Химический состав поверхности луны


ЛУНА́, един­ст­вен­ный естественный спут­ник Зем­ли. Со­от­но­ше­ние раз­ме­ров и масс Л. и Зем­ли по­зво­ля­ет рас­смат­ри­вать со­во­куп­ность этих не­бес­ных тел ско­рее как двой­ную пла­не­ту, чем как ро­ди­тель­скую пла­не­ту и спут­ник. Мас­са Л. (7,35·1022  кг) от­но­сит­ся к мас­се Зем­ли как 1 к 81,3. Ана­ло­гич­ное от­но­ше­ние масс, напр., Фо­бо­са и Мар­са со­став­ля­ет 1/50000000, Га­ни­ме­да (круп­ней­ше­го в Сол­неч­ной сис­те­ме спут­ни­ка) и Юпи­те­ра – 1/12200. Л., из­на­чаль­но ли­шён­ная ат­мо­сфе­ры и гид­ро­сфе­ры, со­хра­ни­ла на сво­ей по­верх­но­сти сле­ды про­цес­сов, про­ис­хо­див­ших в Сол­неч­ной сис­те­ме мил­лио­ны и мил­ли­ар­ды лет на­зад. По­это­му изу­че­ние по­верх­но­сти Л. по­зво­ля­ет де­лать вы­во­ды об эво­лю­ции Сол­неч­ной сис­те­мы.

Общая характеристика Луны

Л. дви­жет­ся во­круг Зем­ли по эл­лип­тич.


­бите (ср. экс­цен­три­си­тет 0,0549) со ср. ско­ро­стью 1,023 км/с. Рас­стоя­ние от Л. до Зем­ли ме­ня­ет­ся от 356400 км до 406800 км, ср. зна­че­ние рав­но 384401± D1 км. Ско­рость ви­ди­мо­го пе­ре­ме­ще­ния Л. сре­ди звёзд со­став­ля­ет 13°10´ 35´´ в сут. Пе­ри­од вра­ще­ния Л. во­круг сво­ей оси от­но­си­тель­но звёзд (си­де­рич. ме­сяц) в точ­но­сти сов­па­да­ет с пе­рио­дом дви­же­ния Л. по ор­би­те во­круг Зем­ли. Вслед­ст­вие это­го Л. по­сто­ян­но об­ра­ще­на к Зем­ле од­ним и тем же по­лу­ша­ри­ем, что по­зво­ля­ет го­во­рить о ви­ди­мой и об­рат­ной сто­ро­нах Л. Рав­но­мер­ное вра­ще­ние Л. во­круг оси в со­че­та­нии с не­рав­но­мер­ным дви­же­ни­ем по ор­би­те (ус­ко­ре­ние мо­жет дос­ти­гать 0,272 см/с2) при­во­дит к по­яв­ле­нию оп­тич. эф­фек­та либ­ра­ции по дол­го­те (см. Либ­ра­ция Лу­ны). При разл. со­че­та­ни­ях вза­им­но­го по­ло­же­ния на­блю­да­те­ля, Л. и Солн­ца на­блю­да­тель ви­дит ос­ве­щён­ной толь­ко часть лун­но­го дис­ка – оп­ре­де­лён­ную фа­зу Лу­ны. Пе­ри­од сме­ны фаз (от но­во­лу­ния до сле­дую­ще­го но­волу­ния) но­сит назв. си­но­ди­че­ско­го ме­ся­ца. Вслед­ст­вие эл­лип­тич­но­сти лун­ной ор­би­ты про­дол­жи­тель­ность си­но­дич. ме­ся­ца мо­жет ме­нять­ся от 29,25 сут до 29,83 сут. Лун­ная ор­би­та на­кло­не­на к плос­ко­сти эк­лип­ти­ки под уг­лом 5°9´. На­кло­не­ние лун­но­го эк­ва­то­ра к эк­лип­ти­ке со­став­ля­ет 1°32´ . Та­кое со­че­та­ние на­кло­не­ний при­во­дит к оп­тич.
б­ра­ции по ши­ро­те. Диа­метр Л. со­став­ля­ет 3476 км (0,27 зем­но­го диа­мет­ра). Пло­щадь по­верх­но­сти Л. рав­на 3,8·107 км2. Ср. плот­ность ве­ще­ст­ва Л. со­став­ля­ет 3340 кг/м3 (0,61 ср. плот­но­сти Зем­ли). Пер­вая кос­мич. ско­рость для Л. рав­на 1,68 км/с, вто­рая кос­мич. ско­рость – 2,375 км/с.

Происхождение и эволюция Луны

Су­ще­ст­ву­ет ряд ги­по­тез о про­ис­хо­ж­де­нии Л. Наи­бо­лее рас­про­стра­нён­ной на нач. 21 в. яв­ля­ет­ся мо­дель ги­гант­ско­го уда­ра. Со­глас­но этой мо­де­ли, те­ло раз­ме­ром при­мер­но с Марс, дви­га­ясь по ка­са­тель­ной тра­ек­то­рии, столк­ну­лось с Зем­лёй на ран­ней ста­дии её раз­ви­тия (но уже по­сле эта­па гра­ви­тац. диф­фе­рен­циа­ции ве­ще­ст­ва). В ре­зуль­та­те уда­ра часть ве­ще­ст­ва зем­ной ко­ры и верх­ней ман­тии бы­ла вы­бро­ше­на в ви­де мас­сив­но­го ос­ко­лоч­но­го об­ла­ка на око­ло­зем­ную ор­би­ту. В про­цес­се по­сле­дую­щей ак­кре­ции из это­го об­ла­ка сфор­ми­ро­вал­ся спут­ник Зем­ли. Пред­ло­же­на так­же др. мо­дель, со­глас­но ко­то­рой Л., по­доб­но Зем­ле и др. пла­не­там, об­ра­зо­ва­лась из про­то­пла­нет­но­го об­ла­ка. Об­ще­при­ня­той тео­рии про­ис­хо­ж­де­ния Л. на нач. 21 в. не су­ще­ст­ву­ет.


В пер­вые мил­лио­ны лет Л., по-ви­ди­мо­му, про­шла ста­дию диф­фе­рен­циа­ции ве­ще­ст­ва, в ре­зуль­та­те че­го сфор­ми­ро­ва­лись яд­ро, ман­тия (воз­мож­но, верх­няя и ниж­няя) и ко­ра Л. Со­глас­но дан­ным нач. 21 в., Л. име­ет ме­тал­лич. яд­ро ра­диу­сом от 220 до 450 км. Мас­са яд­ра со­став­ля­ет не бо­лее 2–4% от об­щей мас­сы Л., что ук­ла­ды­ва­ет­ся в рам­ки удар­ной ги­по­те­зы про­ис­хо­ж­де­ния Л. и слу­жит её кос­вен­ным под­твер­жде­ни­ем. В со­от­вет­ст­вии с этой мо­де­лью на за­вер­шаю­щей ста­дии гра­ви­тац. диф­фе­рен­циа­ции ве­ще­ст­ва лун­ный шар об­ла­дал от­вер­дев­шей си­ли­кат­ной ко­рой анор­то­зи­то­во­го со­ста­ва (по­ро­до­об­ра­зую­щие ми­не­ра­лы – алю­мо­си­ли­ка­ты), ба­заль­то­вой рас­плав­лен­ной ман­ти­ей и, ве­ро­ят­но, жид­ким ме­тал­лич. ядром. Ко­ра Л. име­ла не­боль­шую тол­щи­ну (60–100 км) и срав­ни­тель­но лег­ко взла­мы­ва­лась под внеш­ни­ми уда­ра­ми круп­ных па­даю­щих тел. Впо­след­ст­вии этот про­цесс до­пол­нял­ся взла­мы­ва­ни­ем ко­ры под дей­ст­ви­ем внутр. дав­ле­ния рас­плав­лен­ной ба­заль­то­вой ла­вы верх­ней ман­тии, а так­же вслед­ст­вие ос­ты­ва­ния лун­ных недр, иду­ще­го с по­верх­но­сти. В об­раз­цах гор­ных по­род Л., дос­тав­лен­ных на Зем­лю КА «Апол­лон» (США, 1969–72), был вы­де­лен осо­бый кла­стер удар­ных брек­чий воз­рас­том 3,7–3,9 млрд. лет. Это по­зво­ля­ет пред­по­ло­жить, что в тот пе­ри­од по­верх­ность Л.


д­вер­га­лась ин­тен­сив­ной бом­бар­ди­ров­ке объ­ек­та­ми раз­ной при­ро­ды, что под­твер­жда­ет­ся так­же др. ис­сле­до­ва­ния­ми. Имен­но в то вре­мя на по­верх­но­сти Л. поя­ви­лись ги­гант­ские кру­го­вые впа­ди­ны удар­но­го про­ис­хо­ж­де­ния. На по­сле­дую­щей ста­дии эво­лю­ции Л. эти впа­дины по­этап­но за­пол­ня­лись ла­во­вы­ми по­то­ка­ми из верх­ней ман­тии, об­ра­зуя т. н. лун­ные мо­ря. В ту же эпо­ху под дей­ст­ви­ем при­лив­но­го гра­ви­тац. влия­ния со сто­ро­ны Зем­ли про­ис­хо­ди­ло за­мед­ле­ние осе­во­го вра­ще­ния Л., что при­ве­ло в ко­неч­ном счё­те к урав­ни­ва­нию её осе­во­го и ор­би­таль­но­го пе­рио­дов вра­ще­ния.

Строение поверхности Луны

Л. по­кры­та еди­ным ма­те­ри­ко­вым щи­том лун­ной ко­ры, мощ­ность ко­то­ро­го в совр. эпо­ху на ви­ди­мой сто­ро­не Л. составляет в ср. 60 км, на об­рат­ной сто­ро­не – до 100 км. Об­щая пло­щадь лун­ных мо­рей – 16,9% по­верх­но­сти Л. (на ви­ди­мой сто­ро­не – 31,2%, на об­рат­ной сто­ро­не – 2,6%). Ма­те­ри­ко­вый ланд­шафт (уча­ст­ки вне лун­ных мо­рей) име­ет бо­лее свет­лую ок­ра­ску по­род (ср. от­ра­жа­тель­ная спо­соб­ность 13,45%) и бо­лее из­ре­зан­ный рель­еф (за счёт боль­шей кон­цен­тра­ции удар­ных кра­те­ров). Воз­раст наи­бо­лее древ­них ма­те­ри­ко­вых по­род дос­ти­га­ет 4,3–4,6 млрд. лет. Плот­ность по­верх­но­ст­ных ма­те­ри­ко­вых анор­то­зи­то­вых по­род составляет 2900 кг/м3.
­верх­ность лун­ных мо­рей сло­же­на тём­ны­ми ба­заль­то­вы­ми по­ро­да­ми (ср. от­ра­жа­тель­ная спо­соб­ность 7,30%) и име­ет в осн. рав­нин­ный рель­еф. Плот­ность по­верх­но­ст­ных ба­заль­то­вых по­род близ­ка к ср. плот­но­сти Л. Ср. воз­раст ба­заль­то­вых по­род, об­ра­зую­щих по­верх­ность ста­рых мо­рей (Им­брий­ская сис­те­ма), дос­ти­га­ет 3,7 млрд. лет. Ср. воз­раст ба­заль­тов мо­ло­дых мо­рей (Эра­тос­фе­нов­ская сис­те­ма) со­став­ля­ет 3,2 млрд. лет. По­верх­но­ст­ная плот­ность удар­ных кра­те­ров в пре­де­лах мо­рей су­ще­ст­вен­но мень­ше, чем на по­верх­но­сти ма­те­ри­ков. Про­цесс вы­плав­ле­ния мор­ских ба­заль­то­вых лав из недр Л. на её по­верх­ность оп­ре­де­ля­ет по­ня­тие лун­но­го вул­ка­низ­ма. В рель­е­фе эти про­цес­сы от­ра­зи­лись в ви­де из­ви­ли­стых ру­сел, по ко­то­рым про­те­ка­ла ла­ва, на­плы­вов ла­во­вых по­лей и т. д. Ко­нус­ные вул­ка­нич. об­ра­зо­ва­ния, по­доб­ные зем­ным вул­ка­нам, на Л. встре­ча­ют­ся край­не ред­ко, и их при­ро­да окон­ча­тель­но не ус­та­нов­ле­на. Счи­та­ет­ся, что эпо­ха лун­но­го вул­ка­низ­ма за­кон­чи­лась ок. 2,5 млрд. лет на­зад, ко­гда об­ра­зо­ва­лись наи­бо­лее мо­ло­дые мо­ря. В по­сле­дую­щий пе­ри­од лун­ной эво­лю­ции по­верх­ность спут­ни­ка фор­ми­ро­ва­ли толь­ко уда­ры па­даю­щих тел разл. раз­ме­ров. По­сто­ян­ная бом­бар­ди­ров­ка лун­ной по­верх­но­сти час­ти­ца­ми, па­даю­щи­ми со сверх­зву­ко­вы­ми ско­ро­стя­ми (до 25 км/с), при­во­дит к фор­ми­ро­ва­нию чех­ла из раз­дроб­лен­ных по­род, по­кры­ваю­ще­го всю по­верх­ность Л. Этот рых­лый слой об­ло­моч­но­го ма­те­риа­ла но­сит назв. ре­го­ли­та и дос­ти­га­ет в отд. мес­тах тол­щи­ны 10 м и бо­лее.

Физические поля Луны


Ус­ко­ре­ние си­лы тя­же­сти у по­верх­но­сти Л. в 6 раз мень­ше зем­но­го и со­став­ля­ет 1,623 м/с2. Осн. ме­то­дом изу­че­ния гра­ви­тац. по­ля Л. яв­ля­ет­ся ис­сле­до­ва­ние воз­му­ще­ний ор­бит её ис­кусств. спут­ни­ков. Эти ис­сле­до­ва­ния по­зво­ли­ли ус­та­но­вить об­щую асим­мет­рию рас­пре­де­ле­ния масс в те­ле Л., а так­же вы­де­лить ме­ст­ные кон­цен­тра­ции масс (т. н. мас­ко­ны), рас­по­ло­жен­ные в пре­де­лах верх­ней ман­тии в об­лас­ти кру­го­вых мо­рей ви­ди­мо­го по­лу­ша­рия Лу­ны.

Темп-ра по­верх­но­сти Л. в под­сол­неч­ной точ­ке со­став­ля­ет ок. 130  °C, на ночной сто­ро­не опус­ка­ет­ся до –160…–170  °C. Низ­кая от­ра­жа­тель­ная спо­соб­ность лун­но­го по­верх­но­ст­но­го слоя при­во­дит к то­му, что ок. 90% па­даю­щей на Л. сол­неч­ной ра­диа­ции пе­ре­хо­дит в те­п­ло­ту. По­это­му Л. име­ет собств. те­п­ло­вое из­лу­че­ние в ИК-об­лас­ти спек­тра и час­тич­но в ра­дио­диа­па­зо­не. Мак­си­мум собств. из­лу­че­ния Л. ле­жит в об­лас­ти длин волн 7 мкм.


к­си­мум от­ра­жён­но­го из­лу­че­ния Л. при­хо­дит­ся на дли­ну вол­ны 0,6 мкм (мак­си­мум рас­пре­де­ле­ния энер­гии в сол­неч­ном спек­тре на­хо­дит­ся ок. дли­ны вол­ны 0,47 мкм). Из­ме­ре­ния теп­ло­во­го из­лу­че­ния не­ос­ве­щён­ной час­ти лун­но­го дис­ка, про­во­ди­мые в про­цес­се сме­ны фаз или во вре­мя лун­ных за­тме­ний, по­зво­ля­ют оце­нить те­п­ло­вую инер­цию по­кров­но­го ве­ще­ст­ва, ко­то­рая у лун­но­го грун­та ока­зы­ва­ет­ся на два по­ряд­ка мень­ше, чем у зем­ных гор­ных по­род. Столь низ­кое зна­че­ние те­п­ло­вой инер­ции свой­ст­вен­но толь­ко силь­но из­мель­чён­ным по­ро­дам, по­ме­щён­ным в ус­ло­вия вы­со­ко­го ва­ку­ума. Из­ме­ре­ния яр­ко­ст­ной темп-ры ра­дио­из­лу­че­ния по­зво­ля­ют оп­ре­де­лить теп­ло­вой ре­жим сло­ёв, рас­по­ло­жен­ных под по­верх­но­стью Л. на глу­би­не не­сколь­ких длин волн из­лу­че­ния. В ча­ст­но­сти, ус­та­нов­ле­но, что на глу­би­не ок. 1 м темп-ра ре­го­ли­та не пре­тер­пе­ва­ет су­ще­ст­вен­ных из­ме­не­ний в течение лунных суток. Этот вы­вод был под­твер­ждён при бу­ре­нии грун­та эки­па­жа­ми КА «Апол­лон».

Мно­го­числ. маг­ни­то­мет­рич. ис­сле­до­ва­ния (ор­би­таль­ная маг­нит­ная съём­ка и из­ме­ре­ния не­по­сред­ст­вен­но на по­верх­но­сти Л.) ус­та­но­ви­ли от­сут­ст­вие у Л. собств. маг­нит­но­го по­ля. В то же вре­мя в не­ко­то­рых рай­онах лун­ной по­верх­но­сти за­фик­си­ро­ва­ны ме­ст­ные маг­нит­ные ано­ма­лии. В рай­онах лун­ных мо­рей ви­ди­мо­го по­лу­ша­рия ве­ли­чи­на магнитной индукции у по­верх­но­сти ко­леб­лет­ся от 0,1 до не­сколь­ких нТл.
и­бо­лее зна­чит. маг­нит­ные ано­ма­лии об­на­ру­же­ны на об­рат­ной сто­ро­не Л., где магнитная индукция в не­ко­то­рых мес­тах дос­ти­га­ет св. 300 нТл. Ис­сле­до­ва­ния ос­та­точ­ной на­маг­ни­чен­но­сти об­раз­цов лун­ных по­род, дос­тав­лен­ных на Зем­лю, по­зво­ля­ют пред­по­ло­жить, что за­мет­ное маг­нит­ное по­ле мог­ло су­ще­ст­во­вать у Л. 3,6–3,8 млрд. лет на­зад. При­ро­да воз­ник­но­ве­ния лун­но­го па­лео­маг­не­тиз­ма и на­блю­дае­мых в совр. эпо­ху маг­нит­ных ано­ма­лий пока не установлена.

Взаимодействие Луны с окружающей средой

Кос­мич. лу­чи по-раз­но­му воз­дей­ст­ву­ют на по­верх­но­сти Л. и Зем­ли, т. к. Л. прак­ти­че­ски ли­ше­на ат­мо­сфе­ры и маг­нит­но­го по­ля. Ио­ны сол­неч­но­го вет­ра из-за сво­ей ма­лой энер­гии спо­соб­ны про­ни­кать лишь в очень тон­кий (не бо­лее 1 мкм) верх­ний слой лун­но­го ве­ще­ст­ва. Но за вре­мя су­ще­ст­во­ва­ния Л. (бо­лее 4 млрд. лет) об­щее чис­ло дос­тиг­ших её час­тиц мо­жет быть, по не­ко­то­рым оцен­кам, эк­ви­ва­лент­но по­верх­но­ст­но­му слою лун­но­го ве­ще­ст­ва тол­щи­ной до 10 м. Плот­ность по­то­ка сол­неч­но­го вет­ра у Л. обыч­но при­ни­ма­ет­ся рав­ной (1–8)·108 час­тиц·см –2 ·с –1. Зна­чит.
сть этих час­тиц в кон­це кон­цов по­ки­да­ет лун­ную по­верх­ность. Тем не ме­нее счи­та­ет­ся, что имен­но сол­неч­ный ве­тер слу­жит ис­точ­ни­ком та­ких ред­ких для Л. химич. эле­мен­тов, как H, He, C, N и др. Со­дер­жа­ние во­до­ро­да в по­верх­но­ст­ном слое ре­го­ли­та со­став­ля­ет 50–100 мкг/г, со­дер­жа­ние изо­то­па 3Не в ср. не пре­вы­ша­ет 4–8 нг/г. Элек­тро­ны с энер­ги­ей 0,5–1,0 МэВ, по­ки­даю­щие Солн­це при сол­неч­ной вспыш­ке, дос­ти­га­ют ок­ре­ст­но­стей Л. за вре­мя от 10 мин до 10 ч, про­то­ны с энер­ги­ей 20–80 МэВ – за вре­мя от не­сколь­ких ча­сов до 10 ч. Б. ч. сол­неч­ных кос­мич. лу­чей не про­ни­ка­ет в лун­ное ве­ще­ст­во глуб­же, чем на неск. сан­ти­мет­ров. Мн. об­раз­цы лун­ных по­род, дос­тав­лен­ные на Зем­лю, со­хра­ни­ли сле­ды час­тиц сол­неч­ных кос­мич. лу­чей, по ко­то­рым мож­но су­дить об ин­тен­сив­но­сти сол­неч­но­го вет­ра в про­шлом (за пе­ри­од ок. 107 лет), а так­же оп­ре­де­лять экс­по­зи­ци­он­ный воз­раст са­мих лун­ных по­род. Тя­жё­лые яд­ра га­лак­тич. кос­мич. лу­чей обыч­но не про­ни­ка­ют в лун­ные по­ро­ды на глу­би­ну бо­лее 10 см. Не­смот­ря на то что эти час­ти­цы вы­зы­ва­ют ядер­ные ре­ак­ции в лун­ном ве­ще­ст­ве и ин­ду­ци­ру­ют яв­ле­ния кас­кад­но­го ти­па, на­ли­чия слоя ве­ще­ст­ва в неск. граммов на квад­рат­ный сан­ти­метр дос­та­точ­но для пол­но­го за­ту­ха­ния этих про­цес­сов. На­про­тив, лёг­кие яд­ра в со­ста­ве га­лак­тич.
с­мич. лу­чей (про­то­ны и аль­фа-час­ти­цы) мо­гут глу­бо­ко про­ни­кать в лун­ный грунт и ини­ции­ро­вать кас­ка­ды вто­рич­ных час­тиц, рас­про­стра­няю­щие­ся на неск. мет­ров во­круг. Чис­ло вто­рич­ных час­тиц, как пра­ви­ло, в неск. раз пре­вы­ша­ет пер­вич­ный по­ток. Напр., по­ток пер­вич­ных час­тиц га­лак­тич. кос­мич. лу­чей плот­но­стью 2 час­ти­цы·см –2 ·с –1 мо­жет ин­ду­ци­ро­вать вто­рич­ный по­ток ней­тро­нов плот­но­стью ок. 13 час­тиц·см –2 ·с –1.

Од­ним из про­цес­сов, со­про­во­ж­даю­щих бом­бар­ди­ров­ку лун­но­го по­кров­но­го ве­ще­ст­ва час­ти­ца­ми га­лак­тич. кос­мич. лу­чей, яв­ля­ет­ся «вы­би­ва­ние» гам­ма-час­тиц и ней­тро­нов, ко­то­рые соз­да­ют по­ток из­лу­че­ния от Лу­ны. Энер­ге­тич. спектр это­го по­то­ка ука­зы­ва­ет на хи­мич. со­став ис­ход­но­го ве­ще­ст­ва. Т. о. дис­тан­ци­онно (с по­мо­щью ор­би­таль­ных КА) бы­ло оп­ре­де­ле­но со­дер­жа­ние в лун­ных по­ро­дах та­ких эле­мен­тов, как Th, Ti, Fe, Mg, K и др.

При прак­ти­че­ски пол­ном от­сут­ст­вии у Л. га­зо­вой обо­лоч­ки да­же са­мые ма­лые ме­тео­ро­ид­ные час­ти­цы дос­ти­га­ют лун­ной по­верх­но­сти, вы­зы­вая ин­тен­сив­ную эро­зию по­верх­но­ст­ных сло­ёв. Рас­чёт­ные зна­че­ния ско­ро­стей па­де­ния на лун­ную по­верх­ность та­ких час­тиц со­став­ля­ют 13–18 км/с. Об­щий по­ток па­даю­щих на Л. твёр­дых тел оце­ни­вал­ся ве­ли­чи­ной 4·10 –19  кг·см –2 ·с –1 при учё­те объ­ек­тов с мас­сой от 10–19 кг до 1015 кг. Од­на­ко ре­зуль­та­ты пас­сив­но­го сейс­мич. экс­пе­ри­мен­та, про­ве­дён­но­го на лун­ной по­верх­но­сти по про­грам­ме «Апол­лон», да­ли др. оцен­ку по­то­ка ме­тео­рит­но­го ве­ще­ст­ва, ре­аль­но вы­па­даю­ще­го на Л. За­ре­ги­ст­ри­ро­ван­ный по­ток ока­зал­ся в 10–1000 раз мень­ше про­гно­зи­руе­мо­го по на­зем­ным на­блю­де­ни­ям. Та­кое рас­хо­ж­де­ние объ­яс­ня­ют пред­по­ла­гае­мым при­сут­ст­ви­ем в при­по­верх­но­ст­ном око­ло­лун­ном про­стран­ст­ве рас­се­ян­но­го мел­ко­дис­перс­но­го ве­ще­ст­ва – свое­об­раз­ной «аэ­ро­золь­ной со­став­ляю­щей» лун­ной эк­зо­сфе­ры. Отд. на­блю­де­ния из­бы­точ­ных све­че­ний лун­но­го не­ба под­твер­жда­ют по­доб­ные пред­по­ло­же­ния. По дан­ным из­ме­ре­ний, про­ве­дён­ных не­по­сред­ст­вен­но на лун­ной по­верх­но­сти, плот­ность по­то­ка мик­ро­час­тиц с мас­сой бо­лее 10–16 кг и ско­ро­стью па­де­ния ок. 25 км/с со­став­ля­ет 2·10 –8 см–2·с–1. В этом экс­пе­ри­мен­те был за­ре­ги­ст­ри­ро­ван эф­фект по­вы­шен­ной кон­цен­тра­ции мик­ро­час­тиц вбли­зи мо­мен­тов ме­ст­но­го вос­хо­да и за­хо­да Солн­ца при вось­ми пол­ных цик­лах сме­ны фаз (т. н. лу­на­ци­ях). Ко­ли­че­ст­во мик­ро­час­тиц, за­ре­ги­ст­ри­ро­ван­ных за еди­ни­цу вре­ме­ни, воз­рас­та­ло поч­ти в 100 раз за вре­мя от не­сколь­ких ча­сов до 40 ч пе­ред вос­хо­дом Солн­ца и в те­че­ние 30 ч по­сле вос­хо­да. Бы­ло ус­та­нов­ле­но, что пре­иму­ще­ст­вен­ное пе­ре­ме­ще­ние час­тиц про­ис­хо­дит в на­прав­ле­нии от Солн­ца. Пред­по­ла­гае­мый ме­ха­низм та­ко­го го­ри­зон­таль­но­го пе­ре­но­са час­тиц по лун­ной по­верх­но­сти за­клю­ча­ет­ся во взаи­мо­дей­ст­вии элек­тро­ста­тич. за­ря­дов пы­ли­нок с элек­тро­ста­тич. по­ля­ми, воз­ни­каю­щи­ми на лун­ной по­верх­но­сти под воз­дей­ст­ви­ем сол­неч­но­го из­лу­че­ния.

Исследование Луны космическими аппаратами

Совр. на­уч. дан­ные о при­ро­де Л. по­лу­че­ны в осн. с по­мо­щью КА. На­ча­ло этим ис­сле­до­ва­ни­ям по­ло­же­но в 1959 меж­пла­нет­ны­ми ав­то­ма­тич. стан­ция­ми се­рии «Лу­на» (СССР). В том же го­ду по­лу­че­ны и пе­ре­да­ны на Зем­лю пер­вые в ми­ре изо­бра­же­ния об­рат­ной сто­ро­ны Л. (КА «Лу­на-3»). Пер­вая в ми­ре мяг­кая по­сад­ка на лун­ную по­верх­ность осу­ще­ст­в­ле­на в 1966 КА «Лу­на-9». Пер­вая пи­ло­ти­руе­мая экс­пе­ди­ция на Л. про­ве­де­на в 1969 экс­пе­ди­ци­ей «Апол­лон-11» (США). Ис­сле­до­ва­ния Л. с по­мо­щью кос­мич. тех­ни­ки про­во­ди­лись как дис­тан­ци­он­но (с про­лёт­ной тра­ек­то­рии или око­ло­лун­ной ор­би­ты), так и кон­такт­но (с по­сад­кой на лун­ную по­верх­ность). До нач. 21 в. на лун­ной по­верх­но­сти ус­пеш­но ра­бо­тали ав­то­ма­тич. ап­па­ра­ты се­рии «Лу­на» и се­рии «Сер­вей­ор» (США). Из них 3 КА («Лу­на-16», «Лу­на-20», «Лу­на-24»; 1970, 1972, 1976) име­ли в сво­ём со­ста­ве воз­вра­щае­мые мо­ду­ли для дос­тав­ки на Зем­лю об­раз­цов лун­но­го грун­та. КА «Лу­на-17» и «Лу­на-21» (1970 и 1973) дос­та­ви­ли на лун­ную по­верх­ность са­мо­ход­ные ав­то­ма­тич. ап­па­ра­ты «Лу­но­ход-1» и «Лу­но­ход-2». По про­грам­ме «Апол­лон» в 1969–1972 Л. по­се­ти­ли 6 экс­пе­ди­ций, в ка­ж­дой из ко­то­рых 2 ас­тро­нав­та вы­са­жи­ва­лись на по­верх­ность Л. Кар­то­гра­фич. съём­ку Л. с тра­ек­то­рии па­де­ния на лун­ную по­верх­ность про­во­ди­ли 3 КА се­рии «Рейнд­жер» (США, 1964–65), с об­лёт­ных тра­ек­то­рий – 5 КА се­рии «Зонд» (СССР, 1965–70), с око­ло­лун­ной ор­би­ты – 5 КА се­рии «Лу­нар ор­би­тер» (США, 1966–67), 4 КА се­рии «Лу­на» (СССР, 1966–74). На рубеже 20–21 вв. дис­танц. зон­ди­ро­ва­ние Л. с око­ло­лун­ной ор­би­ты про­во­ди­лось КА «Кле­мен­ти­на» (США, 1994) и «Лу­нар про­спек­тор» (США, 1998–99), а так­же КА «SMART-1» (Small Mission for Advanced Research in Technology; Ев­роп. кос­мич. агент­ст­во, 2003–06). К нач. 21 в. в про­ве­де­ние лун­ных ис­сле­до­ва­ний с по­мо­щью ис­кусств. лун­ных спут­ни­ков вклю­чи­лись Япо­ния, Ки­тай и Ин­дия.

Источник: bigenc.ru

Поверхность Луны

Протяженные темноватые пятна или как их называют «Лунные моря», занимают около 40 % видимого лунного рельефа. В былые времена, атаки метеоритов и астероидов на лунную поверхность, были обычным делом. Возможно даже, что Луна принимала на себя все удары небесных тел, которые предназначались нашей Земле! Но она, как своеобразный щит, отражала все нападения. Возможно именно Луне, нам следует сказать спасибо за то, что жизнь на нашей планете, не исчезла, от падения какого-нибудь, метеорита или астероида. Сейчас, частота столкновений небесных тел с Луной практически равна нулю, но кратеры, которые мы можем наблюдать на поверхности Луны навсегда остались, как своеобразное напоминание о заслугах нашего верного спутника.

Поверхность Луны

Строение Луны

Масса спутника Земли в 81 раз меньше нашей планеты. Для исследования лунного строения, использовались различные методы, в том числе и сейсмические. Верхний слой лунной поверхности, представлен корой, толщина которой достигает 60 км. Кора состоит из горной породы базальт. В морских и материковых районах, его состав имеет существенные отличия. Мантия – расположенная под лунной корой, делится на верхнюю – 250 км, среднюю – 500 км и нижнюю – 1000 км. До этого уровня вещество недр находится в твердом состоянии, и представляет собой холодную и мощную литосферу, с незатухающими сейсмическими колебаниями. Приближаясь к концу границы нижней мантии, температура возрастает, приближаясь к температуре плавления, поэтому сейсмические волны быстро поглощаются. Эта часть спутника представляет собой лунную астеносферу, в центре которой находиться жидкое ядро, состоящее из сульфида железа, радиусом 350 км. Температура в нем, колеблется от 1300К до 1900К, при массе не более 2% от массы всей Луны.

Фазы Луны

Известно, что Луна повернута к Земле, только одной стороной, поэтому все давно мечтают узнать: какие же тайны скрывает обратная сторона Луны. Сама по себе, Луна не светится. Просто солнечные лучи, отражаясь от Земли, освещают разные ее части. В связи с этим объясняются и фазы Луны. Она повернута к нам темной стороной и двигается по орбите между Солнцем и Землей. Каждый месяц наступает новолуние. На следующий день на западном небе появляется яркий серп «обновленной» Луны. На остальную часть Луны, свет, отраженный от Земли практически не попадает. Через неделю, можно наблюдать половину диска Луны. Через 22 дня, наблюдается и последняя четверть. А на 30 сутки опять наступает новолуние.

Фазы Луны

Характеристики Луны

• Масса: 0,0123 массы Земли, то есть 7,35*1022кг
• Диаметр на экваторе: 0,273 диаметра Земли, то есть 3476 км
• Наклон оси: 1,55°
• Плотность: 3346,4 кг/м3
• Температура поверхности: –54 °C
• Расстояние от спутника до планеты: 384400 км
• Скорость движения вокруг планеты: 1,02 км/с
• Эксцентриситет орбиты: e = 0,055
• Наклон орбиты к эклиптике: i = 5,1°
• Ускорение свободного падения: g = 1,62 м/с2

Источник: kosmos-gid.ru

 

Благодаря мягким посадкам автоматических станций на Луну, а затем и полетам на Луну американских астронавтов стали известны механические свойства лунного грунта и его химический состав. На Луне не оказалось толстого слоя пыли, которого когда-то опасались многие конструкторы лунников, но пыль на Луне есть. Она темно-серого цвета и по внешнему виду напоминает цемент.

 

Образцы лунных пород внешне похожи на земные изверженные базальты. В состав их входят хорошо известные на Земле химические элементы (Si, Al, Fe, Ca, Mg и др.). Но в лунных породах больше, чем в земных, содержится тугоплавких элементов (Ti, Zr, Cr и др.) и меньше – легкоплавких (Pb, K, Na и др.). Химический состав различных участков поверхности Луны неодинаков.

 

В поверхностном слое Луны (реголите) содержатся осколки магматических пород, шлакообразные частицы с оплавленными гранями. Многие образцы как бы обработаны песком. Их вид свидетельствует о том, что они длительное время подвергались своеобразной эрозии (ударам мелких метеоритов и обработке потоками частиц, непрерывно исходящими от Солнца).

 

Из-за отсутствия воды минералов на Луне значительно меньше, чем на Земле. Микроорганизмов на Луне не обнаружено.

 

Лунные породы относятся к очень древним – их возраст составляет примерно 4 млрд. лет, причем самыми “молодыми” (несколько более 3 млрд. лет) оказались образцы, доставленные из морских районов.

 

Лунные породыНа Луне давно завершилась эпоха активного вулканизма. С течением времени уменьшалась и интенсивность метеоритной бомбардировки лунной поверхности. Благодаря этому на протяжении последних 2 – 3 млрд. лет вид Луны практически не изменился. А на Земле, как вы знаете из курса географии, под воздействием воды и воздуха древний рельеф не мог сохраниться. Сравнение лунного и современного земного рельефа помогает воссоздать условия, в которых на Земле формировались запасы полезных ископаемых. Это необходимо знать для разработки научных основ поиска полезных ископаемых.

 

Еще и сейчас происходят лунотрясения (напоминающие слабые землетрясения). Они зарегистрированы сейсмографами, установленными на Луне астронавтами. Данные этих приборов позволили исследовать внутреннее строение Луны, выделив кору (толщиной около 60 км), мантию (до 1000 км) и ядро (его радиус около 750 км).

Источник: space-my.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.