Металлические кристаллы примеры


Для примера возьмем такой металл, как натрий. У натрия на внешнем слое находится один электрон. Когда из атомов образуется натрий, то каждый слой атомов имеет вид квадратной сетки.

Атомы натрия находятся в сетке столь близко друг друга, что внешний , одиннадцатый электрон каждого атома может находиться очень близко сразу от многих атомов натрия.

На рисунке кольца это пути внешних электронов. Как видим они слились у различных атомов. Поэтому внешние электроны могут свободно перемещаться по всем точкам сетки по всем разным кольцам.


Внешний электрон каждого атома теперь может двигаться по всему металлу, обходя все атомы. Происходит так называемое "освобождение " электронов. Теперь внешние электроны равномерно распределены и беспорядочно движутся по всему кристаллу.

Таким образом металл представляет собой решетку положительных ионов, столь близко расположенных друг к другу, что она получается заполненной "электронным газом".

Разные металлы отдают разное количество электронов для "освобождения", но суть остается той же. Прочность металлов также объясняется присутствием электронного газа, который окружает все ионы сразу, превращая металл в одно целое.

Источник: zen.yandex.ru

МЕТАЛЛИЧЕСКИЕ КРИСТАЛЛЫ
,


кристаллич. в-ва, все атомы к-рых объединены металлическими связями — валентные электроны металла делокализованы по всему пространству кристаллич. решетки, образуемой его положит. ионами. Структуры М. к. характеризуются плотной и плот-нейшей упаковкой (см. Плотная упаковка )положит. ионов. Сферич. симметрия частиц, составляющих М. к., объясняется ненаправленностью металлич. связи. Изменение электронной концентрации (число электронов, приходящихся на один атом или на единицу объема) при изменении номера группы в периодич. системе определяет закономерную смену структур. Так, Na и др. щелочные металлы кристаллизуются в объемноцентрир. кубич. решетке (ОЦК), Be, Mg и др. щел.-зем. металлы, кроме Ва,-в гексагон. компактной (ГК), Аl-в гранецентрир. кубической (ГЦК). Именно эти три типа структуры характерны и для металлов групп Сu (ГЦК) и Zn (ГК), а также др. переходных металлов. Закономерности смены структуры в зависимости от положения элемента в табл. Менделеева усложняются явлением полиморфизма. Полиморфизм (в зависимости от т-ры и давления) характерен для большинства металлов. Высокотемпературной модификацией чаще всего оказывается ОЦК структура. Не обнаружены полиморфные модификации у переходных элементов V-VI гр. (V, Сг, Nb, Та, Mo, W), имеющих ОЦК структуру, у переходных элементов конца длинных периодов (Ni, Pd, Pt), а также у Ag, Au и Си, кристаллизующихся в ГЦК решетке.


Кроме названных характерных металлич. структур существуют особые структуры-Zn (гексагон. решетка с аномально большим отношением параметров с/а и координац. числом 12), Hg (ромбоэдрич.), In (тетрагональная). Эти структуры можно рассматривать как характерные метал-лич., но искаженные из-за потери сферич. симметрии ионов, что обусловлено наложением на металлич. связь направленной (ковалентной) связи. Среди структур переходных металлов выделяют: многослойные структуры плотнейшей упаковки у нек-рых РЗЭ (Nd, Pr, Sm); кристаллич. структуры, характерные для интерметаллидов(a-Mn, имеющий решетку х-фазы, b-Mn-с решеткой одного из типов р-фаз Юм Розери, b-U-c решеткой s-фазы FeCr). Эта аналогия дает основание полагать, что в нек-рых переходных металлах атомы могут находиться в разных электронных состояниях и, соотв., вести себя как компоненты хим. соединения. Переходный металлы могут растворять значит. кол-ва не-металлич. элементов с достаточно малым атомным радиусом, таких, как Н, N, С, В, О (образуя твердые р-ры внедрения), и давать с ними металлические соединения. Образующиеся при этом кристаллич. структуры повторяют типичные металлич. или близкие к ним. Изменения кристаллич. структуры под влиянием примесей или при образовании соед. можно рассматривать как разновидность полиморфизма. Гексагoн. структура наблюдалась в электроосаж-денном Сr, видимо, в результате растворения Н 2; при взаимод. Ti с С, N2 или О 2 подрешетка металлич. атомов приобретает вид ГЦК.


Практически применяемые металлич. материалы почти всегда представляют собой сплавы. В осн. металлич. материалы (сталь и чугун, бронза и латунь, сплавы на основе Ti, Al, Mg и др.)-поликристаллич. в-ва, т. е. состоят из монокристаллич. зерен всевозможной ориентации. В нек-рых материалах создают текстуру, т. е. структуру, в к-рой зерна имеют заданную кристаллографич. ориентацию. При этом возникает анизотропия св-в, сходная с анизотропией монокристаллов (напр., анизотропия магн. св-в тек-стурир. трансформаторной стали). Наряду с произ-вом по-ликристаллич. металлич. материалов имеются технологии получения деталей машин в виде металлич. монокристаллов, а также металлич. материалов с ультрамелким зерном. Микрокристаллич. материалы в виде ленты или проволоки с размером зерна ~ 1 мкм получают закалкой из жидкого состояния. Монокристаллич. и микрокристаллич. тонкопленочные металлич. материалы получают химическим осаждением из газовой фазы.

Лит.: Уманский Я. С., Скаков Ю. А., Физика металлов. Атомное строение металлов и сплавов, М., 1978; Годовиков А. А., Кристаллохимия простых веществ, Новосиб., 1979; Григорович В. К., Металлическая связь и структура металлов, М., 1988. Ю. А. Скаков.

Химическая энциклопедия. — М.: Советская энциклопедия. Под ред. И. Л. Кнунянца. 1988.

Источник: dic.academic.ru

2. Кристаллизация сплавов


Переход металла из жидкого состояния в твёрдое с образованием кристаллической структуры называется первичной кристаллизацией.

Образования новых кристаллов в твёрдом кристаллическом веществе называется вторичной кристаллизацией (перекристаллизацией).

Процесс кристаллизации состоит из двух одновременных процессов:

  • зарождение кристаллов;
  • линейный рост кристаллов;

Кристаллы могут зарождаться самопроизвольно (самопроизвольная кристаллизация) или зарождаться и расти на имеющихся готовых центрах кристаллизации (не самопроизвольная кристаллизация) (рис 33).

Металлические кристаллы примеры

Рис 34 Рост зародышевых центров и рост кристаллов

Самопроизвольная кристаллизация (рис.35) обусловлена стремлением вещества иметь более устойчивое состояние, характеризуемое уменьшением термодинамического потенциала G, характеристика свободной энергии системы. Второй закон термодинамики – любая система всегда стремится занять то состояние, чтобы она обладала min свободной энергией. Температура, при которой термодинамические потенциалы вещества, как в твёрдом, так и в жидком состояниях равны, называется равновесной температурой (термодинамической температурой) ТG.


Металлические кристаллы примеры

Рис.35 Самопроизвольная кристаллизация

Термодинамический потенциал определяется:

G = Е – ТS + РV (по Гельмгольцу)

где G – термодинамический потенциал, свободная энергия системы,

Е – внутренняя энергия системы,

Т – термодинамическая температура

S – энтропия (функция состояния: порядка и беспорядка, связанное с поступательным и колебательным движением),

РV – работа внешних сил (давление на объём)

G = Н – ТS (по Гиббсу)

где Н – энтальпия (Е + РV) сумма работ внутренних и внешних сил.

Разница между равновесной (ТG.) и реальной (Тр) температурой кристаллизации называется степенью переохлаждения (Δ Т).

Образованию зародышей способствуют флуктуации энергии, т.е. отклонение энергии группировок атомов в отдельных зонах жидкого металла от некоторого среднего значения.

Появление зародышей изменяет термодинамический потенциал (свободную энергию) всей системы. С одной стороны, при переходе жидкости в кристаллическое состояние термодинамический потенциал G уменьшается, с другой стороны, он увеличивается (+) вследствие появления поверхности раздела между жидкостью и кристаллическим зародышем.


На рис.36 показано, как изменяется свободная энергия системы при кристаллизации.

Кинетика кристаллизации. Скорость образования зародышей, образующихся в единицу времени в единице объёма (1мм-3с-1); скорость роста – увеличением линейных размеров, растущих кристалла в единицу времени (мм/с). Оба процесса связаны с перемещением атомов и зависят от температуры (степени переохлаждения Δ Т).

Не самопроизвольная кристаллизация (гетерогенная)

В реальных условиях процессы кристаллизации и характер образующих структур в значительной мере зависят от имеющихся готовых центров кристаллизации. Такими центрами являются:

  • тугоплавкие частицы неметаллических включений;
  • оксиды;
  • интерметаллические соединения, образуемых примесей.

Измельчение структуры способствует улучшению механических свойств металла.

Металлические кристаллы примеры

Рис.36 Изменение свободной энергии при кристаллизации

На практике для измельчения структуры металла и сплавов широко применяют технологическую операцию, называемую модифицированием. Она состоит во введении в жидкий сплав перед заливкой специальных добавок модификаторов (бор в сталь, натрий в алюминий и его сплавы). Подстуживание металла перед заливкой до температур, незначительно превышающих температуру плавления металла, способствует уменьшению размера зерна.

Формирование кристаллов

Форма и размер зёрен, образующихся при кристаллизации, зависят:


  • скорости и направления отвода тепла:
  • температуры жидкого металла;
  • содержание примесей.

Структура слитка зависит от многих факторов: (рис.37)

  • количество и свойства примесей в чистом металле;
  • количества легирующих элементов в сплаве;
  • температуры разливки сплава;
  • скорость охлаждения при кристаллизации и т.д.

Металлические кристаллы примеры

Рис.37 Схема строения металлического слитка, полученного при разных температурах

Типичная структура слитка сплавов состоит из трёх зон: (рис.38)

  1. мелкие равноосные кристаллы на поверхности слитка, из-за большой степени переохлаждения;
  2. столбчатые кристаллы, наиболее благоприятно ориентированные по отношению к теплоотводу, расположенные нормально к стенкам формы;
  3. равноосные кристаллы больших размеров в середине слитка, где наблюдается наименьшая степень переохлаждения и не ощущается направленного отвода тепла.

Структура, состоящая из одних столбчатых кристаллов, называется транскристаллитной. Встречается у слитков очень чистых металлов.


Химическая неоднородность по отдельным зонам слитка называется зональной ликвацией. Она отрицательно влияет на механические свойства сплава. В реальных сплавах кроме зональной встречаются и другие виды ликвации.

Аморфное состояние металлов

При сверхвысоких скоростях охлаждения (106 оС/с) из жидкого состояния диффузионные процессы настолько замедляются, что подавляется образование зародышей и рост кристаллов. В этом случаи при затвердевании об

разуется аморфная структура (аморфные сплавы или металлические стёкла) (рис.39).

Аморфные металлические материалы удачно сочетают высокие прочность, твёрдость и износостойкость с хорошей пластичностью и коррозионной стойкостью.

Металлические кристаллы примеры

Рис.38 Строение слитка

Большое практическое значение имеет также и возможность получения аморфных металлов в виде лент, проволоки диаметром несколько микрометров непосредственно при литье, минуя такие дорогостоящие операции, как ковка, прокатка, волочение, промежуточные отжиги, зачистки, травление.

В настоящее время аморфная структура получена более чем у 20 чистых металлов и полупроводниковых материалов и более 110 сплавов. Это сплавы легкоплавких, редкоземельных и переходных металлов.


Металлические кристаллы примеры

Рис. 39 Структура аморфного металлического сплава

А – межкристаллитная компонента, образуемая из всех атомов, расположенных по границам зёрен;

В – структурная компонента кристаллическая, которая включает себя атомы, расположенные внутри кристалла

 

Источник: extxe.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.