полюс Земли, к которому притягивается северный конец стрелки компаса, не совпадает с Северным географическим полюсом, а находится в пункте с координатами приблизительно 76o с.ш. 101o з.д. Магнитный полюс, расположенный в южном полушарии Земли, имеет координаты 66o ю.ш. и 140o в.д. (в Антарктиде).Кроме того, ось магнитного поля не проходит через центр Земли, а отстоит от него на 430 км. Магнитное поле Земли несимметрично. Под действием исходящего от Солнца течения плазмы (солнечного ветра) магнитное поле Земли искажается и приобретает "шлейф" в направлении от Солнца, который простирается на сотни тысяч километров.

Наша планета окружена обширной атмосферой, которая благодаря присутствию небольшого озонового слоя, нейтрализует опасное для жизни коротковолновое солнечное и космическое излучение. Из-за содержащегося в атмосфере углекислого газа на нашей планете имеет место парниковый эффект. Он проявляется не так сильно, как на Венере, но все же поднимает среднюю (равновесную) температуру на Земле с теоретических минус 23 до плюс 15. Действуя подобно хорошей одежде, атмосфера оберегает земную поверхность и от температурных перепадов. В отсутствие атмосферы в некоторых точках Земли температура в течение суток колебалась бы между 160-ю тепла и 100 градусами мороза.

Основными газами, входящими в состав нижних слоев атмосферы Земли, являются азот (~78%), кислород (~21%) и аргон (~1%). Других газов в атмосфере Земли очень мало, например, углекислого газа около 0,03%. Атмосферное давление на уровне поверхности океана составляет при нормальных условиях ~0,1 MПа. Полагают, что земная атмосфера сильно изменилась в процессе эволюции: обогатилась кислородом и приобрела современный состав в результате длительного химического взаимодействия с горными породами и при участии биосферы, то есть растительных и живых организмов.

Доказательством того, что такие изменения действительно произошли, служат, например, залежи каменного угля и мощные пласты отложений карбонатов в осадочных породах. Они содержат громадное количество углерода, который раньше входил в состав земной атмосферы в виде углекислого газа и окиси углерода.

Ученые считают, что древняя атмосфера произошла из газообразных продуктов вулканических извержений; о ее составе судят по химическому анализу образцов газа, "замурованных" в полостях древних горных пород. В исследованных образцах, возраст которых более 3,5 млрд. лет, содержится приблизительно 60% углекислого газа, а остальные 40% — это соединения серы (сероводород и сернистый газ), аммиак, а также хлористый и фтористый водород. В небольшом количестве были найдены азот и инертные газы.

Доказательством того, что в земной атмосфере в течение первых 4 млрд. лет ее существования не было свободного кислорода, являются обнаруженные в геологических пластах соответствующего возраста чрезвычайно легко окисляемые, но не окисленные вещества такие, как сернистый натрий. Кислород, который выделялся в ничтожном количестве из водяного пара под действием солнечного облучения, полностью затрачивался на окисление содержавшихся в атмосфере горючих газов: аммиака, сероводорода, а также, вероятно, метана и окиси углерода. В результате окисления аммиака освобождался азот, который постепенно накапливался в атмосфере. 600 млн. лет назад количество свободного кислорода в земной атмосфере достигло 1% от его современного содержания. В это время уже существовало значительное число различных примитивных одноклеточных живых организмов. Около 400 млн. лет назад содержание свободного кислорода в земной атмосфере стало быстро увеличиваться благодаря широкому распространению зарослей крупных растений, характерных для этой эпохи.

Прежде предполагали, что Земля вначале была расплавленной, а затем остывала. Но эта точка зрения не подтверждается современными выводами науки. Большое процентное содержание на Земле некоторых летучих веществ указывает на то, что температура частиц, из которых образовалась наша планета, не могла быть очень высокой. Средний химический состав первичной Земли, вероятно, соответствовал химическому составу известных сегодня типов метеоритов.

В результате естественного распада радиоактивных элементов и некоторых других процессов в недрах Земли в течение долгого времени выделялась и накапливалась тепловая энергия. Это привело к сильному разогреву и частичному расплавлению вещества в недрах и к постепенному формированию и росту центрального ядра из наиболее тяжелых элементов и наружной коры из менее плотных веществ.

Период вращения меркурия

О

О внутреннем строении Земли прежде всего судят по особенностям прохождения сквозь различные слои Земли механических колебаний, возникающих при землетрясениях или взрывах. Ценные сведения дают также изменения величины теплового потока, выходящего из недр, результаты определений общей массы, момента инерции и полярного сжатия нашей планеты.

СЛОЙ ТОЛЩИНА СОСТАВ
Кора 6-40 км Твердые кремниевые породы
Мантия 2800 км В основном, твердые кремниевые породы
Внешнее ядро 2300 км Расплавленные железо и никель
Ядро (радиус) 1200 км Твердые железо и никель

Масса Земли найдена из экспериментальных измерений физической постоянной тяготения и ускорения силы тяжести (на экваторе ускорение силы тяжести равно 978,05 гал; 1 гал = 1 см/с2). Для массы Земли получено значение 5,976.1024 кг, что соответствует средней плотности вещества 5517 кг/м3. Определено, что средняя плотность минералов на поверхности Земли приблизительно вдвое меньше средней плотности Земли. Из этого следует, что плотность вещества в центральных частях планеты выше для всей Земли. Полученный из наблюдений момент инерции Земли, который сильно зависит от распределения плотности вещества вдоль радиуса Земли, свидетельствует также о значительном увеличении плотности от поверхности к центру.

Поток тепла из недр, различных в разных участках поверхности Земли, в среднем близок к 1,6*10-6 кал*см-2*сек-1, что соответствует суммарному выходу энергии 1028 эрг в год. Поскольку тепло может передаваться только от более нагретого к менее нагретому веществу, температура вещества в недрах Земли должна быть выше, чем на ее поверхности. Действительно, согласно измерениям, проведенным в шахтах и буровых скважинах, температура повышается приблизительно на 20o на каждый километр глубины.

На основе всего комплекса современных научных данных и построена модель внутреннего строения Земли, которая хорошо удовлетворяет измеренным значениям всех перечисленных выше параметров.

Твердую оболочку Земли называют литосферой. Ее можно сравнить со "скорлупой", охватывающей всю поверхность Земли. Но эта "скорлупа" как бы растрескалась на части и состоит из нескольких крупных литосферных плит, медленно перемещающихся одна относительно другой. По их границам концентрируется подавляющее большинство очагов землетрясений. Верхний слой литосферы- эта земная кора, минералы которой состоят преимущественно из окислов кремния и алюминия, окислов железа и щелочных металлов. Земная кора имеет неравномерную толщину: 35-65 км. на континентах и 6-8 км. подо дном океанов.

Верхний слой земной коры состоит из осадочных пород, нижний- из базальтов. Между ними находится слой гранитов, характерный только для континентальной коры. Под корой расположена так называемая мантия, имеющая иной химический состав и большую плотность. Граница между корой и мантией называется поверхностью Мохоровичича. В ней скачкообразно увеличивается скорость распространения сейсмических волн.

На глубине 120-250 км под материками и 60-400 км под океанами залегает слой мантии, называемой астеносферой. Здесь вещество находится в близком к плавлению состоянию, вязкость его сильно понижена.

Все литосферные плиты как бы плавают в полужидкой астеносфере, как льдины в воде. Более толстые участки земной коры, а также участки, состоящие из менее плотных пород, поднимаются по отношению к другим участкам коры. В то же время дополнительная нагрузка на участок коры, например, вследствие накопления толстого слоя материковых льдов, как это происходит в Антарктиде, приводит к постепенному погружению участка. Такое явление называется изостатическим выравниванием.

Ниже астеносферы, начиная с глубины около 410 км, "упаковка" атомов в кристаллах минералов уплотнена под влиянием большого давления. Резкий переход обнаружен сейсмическими методами исследований на глубине около 2 920 км. Выше этой отметки плотность вещества составляет 5 560 кг/м3, а ниже ее- 10080 кг/м3. Здесь начинается земное ядро, или, точнее говоря, внешнее ядро, так как в его центре находится еще одно- внутреннее ядро, радиус которого 1 250 км.

Внешнее ядро, очевидно, находится в жидком состоянии, поскольку поперечные волны, не способные распространяться в жидкости, через него не проходят. С существованием жидкого внешнего ядра связывают происхождение магнитного поля Земли. Внутреннее ядро, по-видимому, твердое.

У нижней границы мантии давление достигает 130 ГПа, температура там не выше 5 000К. В центре Земли температура, возможно, поднимается до

10 000К.

МАРС

Среднее расстояние от Солнца (1,5) 207-250 миллионов км
Экваториальный диаметр 6788 км
Период вращения 24 ч. 39м. 36 сек
Период обращения 687 суток
Скорость движения по орбите 24 км/сек
Температура на поверхности от 0 до -1360 С
Масса (Земля=1) 0,107
Средняя плотность вещества (вода=1) 3,89
Сила тяжести на поверхности (Земля=1) 0,38
Количество спутников

Марс, ближайшая к Земле(временами) планета. Через каждые 780 дней Земля и Марс оказываются на минимальном расстоянии друг от друга, которое меняется от 56 до 101 млн. км. Такие сближения планет называют противостояниями. Если же расстояние менее 60 млн. км, то их называют великими. Великие противостояния наблюдаются через каждые 15-17 лет. Эксцентриситет орбиты Марса составляет 0,09, поэтому расстояние от Марса до Солнца меняется от 207 млн. км в перигелии до 250 млн. км в афелии.

Орбиты Марса и Земли практически лежат в одной плоскости (угол между ними составляет 2 градуса). Ось вращения Марса наклонена на угол 25,2 градуса от перпендикуляра к плоскости орбиты и направлена в Созвездие Лебедя.

На Марсе также наблюдается смена времен года, длительность которых почти вдвое больше. Из-за эллиптической орбиты сезоны в северном и южном полушария имеют разную продолжительность: лето в северном полушарии продолжается 177 марсианских суток, а в южном оно на 21 день короче и теплее на 20 градусов, чем лето в северном полушарии.

Из-за большей отдаленности от Солнца Марс получает лишь 43% той энергии, которую получает Земля. Среднегодовая температура там -60° С. В течение суток температура поверхности изменяется существенно. Например, в южном полушарии на широте 50 градусов температура в середине осени меняется от -18 градусов (в полдень) до -63 градусов (вечером). Однако, на глубине 25 см под поверхностью температура практически постоянная -60° С. в течение суток и не зависит от сезона. Максимальные значения температуры поверхности не превышают нескольких градусов выше 0, а минимальные значения зарегистрированы на северной полярной шапке -138°С.

Такие изменения температуры объясняются тем, что атмосфера Марса, состоящая на 95% из углекислого газа, очень разрежена и парниковый эффект отсутствует. Другие составляющие атмосферы: 2,5% азота, 1,6% аргона, менее 0,4 кислорода. Среднее давление атмосферы у поверхности (6,1 мбар) в 160 раз меньше, чем давление на уровне моря нашей планеты (1 бар). В самых глубоких впадинах оно может достигать 12 мбар. Атмосфера планеты сухая.

В хороший телескоп на поверхности Марса можно различить лишь крупные темные и светлые области поперечником в сотни и тысячи километров. Хорошо видны белые полярные шапки Марса. Еще в конце XVIII века выдающийся английский астроном В.Гершель заметил, что размеры белых полярных шапок периодически изменяются со сменой сезона. Летом шапки испаряются и уменьшаются в размерах, причем одновременно из полярных областей в умеренные широты распространяется "волна потемнения" участков поверхности.

Период вращения меркурия

Период вращения меркурия

В конце XIX века итальянские астрономы А.Секки и Дж.Скиапарелли сообщили, что неоднократно видели тонкие длинные темные линии, напоминающие сеть каналов, как бы связывающих полярные и умеренные зоны планеты. Однако не все астрономы разделяли это мнение. Дело в том, что эти линии находились на пределе разрешения. В таких случаях отдельные пятна зрительно объединяются в линии. На фотографиях поверхности Марса, полученных с помощью космических станций, видно множество долин и трещин, однако совместить их с каналами, показанными на картах Скиапарелли, не удалось.

Полярные шапки Марса многослойны. Нижний, основной слой толщиной в несколько километров образован обычным водяным льдом, смешанным с пылью, который сохраняется и в летний период. Это постоянные шапки. Наблюдаемые сезонные изменения полярных шапок происходят за счет верхнего слоя толщиной менее 1 метра, состоящего из твердой углекислоты, так называемого "сухого льда".

Покрываемая этим слоем площадь быстро растет в зимний период, достигая параллели 50 градусов, а иногда и переходя этот рубеж. Весной с повышением температуры этот слой испаряется и остается лишь постоянная шапка. Волна потемнения" участков поверхности, наблюдаемая со сменой сезонов, объясняется изменением направления ветров, постоянно дующих в направлении от одного полюса к другому. Ветер уносит верхний слой сыпучего материала — светлую пыль, обнажая участки более темных пород. В периоды, когда Марс проходит перигелий, нагрев поверхности и атмосферы усиливается и нарушается равновесие марсианской среды. Скорость ветра усиливается до 69 км в час, начинаются вихри и бури. Более миллиарда тонн пыли поднимается и удерживается во взвешенном состоянии, при этом резко меняется климатическая обстановка на всем марсианском шаре. Продолжительность пылевых бурь иногда достигает 50 — 100 суток. Во время пылевых бурь на Марсе возникает так называемый "антипарниковый эффект", когда облака пыли не пропускают приходящее солнечное излучение к поверхности, но пропускают уходящее от нее излучение и поэтому поверхность сильно охлаждается, а атмосфера разогревается.

Уточнение состава атмосферы космическими аппаратами позволило выявить роль полярных шапок в формировании бурь. При таянии полярных шапок образуются огромные массы углекислого газа и увеличивается давление над ними, в результате чего образуются сильные ветры, поднимающие с поверхности мелкие частицы рыхлого грунта.

Для поверхности Марса характерна глобальная асимметрия в распределении пониженных участков — равнин, составляющих 35% всей поверхности и возвышенных, покрытых множеством кратеров областей. Большая часть равнин расположена в северном полушарии. Граница между ними в ряде случаев представлена особым типом рельефа — столовыми горами, сложенными плосковершинными горками и хребтами.

Четыре гигантских потухших вулкана возвышаются над окружающей местностью на высоту до 26 км. Самый крупный из них — гора Олимп, расположенный на западной окраине гор Фарсида, имеет основание диаметром 600 км и кальдеру на вершине поперечником 60 км. Три вулкана: гора Аскрийская, гора Павлина и гора Арсия расположены на одной прямой на вершине гор Фарсида, высотой около 9 км. Сами вулканы возвышаются над Фарсидой еще на 17 км. Более 70 потухших вулканов найдено на Марсе, но они гораздо меньше и по занимаемой площади и по высоте.

Гигантская долина глубиной до 6 км и протяженностью более 4000 км находится к югу от экватора. Ее назвали Долиной Маринера. Множество долин меньших размеров, борозд и трещин выявлено на поверхности Марса, свидетельствующих о том, что в древности на Марсе была вода и, следовательно, атмосфера была более плотной.

Под поверхностью Марса в отдельных областях находится слой вечной мерзлоты толщиной в несколько километров. В таких районах на поверхности у кратеров видны необычные для планет земной группы застывшие флюидизированные потоки, по которым можно судить о наличии подповерхностного льда. За исключением равнин поверхность Марса сильно кратерирована. Кратеры, как правило, выглядят более разрушенными, чем на Меркурии или Луне. Следы ветровой эрозии можно видеть повсюду.

На современных картах Марса наряду с новыми наименованиями, присвоенными формам рельефа, выявленным по космическим снимкам, используются древние географические и мифологические названия, предложенные Скиапарелли. Самая крупная возвышенная область, поперечником около 6000 км и высотой до 9 км получила название Фарсида (так на древних картах назывался Иран), а огромная кольцевая депрессия на юге диаметром более 2000 км названа Элладой (Греция). Сильно кратерированные участки поверхности получили название земель: Земля Прометея, Земля Ноя и другие. Долинам даются названия планеты Марс, используемые у разных народов. Крупные кратеры названы в честь ученых, а небольшие кратеры носят названия населенных пунктов Земли.

Период вращения меркурия

Источник: studopedia.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.