Сколько лететь до марса теоретически


Сколько лететь до МарсаКаждый человек время от времени обращает свой взор на звёздное небо. Сколько-то людей могут сами находить крохотную красноватую звёздочку — Марс. Эта удивительная планета давно стала очень притягательной для лучших умов человечества. Такая близкая и такая далёкая. Марс является соседом Земли, ближе расположена лишь Венера, условия на которой отбивают всякую охоту посетить её в ближайшее время.

  • Сколько лететь до Марса по времени
  • Условия жизни на Марсе
  • Какие задачи надо решить для полёта на Марс человека
  • Справится ли психика
  • Сдюжит ли организм
  • Радиация

Другое дело Марс. Конечно, все мы знаем, что и на этой планете не получится комфортно отдохнуть в отпуске, но там можно выжить, используя уже доступные людям технологии. Но так ли легко это сделать? Какие препятствия нужно преодолеть человечеству для осуществления этой амбициозной мечты? Лететь или не лететь?

Сколько лететь до Марса по времени


Какое расстояние между Землей и МарсомВажным фактором подготовки полёта на Марс является расчёт времени, необходимого для преодоления расстояния между небесными телами. Зная скорость звездолёта и расстояние от Земли до Марса, легко подсчитать время на осуществление экспедиции, так? Нет, не так.

Дело в том, что каждая планета вращается по своей орбите вокруг солнца и дистанция между ними непрерывно изменяется, наибольшее сближение планет (в астрономии называемое противостоянием), когда они находятся на расстоянии «всего» 55 млн км друг от друга бывает только каждые два года. Во всё остальное время дистанция между небесными телами больше, достигая максимума в 401 млн км (когда планеты находятся на противоположных сторонах от солнца).

Из курса физики известно, что невозможно преодолеть скорость света (порядка 300 тыс. км/с). Значит, теоретически, человечество когда-нибудь сможет изобрести способ передвижения в пространстве, близкий к световому барьеру. Свет (радиоволны) проходит от Земли до Марса чуть больше 3 мин, если планеты находятся в положении противостояния, и за 22,37 минуты в случае максимально далёкого расположения небесных тел.


Космический корабль, двигающийся со скоростью, близкой к скорости света, мог бы преодолеть эти дистанции за время, близкое, к озвученным значениям (не учитывая времени на разгон и торможение с перегрузками, не смертельными для человека). Кроме того, по теории относительности Эйнштейна, для астронавтов, двигающихся с такими скоростями, время замедляется. Так что для путешественников такая миссия стала бы лёгкой прогулкой.

Но это в теории пока неизвестно, можно ли в принципе создать такие быстроходные транспортные средства, поэтому рассмотрим ситуацию исходя из того, что имеет человечество сейчас и способно создать в ближайшем будущем.

Логично выбрать для космического путешествия момент, когда планеты находятся максимально близко друг от друга. Но и здесь не всё просто. Если наш корабль устремится к той точке, где находится Марс в момент старта, то он промахнётся, так как планета успеет переместиться на значительное расстояние за время экспедиции. Значит, надо рассчитать траекторию с упреждением, чтобы встретиться с планетой в расчётной точке. Следует учитывать и силы притяжения, способные изменять траектории движения космических тел.

Все эти расчёты уже давно произведены, и к Марсу были успешно отправлены космические зонды и станции. Ниже приведены некоторые из успешных полётов на Марс космических аппаратов:

  • Mariner 4. Запущен в 1964 году, время в пути — 228 дней.
  • Mariner 6. 1967 год — 156 дней.
  • Mariner 7. 1969 год — 131 день.
  • Mariner 9. 1971 год — 156 дней.
  • Viking 1. 1976 год — 335 дней.
  • Viking 2. 1976 год — 365 дней.

Как летают на МарсПочему же так отличается время полёта, если средняя скорость космических кораблей была примерно одинакова — чуть более 20 тыс. км/ч, можно ли долететь до «красной» планеты быстрее? Всё дело как раз в изменяющемся расстоянии между небесными телами и необходимости строить траекторию полёта с учётом движения планет по своим орбитам. И также важна не только дистанция между Марсом и Землёй, но и запас топлива, необходимый для манёвров и мягкого приземления на поверхность планеты, ведь в ограниченный объём корабля невозможно взять сколь угодно много горючего.

В настоящее время созданы и более быстрые корабли, например, New Horizons, который способен двигаться со скоростью 58 тыс. км/ч и теоретически может достигнуть Марса за 39 дней в период минимального расстояния между планетами и за 289 дней — максимального.

Планирование космических миссий с участием человека идёт полным ходом как у нас в стране, так и за рубежом. А это задача намного сложнее, чем отправить необитаемый космический аппарат с билетом в один конец. Подсчитано, что минимальное время для экспедиции в оба конца составляет примерно 500 дней. Такой большой временной интервал обусловлен тем, что для возвращения на Землю придётся подождать повторного противостояния.


После старта космического корабля наша планета начнёт стремительно уходить вперёд, так как орбитальная скорость Земли гораздо выше. Поэтому уже через три месяца (а для полёта на Марс нужно больше времени) планеты разойдутся настолько, что возвращение станет уже невозможным до следующего противостояния.

Подсчитано, что для успешной миссии в течение одного цикла, минимальная скорость корабля должна составлять 18 км/c (64800 км/ч), а это пока не достижимо. В расположение человека вроде бы была ракета Saturn V почти достигающая этого показателя (способна разгоняться до 64500 км/ч), но непонятно, была ли это мистификация или технология её производства утеряна.

Однако, технический прогресс не стоит на месте, разрабатываются новые двигатели, работающие на других физических принципах и рано или поздно у человечества появится космический транспорт с необходимыми характеристиками, но чтобы миссия полёта на Марс с участием человека была успешной, необходимо решить ещё множество проблем.

Условия жизни на Марсе

  • Планета МарсДлительность марсианских суток примерно соответствует земным, а вот год длится 687 дней.

  • Марсианская атмосфера содержит минимальное количество кислорода — 0,14%, а вот углекислого газа — 96%. Присутствуют в марсианском воздухе также азот и аргон. Давление меньше земного в 150 раз.
  • Воды в чистом виде на Марсе не обнаружено. Но редкое наличие облаков и зафиксированное выпадение снега позволяет предполагать, что она была там раньше.
  • Колебания температуры на Марсе от минус 127 °C до плюс 20 °C, среднегодовая — минус 40 °C. Частые сильные бури и смерчи обусловлены низкой гравитацией.
  • На планете отсутствует магнитное поле, а значит всё живое, находящееся на поверхности планеты, будет подвергаться воздействию жёсткого космического излучения.
  • В телескоп на Марсе можно наблюдать снежные полярные «шапки», увеличивающиеся в размерах зимой и уменьшающиеся летом.

Как видно, условия на планете суровые, но это пока единственное известное небесное тело, где человек может выжить, используя определённые защитные средства, ведь это не плюс 460 °C, как на Венере.

Какие задачи надо решить для полёта на Марс человека

Справится ли психика

В 2007–2011 гг. в России был произведён эксперимент по имитации полёта на Марс. Группа людей должна была находиться в замкнутом пространстве на протяжении 520 дней. Хотя по условиям эксперимента любой участник мог отказаться от исследования и покинуть помещение в любое время, у некоторых добровольцев были обнаружены психические расстройства. А что будет в реальном полёте?

Сдюжит ли организм


Сколько по времени лететь до МарсаУ человечества есть опыт нахождения в условиях невесомости в течение полугода, но даже с учётом постоянных физических нагрузок процесс адаптации после возвращения на Землю происходит очень тяжело и долго, ведь мышцы и кости успевают атрофироваться без действия силы тяжести. Конечно, каждый землянин почувствовал бы себя суперменом в условиях тяготения Марса (1/3 от земного), где человек массой 100 кг будет весить всего 39 кг. Но до Марса надо ещё долететь, как мы выяснили на это уйдёт 6–7 месяцев в тесном замкнутом пространстве, лишённом всяческих удобств. А вернувшись обратно на Землю, столкнуться со всеми «прелестями» обратной адаптации.

Радиация

Возможно, самая большая проблема на пути человека к другим планетам. И в процессе полёта и на самом Марсе, лишённом магнитного поля, человек будет подвергаться воздействию космической радиации. Сможет ли справиться с ней защитная обшивка космического корабля, можно ли защититься от радиации в современных скафандрах?

Человек сформировался на Земле, никто не знает, что ждёт его в случае длительного нахождения в непривычных для организма условиях Марса. Пока больше вопросов, чем ответов:

  • Расстояние от Земли до МарсаМожно ли заводить на Марсе детей?
  • Что будет, если человек заболеет?
  • Чем питаться на «красной» планете?
  • Как дышать и есть ли жизнь без скафандра?
  • Что делать без интернета?

Сколько этих и других вопросов ещё ждут ответов? Но во все времена человек бросал вызов природе, и уже сейчас существуют программы по подготовке полёта на Марс, набираются группы по отбору добровольцев-энтузиастов, готовых рискнуть собой ради осуществления самой заветной мечты человечества — путешествия к звёздам.

Источник: turisti.guru

Полет на Марс – реальные факты

Марс — один из самых близких к нам соседей. Всю свою историю человечество пытается найти ответ на вопрос — есть ли жизнь на Марсе, а если нет, то была ли раньше и что произошло? Единственный способ узнать это — совершить полет. Сколько лететь до Марса и основные способы доставки туда человека — одна из основных задач современных астрономов.


Время, которое займет полет

Время перелета зависит от расстояния и скорости. Из школьного курса всем известно, что скорость это отношение расстояния ко времени. Время полета будет равным отношению расстояния между планетами к скорости полета.

Необходимое время для полета

Со скоростью полета все более или менее стабильно – максимальная скорость современного космического аппарата равна 64’000 км/час, однако средние показатели скорости равны примерно 20’000 км/час. А вот расстояние между движущимися планетами постоянно меняется и в среднем составляет 225 млн. км.

Отсюда получается, что теоретически космический аппарат с людьми может достигнуть планеты через 11’250 часов после вылета. Это составит 468 дней или 15 месяцев.

Если брать в расчет минимальное расстояние между планетами равное 55 млн. км, то человек преодолеет его за 2’750 часов или 115 дней. Но это только в теории. Ученые, занимающиеся разработкой проекта Mars One, предполагают, что космический аппарат доставит людей на Марс за 7 месяцев.

С чем связана такая продолжительность полета

Перелет не получится осуществить по прямой – планеты движутся по орбите вокруг Солнца. Космическому аппарату придется лететь до Марса в ту точку, где планета еще не находится.

Кроме этого, необходимо учитывать силу притяжения Солнца. Ракете необходимо будет лететь на максимально удаленном расстоянии от нашего светила. Это позволит сэкономить топливо.


Еще нужно брать во внимание, что между планетами находятся другие небесные тела – спутники, астероиды. Поэтому мало оттолкнуться от Земли и разогнаться. Нужно будет постоянно притормаживать и менять траекторию полета.

Лететь с максимальной скоростью не получится, потому что самый быстрый аппарат нес на себе относительно небольшое оборудование, а космическому кораблю необходимо будет перенести людей, оборудование, провиант и топливо, которого потребуется колоссальное количество. Кроме того, корабль должен быть оснащен защитой от космической радиации, которая губительна для человека.

Расстояние от Марса до Земли

Как уже было сказано ранее, лететь до Марса по прямой не получится. Расстояние между планетами меняется. Это связано с тем, что Солнце, притягивая планеты, удерживает их на разных орбитах. Кроме этого небесные тела сами двигаются по своим орбитам.

Минимальное расстояние между планетами достигается только при выполнении двух условий:

• Марс находится в Перигелии – наиболее приближенная точка к Солнцу;

• Земля в точке Афелия, максимально удаленной от Солнца.

За всю историю человечества приблизиться к такому расстоянию удалось только в августе 2003 года. Тогда дистанция между планетами была равна примерно 56 млн. км.

Наибольшее расстояние достигается, когда планеты расположены по разные стороны от центра нашей системы (401 млн. км).

Космическому аппарату понадобится лететь навстречу красной планете по орбите, наиболее удаленной от Солнца. Многие решать, что проще всего срезать окружность по хорде (прямой, соединяющей две точки окружности). Но здесь возникает еще одна проблема – сила притяжения Солнца, которая прямо пропорционально влияет на количество необходимого топлива. Космическому аппарату придется постоянно менять траекторию, чтобы не попасть под влияние нашей звезды.


Реальные полеты к Марсу и возможные траектории

Хотя человеку еще не удалось добраться до красной планеты, но аппараты для исследований уже были доставлены с Земли.

Освоение Марса началось еще в прошлом веке. Первая автоматическая межпланетная станция НАСА Mariner-4 приблизилась к планете в 1964 году. После этого началось более пристальное изучение красной планеты, были отправлены пилотируемые с Земли зонды и аппараты. Конечно, случались и неудачные попытки, например «Зонд-2», отправленный СССР вообще не смог попасть в район красной планеты. Но, отрицательный результат – тоже результат. Это говорит только об одном – планирование полета человека на Марс должно происходить наиболее тщательно и осмысленно, здесь важна каждая мелочь.

На сегодняшний день, научному сообществу хватает данных для построения возможных траекторий для преодоления такого большого пространства. Одной из основных задач перед учеными стоит уменьшение количества потраченного топлива для полета на Марс.

Объем топлива для межпланетного перелета

Для того чтобы полет на Марс не оказался билетом в один конец, необходимо огромное количество топлива. Поэтому было предложено несколько интересных концепций для решения этого вопроса.

Довольно интересным считается проект Роберта Зубина. Ядерный реактор будет главным источником энергии. Для его работы понадобится 6 тонн водорода. Для обратного перелета планируется использовать диоксид углерода, которым богата атмосфера красной планеты. С помощью реактора планируется преобразовать их в метан и воду в количестве 100 тонн.

Российскими учеными разработана термическая ядерная установка. Принцип движения довольно близок к реактивному движению – тепловая энергия от расщепления атомов сжигает вещество. Пламя будет двигаться в противоположном направлении от ракеты, обеспечивая движение.

Представленный проект уже не будет являться обычным реактивным двигателем на химическом топливе, которого понадобится 1630 тонн, чтобы осуществить перелет. Это будет комплекс сверхтяжёлой ракеты-носителя.

Сейчас разрабатываются двигатели, работающие на темной материи и плазменные установки, но пока это только в теории.

Также интересными проектами, с точки зрения экономии топлива, являются теории проведения стартов с Луны. Тогда для полета понадобится в 33,17 раз меньше топлива. Эти цифры зависят от силы притяжения планеты и её атмосферы.

Эллиптическая гомановская траектория

В 1925 году Уолтер Гоман предложил способ перелета, при котором используется часть эллиптической орбиты для перехода между орбитами планет.

Полуэллипс образует касательную линию с орбитами Земли и Марса. Ракете необходимо развить скорость 11,59км/сек, что соответствует второй космической скорости. В среднем такой перелет займет 8 с половиной месяцев, а если увеличить скорость до 12 км/сек, то перелет сократиться до 5 месяцев.

Однако этот способ влечет за собой очень высокие затраты на топливо, так как при подлете к марсианской орбите, необходимо будет включать тормозные двигатели.

Значительно сэкономить топливо можно используя баллистический захват – космический аппарат будет вращаться вокруг Солнца на своей орбите со скоростью, гораздо ниже, чем у Марса. При сближении Марс просто захватит аппарат на свою орбиту. Этот способ снизит количество необходимого топлива, но увеличит время перелета. А от времени пилотируемого полета зависит количество необходимых ресурсов для жизнеобеспечения экипажа.

Параболическая траектория

Для осуществления перелета по параболической траектории космический аппарат должен иметь начальную космическую скорость примерно 16,7 км/сек. Это соответствует третьей космической скорости.

Траектория полета будет проходить по параболе от Земли до Марса и обратно. При этом время перелета сократится до 70 суток (при достижении оптимальных условий расположения планет).

Энергетические затраты возрастают примерно 4,3 раза в сравнении с полетом по эллиптической орбите. Однако за счет сокращения времени пребывания в космосе снижаются затраты на обеспечение защиты от радиации, кислород, продукты питания.

Гиперболическая траектория движения

Гиперболическая траектория полета самая близкая к перелету по прямой, возможен быстрый разгон до больших скоростей. При таком перелете уменьшается время воздействия космической радиации на космонавтов.

Для разгона аппарата до гиперболических скоростей на Земле уже имеются технологии. Так, космический зонд «Новые горизонты» достиг Марса за 78 суток. Но космическому аппарату, пилотируемому человеком, понадобится гораздо больше энергии.

В настоящее время ведется разработка электрических (ионных) двигателей, способных достигать скорости 100 км/сек.

История важнейших миссий освоения

Исследование красной планеты учеными началось в Древнем Египте 3,5 тысячи лет назад. Тогда была составлена математическая модель движения планеты по небосводу.

В 1964 году НАСА отправляет к Марсу аппарат «Маринер-4», тогда был проведен облет вокруг планеты и сделаны первые снимки, весь перелет занял 228 дней. После этого в феврале 1969 года стартовал проект «Маринер-6», который не только провел съемку Марса вблизи, но и исследовал атмосферу планеты, температуру. В этом же году стартует «Маринер-7», который повторяет миссию «Маринер-6».

В 1971 году был запущен первый искусственный спутник Марса «Маринер-7». Работая до октября 1972 года, он составил первую карту планеты.

Первую посадку на Марс совершил аппарат «Викинг-1», в 1976 году он долетел до Марса за 304 дня. «Викинг -2» был отправлен в 1975 году, состоял из орбитальной станции и зонда. Его предназначением был поиск жизни. Также были сделаны первые цветные снимки.

В 1996 году стартовал проект «Марс Глобал Сарвейор». Ему удалось достигнуть орбиты Марса за 308 дней. В 2001 году он был выведен из строя.

В 1996 году совершил посадку на красную планету аппарат «Марс Патфайндер». Целью его изучения была поверхность планеты, состав грунта, температура и ветер.

25 декабря 2003 года была отправлена станция Европейского космического агентства Марс Экспресс.

В августе 2005 года «Марсианский разведчик» отправился на Марс, чтобы найти наиболее подходящее место для высадки людей.

Атмосферу красной планеты изучает «Мавен» — американский межпланетный зонд.

Проекты по освоению Марса

На данный момент уже разработан проект Mars One. Основной задачей является пилотируемый человеком перелет. В 2013 году был осуществлен отбор претендентов.

До 2024 года планируется создать ряд искусственных спутников Солнца для реализации связи с красной планетой и отправка на Марс необходимых для организации колонии грузов – систем жизнеобеспечения, жилых модулей.

В 2026 году планируется вывести на орбиту Земли транзитный модуль и части космического корабля. Затем 4 человека совершат первый в истории пилотируемый перелет на Марс. Высадка планируется в 2027 году. Первый экипаж должен будет начать осваивать планету.

Кроме этого, Илон Маск в 2016 году представил свой проект Space-X по освоению красной планеты. Этот проект тесно связан с процессом формирования на Марсе не просто систем жизнеобеспечения. Он подразумевает полноценное освоение Марса только при создании условий, близких к условиям на Земле. А это уже займет больше сотни лет.

Высадка человека на Марсе позволит узнать не только, как зарождалась жизнь, случайность ли это или закономерность химической эволюции. Причины для освоения Марса не ограничиваются научным интересом. Это дополнительные ресурсы, консолидация сверхдержав для достижения общей цели. В конце концов, Земля может стать непригодной для жизни, и человечеству нужно будет искать новые места обитания.

Источник: pikabu.ru

Сколько времени лететь до Марса

Корабль Mars InSight сумел достичь планеты за относительно короткое время, но шаттл с людьми и запасами, необходимыми для выживания, может занять больше времени.

Наименьшее зарегистрированное расстояние между Землей и Марсом составляет 56 миллионов километров. Расстояние меняется из-за наших орбит. Даже свет, который распространяется невероятно быстро, может занять до 12 минут, чтобы добраться до нас с поверхности Марса.

Самый быстрый запуск ракеты с Земли произошел в 2015 году и развивался со скоростью 36 000 миль в час (58 000 км / ч). Судя по этой цифре, и учитывая, что Марс может быть дальше, в зависимости от того, когда вы побывали, ученые говорят, что путешествие на Марс занимает около 300 дней. Это чуть менее десяти месяцев. Однако некоторые говорят, что если все правильные элементы выровнены, и вы использовали много топлива, это может занять всего 150 дней, что составляет пять месяцев.

Другие идеи, чтобы уменьшить время полета до Марса

Хотя для того, чтобы космический корабль пролетел 250 дней, чтобы достичь Марса, требуется некоторое терпение, нам может потребоваться совершенно другой метод движения, если мы посылаем людей. Космос — враждебное место, и излучение межпланетного пространства может представлять долгосрочную угрозу для здоровья астронавтов-людей.

Фоновые космические лучи создают постоянный поток радиации, вызывающей рак, но существует больший риск массивных солнечных бурь, которые могут убить незащищенных астронавтов за несколько часов. Если вы можете уменьшить время в пути, вы уменьшите количество времени, которое астронавты получают в результате облучения, и минимизируете количество припасов, которое они должны нести для обратного полета.

Сколько лететь до Марса, используя различные технологии

Ядерные ракеты
Одна из идей — ядерные ракеты, которые нагревают рабочую жидкость — например, водород — до интенсивных температур в ядерном реакторе, а затем взрывают ее из сопла ракеты при высоких скоростях для создания тяги. Поскольку ядерное топливо намного плотнее энергии, чем химические ракеты, вы можете получить более высокую скорость тяги при меньшем расходе топлива. Предполагается, что ядерная ракета может сократить время полета на Марс примерно до 7 месяцев.

Магнитоплазменные ракеты
Другое предложение — это технология, называемая магнитоплазменной ракетой с переменным удельным импульсом (или VASIMR). Это электромагнитный двигатель, который использует радиоволны для ионизации и нагрева топлива. Это создает ионизированный газ, называемый плазмой, который может с большой скоростью выталкивать заднюю часть космического корабля. Бывший астронавт Франклин Чанг-Диас ведет разработку этой технологии, и ожидается, что на Международной космической станции будет установлен прототип, чтобы помочь ей сохранить свою высоту над Землей. В миссии на Марс ракета VASIMR может сократить время полета на Марс до 5 месяцев.

Антиматерия
Возможно, одним из самых экстремальных предложений будет использование ракеты-антивещество. Созданный в ускорителях частиц, антивещество — самое плотное топливо, которое вы могли бы использовать. Когда атомы вещества встречаются с атомами антивещества, они превращаются в чистую энергию, как и предсказывает знаменитое уравнение Альберта Эйнштейна: E = mc 2.

Итак, сколько лететь до Марса, использую технологию антивещества? Потребовалось бы всего 10 миллиграммов антивещества, чтобы продвинуть миссию человека на Марс всего за 45 дней! Но тогда производство даже такого незначительного количества антиматерии обойдется примерно в 250 миллионов долларов.

Как долететь до Марса с наименьшим количеством топлива

Основная задача инженеров — как доставить космический корабль на Марс с наименьшим количеством топлива. Роботы на самом деле не заботятся о враждебной космической среде, поэтому имеет смысл максимально снизить затраты на запуск ракеты.

Инженеры НАСА используют метод перемещения, называемый орбитой передачи Хомана — или орбитой передачи минимальной энергии — для отправки космического корабля с Земли на Марс с наименьшим количеством топлива. Техника была впервые предложена Уолтером Хоманом, который опубликовал первое описание маневра в 1925 году.

Вместо того, чтобы направлять вашу ракету прямо на Марс, вы повышаете орбиту вашего космического корабля так, чтобы он следовал по большей орбите вокруг Солнца, чем Земля. В конце концов эта орбита пересечет орбиту Марса — в тот самый момент, когда Марс тоже там.

Если вам нужно запустить с меньшим количеством топлива, вам нужно больше времени, чтобы поднять свою орбиту и увеличить поездку на Марс.

Сколько будет стоить полет на Марс

Помимо того, что лететь до Марса долго, это еще и недешевое мероприятие. Хотя, по словам мега-космического миллиардера Илона Маска, в конце концов, это не так уж много. Он говорит, что это может снизиться до 100 тысяч долларов. И не беспокойтесь о предоставлении обратной поездки, потому что, по словам Илона, она будет бесплатной.

«Полет на Марс будет стоить менее 500 000 долларов, а может быть, даже ниже 100 000 долларов»

— Илон Маск

сколько лететь на марс

Источник: qil.ru

Расстояние до Марса

Красная планета — вторая по удаленности от Земли. Расстояние между Марсом и Землей варьируется от 55 млн до 400 млн км.

Свет проходит до Марса за 3-22 световых минуты. Это зависит от положения планет на орбите. В 1964 г. США запустили корабль «Mariner-4», который достиг Марса через 228 дней. Он сделал 21 фотоснимок и отправил их на Землю. В 1969 г. «Mariner-6» долетел до Красной планеты за 155 дней. Искусственный спутник изучил состояние атмосферы, измерил температуру поверхности. В результате последующих полетов были созданы карты Марса.

«Viking-1» сел на поверхность через 304 дня после запуска. Космический аппарат под названием «Viking-2» добрался до конечного пункта через 333 дня. Было сделано более 16000 цветных фотографий. Полеты до Марса с Земли продолжаются в XXI в. Из отечественных космических аппаратов стоит назвать «Марс-1», преодолевший миллионы километров за 230 дней. Продолжительность полетов дана в один конец.

Среднее время перелета

Время в пути не зависит от технических достижений. Для его определения нужно выполнить сложные математические расчеты и анализ орбит небесных тел. Если среднее расстояние между планетами принять за 225 млн км, совершая полет со средней скоростью самолета (1000 км/ч), лететь придется 22000 дней. Это более 60 лет. Но можно задействовать самый быстрый космический аппарат, который преодолеет дистанцию за 39 дней. Его скорость достигает 58000 км/ч.

Единого маршрута и времени его преодоления нет. В течение года все планеты занимают различные места на своих орбитах, что изменяет расстояние между ними. Перелет на Марс со скоростью света (свыше 299 млн км/ч) займет от 3 до 22 минут. Однако самый скоростной корабль «Voyager-1» способен передвигаться на скорости 62140 км/ч, и к перевозке пассажиров он не приспособлен.

На ракете современного уровня развивается скорость до 8350 км/ч. Такими темпами длительность полета составит 6586 часов. Это около 274 дней при минимальной удаленности Марса от Земли. При максимальном расстоянии продолжительность путешествия продлится до 5,47 лет. К этому сроку нужно прибавить время на обратную доставку космонавтов.

Способен ли долететь человек

Перед организаторами миссии стоит проблема послать корабль туда и вернуть его обратно. Чем быстрее он полетит, тем лучше. Минимальная скорость должна составлять 18000 км/ч. Если учесть период сближения планет, который длится около 500 дней, понадобится минимум 33 земных месяца на совершение путешествия на Марс. В пути космических путешественников ждут опасности:

  • радиация;
  • изоляция;
  • длина маршрута;
  • гравитационные поля;
  • ограниченное пространство и др.

Космос — не место для проживания людей. Нужно приложить много усилий для создания комфортных условий на корабле. Половину пути аппарат будет преодолевать на максимально возможной скорости, затем начнет торможение для осуществления мягкой посадки.

Оказавшись на поверхности Красной планеты, звездолетчик не может ждать быстрой помощи с Земли. Еще не изучены последствия влияния земной, космической и инопланетной гравитации на организм.

Еще одна трудность пребывания человека на Марсе — недостаток воздуха. В атмосфере Красной планеты 96% углекислого газа, поэтому передвигаться всегда нужно с дыхательным аппаратом. Частые песчаные бури способны разрушить оборудование и жилье землян, убить самих космонавтов. Угрозу представляют различные пока неизвестные заболевания.

Расход топлива

Инженеры предлагают совершать полет на аппаратах с ядерными двигателями. Для них требуется водород в количестве 6 тонн. На обратный путь планируется применить диоксид углерода, который имеется на Красной планете. Вода расщепляется на водород и кислород, которые расходуются для дыхания и получения метана. Множество нюансов затрудняют точный расчет требуемого на путешествие запаса топлива.

Интерес представляет идея подогрева и ионизации топлива радиоволнами. Результат процесса — плазма. Она дешевле ядерного топлива.

Антиматерия — новый вид топлива для межзвездных перелетов. Скорость космического аппарата развивается почти до светового уровня, хотя подобные аппараты еще не существуют. По расчетам для путешествия на Марс нужно около 10 мг антиматерии (стоимостью свыше 240 млн долларов).

Допустимые траектории полета

В Солнечной системе много гравитационных точек, с которыми нельзя сталкиваться. Поэтому разработаны безопасные траектории полетов к Красной планете:

  • эллиптическая (гомановская);
  • параболическая;
  • гиперболическая.

Гомановская траектория разработана Вальтером Гоманом, инженером из Германии. Корабль запускается против движения Земли. Применение этого метода характеризуется расходом большого количества топлива на торможение. Баллистический захват — метод запуска космических аппаратов навстречу Марсу по его орбите. Торможение происходит за счет сопротивления атмосферы.

Гиперболическая траектория полета — самый короткий маршрут для космической экспедиции. При таком перелете уменьшается время воздействия космической радиации на космонавтов. Пока такие путешествия невозможны, т.к. космические корабли, передвигающиеся с гиперболической скоростью, находятся в разработке.

Источник: o-kosmose.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.