Где используются кристаллы


Куватова Насима

Исследовательская работа: Файл:Кристаллы.rar

Презентация: Файл:Кристаллы.ppt


Source(s): Выращивание кристаллов и их применение

Цели: выяснить и показать , что кристалл, каким бы способом он не был получен, подчиняется закону симметрии. Определить основные области применения кристаллов.

Задачи: Приобретение обучающимися:

  • общеучебных умений: работать с научной литературой, проводить наблюдения, осуществлять самоконтроль и самоанализ.
  • пециальных знаний и умений по данной теме проекта, умение ориентироваться в информационном пространстве, самостоятельно конструировать свои знания.
  • исследовательских знаний и умений: формулировать гипотезы, выделять проблемы, планировать эксперимент в соответствии с гипотезой, делать выводы.

Оборудование и реактивы: весы, химическая посуда (стаканчики, воронки, колбы), штативы, проволока, фильтры, вода, соли ( алюмокалиевые квасцы, сернокислый никель, дихромат калия, медный купорос, нитрат алюминия).


Image002.jpg

 Поколение нас, захлебнувшихся номером Икс  Промерявших часы на вселенских весах мирозданья…  Поколение знающих мерность безумных страниц  И не верящих в догмы, анафемы и предсказанья…  Налетают шторма букв и чисел, видений и снов  Детонируют руку, шлифуя-граня рану-душу  Преломляясь о грани КРИСТАЛЛА – основы ОСНОВ  Рассыпаясь осколками бликов, ликующей тушью  Но, по-волчьи, чутьём,   мы друг друга… «по звуку» и «в слог»…  Как «по запаху - влёт»…   и… готов соплеменник-подранок…  А на утро: «Пока! Приезжай!..  Вот те Бог, вот порог…  – Про КРИСТАЛЛ не забудь!..  – Про ВЕСЫ…  – Дожидаюсь ОГРАНОК…»   /Д. Блощинский/   

Актуализация

Image003.png

Кристалл ,как загадочная и прекрасная часть природы, издревле привлекал внимание людей.

Кристалл обычно служит символом неживой природы. Однако грань между живым и неживым установить очень трудно, и понятие «кристалл» и «жизнь» не являются взаимоисключающими.

Природные кристаллы всегда возбуждали любопытство у людей. Их цвет, блеск и форма затрагивали человеческое чувство прекрасного, и люди украшали ими себя и жилище. С давних пор с кристаллами были связаны суеверия; как амулеты, они должны были не только ограждать своих владельцев от злых духов, но и наделять их сверхъестественными способностями.


Позднее, когда те же самые минералы стали разрезать и полировать, как драгоценные камни, многие суеверия сохранились в талисманах «на счастье» и «своих камнях», соответствующих месяцу рождения. Все драгоценные природные камни, кроме опала, являются кристаллическими, и многие из них, такие, как алмаз, рубин, сапфир и изумруд, попадаются в виде прекрасно ограненных кристаллов.

Наиболее известные примеры кристаллов: лед, алмаз, кварц, каменная соль. Большинство твердых тел не обладает характерной для кристаллов правильной геометрической формой многогранника с плоскими гранями и острыми ребрами. Слово «кристалл» происходит от греческого – «лед».

Вода – «универсальный» растворитель

Image005.jpg

Вода — самый распространенный растворитель для твердых, жидких и газообразных веществ. Из повседневной жизни хорошо известно, что если некоторые вещества растворяются в воде, то при этом образуются растворы.

Растворами называются гомогенные однородные системы, содержащие два и больше веществ. Растворы могут быть не только жидкие, но и твердые, например, стекло, сплав серебра и золота. Известны также и газообразные растворы, например воздух. Наиболее важными и распространенными являются водные растворы.

Согласно современным представлениям растворение есть результат химического взаимодействия растворителя и растворенного вещества, при этом образуются молекулярные соединения. В водных растворах эти соединения называются гидратами, а в неводных — сольватами.


Насыщенным раствором называется такой раствор, который находится в равновесии с избытком растворяемого вещества. Он содержит максимально возможное количество растворенного вещества. Понятие «насыщенные растворы» следует отличать от понятия «концентрированные растворы». Концентрированным раствором называется раствор с высоким содержанием растворенного вещества. Если концентрация раствора не достигает концентрации насыщения при данных условиях, то раствор называется ненасыщенным. При осторожном охлаждении горячего насыщенного раствора (например, медного купороса или глауберовой соли) можно получить так называемые перенасыщенные растворы.

Кристаллы в природе

Кристаллы льда и снега

Image0007.jpg

Кристаллы замершей воды, т.е. лед и снег, известны всем. Эти кристаллы почти полгода (а в полярных областях и круглый год) покрывают необозримые пространства Земли, лежат на вершинах гор и сползают с них ледниками, плавают айсбергами в океанах.

Ледяной покров реки, массив ледника или айсберга — это, конечно, не один большой кристалл. Плотная масса льда обычно поликристаллическая, т.е. состоит из множества отдельных кристаллов. Их не всегда различишь, потому что они мелки и все срослись вместе. Иногда эти кристаллы можно различить в тающем льду, например, в льдинках весеннего ледохода на реке. Тогда видно, что лед состоит как бы из «карандашиков», сросшихся вместе, как в сложенной пачке карандашей: шестигранные столбики параллельны друг другу и стоят торчком к поверхности воды; эти «карандашики» и есть кристаллики льда.


Известно, как опасны для растений весенние или осенние заморозки. Температура почвы и воздуха падает ниже нуля, подпочвенные воды и соки растений замерзают, образуя иголочки кристалликов льда. Эти острые иголки рвут нежные ткани растений, листья сморщиваются, чернеют, стебли и корни разрушаются. После морозных ночей по утрам в лесу и в поле часто можно наблюдать, как на земле вырастает «ледяная трава». Каждый стебелек такой травы — это прозрачный шестигранный кристаллик льда. Ледяные иголочки достигают длины в 1-2см, а иной раз доходят до 10-12см. Случается, что земля оказывается покрытой пластинками льда, стоящими торчком. Вырастая из земли, эти кристаллики льда поднимают на своих головках песок, гальку, камешки весом до 50-100г. Льдинки даже выталкивают из земли и уносят вверх маленькие растения. Иногда ледяная корка обволакивает растение, и корень просвечивает сквозь лед. Бывает и так, что щеточка ледяных иголок сообща поднимает тяжелый камень, сдвинуть который не под силу одному кристаллику. Искрится и горит радужным блеском хрустальная «ледяная трава», но лишь только пригреют лучи солнца, кристаллики изгибаются навстречу солнцу, падают и быстро тают.


В морозное весеннее или осеннее утро, когда солнце еще не успело уничтожить следы ночных заморозков, деревья и кусты покрыты инеем. На ветках повисли капли льда. Вглядитесь: внутри ледяных капель видны пучки тонких шестигранных иголочек — кристалликов льда. Покрытые инеем листья кажутся щетками: как щетинки стоят на них блестящие шестигранные столбики кристаллов льда. Сказочным богатством кристаллов, хрустальным нарядом украшен лес.

Каждый отдельный кристаллик льда, каждая снежинка хрупка и мала. На снежинках легче всего убедится в том, что форма кристаллов правильна и симметрична. Удивительно разнообразны формы звездочек-снежинок, но симметрия их всегда одинакова: только шесть лучей. Почему? Такова симметрия атомной структуры кристаллов снега. Это относится не только к снегу. Формы кристаллов могут быть весьма разнообразными, но симметрия этих форм для каждого вещества одна, ее определяет симметрия и закономерность атомного строения данного вещества. Снежинка может быть только шестилучевой — такова симметрия строения кристаллов снега.

Image011.jpg Image009.jpg

Кристаллы в облаках

Кристаллики льда, причудливыми узорами которых мы любуемся в снежинках, могут в несколько минут погубить самолет. Обледенение — страшный враг самолетов — тоже результат роста кристаллов.


Здесь мы имеем дело с ростом кристаллов из переохлажденных паров. В верхних слоях атмосферы водяные пары или капли воды могут долго сохраняться в переохлажденном состоянии. Переохлаждение в облаках доходит до -30˚C. Но как только в эти переохлажденные облака врывается летящий самолет, тотчас же начинается бурная кристаллизация. Мгновенно самолет оказывается облепленным грудой быстро растущих кристаллов льда.

Кристаллы в пещерах

Все природные воды — в океанах, морях, озерах, ручьях и подземных источниках — являются естественными растворами, все они растворяют встречающиеся им породы, и во всех этих растворах происходят сложные явления кристаллизации.

Особенно интересна кристаллизация подземных вод в пещерах. Капля за каплей просачиваются воды и падают со сводов пещеры вниз. Каждая капелька при этом частично испаряется и остается на потолке пещеры вещество, которое было в ней растворено. Так постепенно образуется на потолке пещеры маленький бугорок, вырастающий затем в сосульку. Эти сосульки сложены из кристалликов. Одна за другой капли мерно падают день за днем, год за годом, века за веками. Звук их падения глухо раздается под сводами. Сосульки все вытягиваются и вытягиваются, а навстречу им начинают расти вверх такие же длинные столбы сосулек со дна пещеры. Иногда сосульки, растущие сверху (сталактиты) и снизу (сталагмиты), встречаются, срастаются вместе и образуют колонны.


к возникают в подземных пещерах узорчатые, витые гирлянды, причудливые колоннады. Сказочно, необыкновенно красивы подземные чертоги, украшенные фантастическими нагромождениями сталактитов и сталагмитов, разделенные на арки решетками из сталактитов. В природе кристаллы неправильной формы встречаются несравненно чаще, чем правильные многогранники. В руслах рек из-за трения кристаллов о песок и камни углы кристаллов стираются, многогранные кристаллы превращаются в округлые камешки — гальку; от действия воды, ветра, морозов кристаллы растрескиваются, рассыпаются; в горных породах кристаллические зерна мешают друг другу расти и приобретать неправильные формы.

Фотографии природных кристаллов в пищерах.

Азишская в Краснодарском крае (республика Адыгея).

Кристаллы растущие снизу

Image012.jpg

Кристаллы растущие сверху

Image0015.jpg

Колонный зал, выросший из кристаллов

Image016.jpg

Методы выращивания кристаллов из растворов

Кристаллизация с помощью «затравок»

Явление кристаллизации солей нетрудно воспроизвести на опыте. Растворите в воде щепотку простой поваренной соли и налейте соленую воду на блюдце. Когда вода испарится, посмотрите в лупу, и вы увидите, что на блюдце остались правильные белые с полосками гранями кубики кристаллов. Кристаллы каменной (поваренной) соли образовались из раствора на ваших глазах. Так в миниатюре, можно наблюдать явление кристаллизации раствора, которое в природе, в соленых озерах и в подпочвенных водах, происходит в гигантских масштабах.


Почему же кристаллы выделяются из раствора? Чтобы понять это, следует познакомиться с некоторыми свойствами растворов.

Попробуйте растворять в воде столовую соль: в граненом стакане воды растворится 70 граммов соли, а если вы будете сыпать соль дальше, она перестанет растворяться и будет оседать на дно. То же самое вы увидите с сахаром: в стакане с холодной воды растворится примерно двадцать чайных ложек сахарного песка, а затем сахар тоже будет оседать на дно, не растворяясь. В 100 граммах холодной воды может раствориться только совершенно определенное количество сахара (194 грамма), поваренной соли (35 граммов) или любого другого вещества. Количество вещества, которое может раствориться в 100 граммах воды, называется растворимостью этого вещества в воде; например, растворимость поваренной соли в воде при комнатной температуре равна 35 граммам. Растворимость зависит от температуры. Попробуйте растворить сахар не в холодной воде, а в горячей, и вы убедитесь что при повышении температуры растворимость сахара увеличивается. У разных веществ растворимость по-разному зависит от температуры.

Итак, при каждой данной температуре в воде может раствориться лишь строго ограниченное количество вещества, определяемое его растворимостью.


Возьмите стакан горячей воды и всыпьте любое кристаллическое вещество, растворимое в воде: гипосульфит, соду, борную кислоту, квасцы. Если вы достанете крупные кристаллы, то сначала растолките их в порошок. В стакан горячей воды всыпьте столько порошка, сколько может раствориться. Когда порошок совсем перестанет растворяться и начнет оседать на дно, слейте образовавшийся раствор в другой стакан так, чтобы на дно стакана с раствором не попало ни одной крупинки порошка. Для этого профильтруйте раствор через фильтрованную бумагу или через чистую тряпочку. В получившемся растворе количество вещества как раз соответствует его растворимости при данной температуре; раствор «насытился», и больше он не может поглотить ни крупинки вещества. Такой раствор называется насыщенным. Теперь оставьте стакан с раствором и дайте ему остыть. При остывании растворимость почти всех веществ уменьшается; пока наш раствор был горячим, в стакане воды было растворено, скажем, 12 ложек вещества, тогда как при комнатной температуре в нем могло бы раствориться лишь 10 ложек этого вещества. Таким образом, теперь в растворе окажется лишнее вещество. Иначе говоря, при высокой температуре раствор был насыщенным, а остыв, он стал перенасыщенным. Такой перенасыщенный раствор не может долго существовать, поэтому лишнее вещество выделяется из раствора и оседает на дно стакана. Рассмотрите в лупу, и вы увидите, что этот осадок состоит из кристаллов.


Растворенное вещество кристаллизуется из пересыщенных растворов потому, что его оказывается в растворе слишком много — больше, чем раствор может удержать в себе.

Прозрачные кристаллики алюмокалиевых квасцов выросли из водного раствора за несколько часов. Чтобы подготовить водный раствор алюмокалиевых квасцов, надо растворить в 400 см3 горячей воды истолченные в порошок 48 г алюмокалиевых квасцов. Если же растворить 60г квасцов, то получится раствор, перенасыщенный при 15˚C на 12г. Поэтому-то надо брать горячую воду: в холодной не растворились бы больше 48г. Перенасыщенный раствор начнет кристаллизоваться, если в него попадает какая-нибудь «затравка». Для этого достаточно приоткрыть крышку банки на одну- две секунды: в раствор попадут пылинки квасцов из воздуха. Можно также внести в раствор иголкой несколько пылинок квасцов. Попав в перенасыщенный раствор, пылинки квасцов в нем немедленно начнут расти, а уж если в растворе началась кристаллизация, она не остановится, пока не выделится весь избыток растворенного вещества.

Так же можно вырастить один большой кристалл. Для этого в неостывший раствор надо положить или подвести на нитке небольшой кристаллик – «затравку». Сначала он немного растворится, а затем примется расти.

Image018.jpg

Если в сосуд с раствором опустить какой-нибудь предмет, на котором находится много затравок, то он весь обрастет кристалликами. Опустите в раствор нитку, на которой есть кристаллические пылинки, — на них начнут осаждаться кристаллики, и в результате вырастает «нитка бус» из многогранных кристалликов. Такие нитки по красоте могут соперничать с искусственно ограненными бусами, но, к сожалению, кристаллы, выращенные из водных растворов, обычно очень быстро тускнеют и легко разрушаются. В этом трудность их применения в технике.

Можно сделать фигурки из кристаллов.

Image020.jpg

Для этого надо приготовить каркас из проволоки, обмотанной обычными нитками или ватой, окунуть его в насыщенный раствор, тут же вынуть и просушить при комнатной температуре. Нитки пропитаются раствором и при высыхании на них образуются мельчайшие кристаллики, которые в дальнейшем послужат «затравками». А дальше опускайте этот каркас в раствор и наращивайте на нем кристаллы. Если опустить в раствор разборную синтетическую елочку, предварительно обмотав ее ствол и ветви нитками, то можно вырастить «заснеженную» елку. Для этого лучше взять не квасцы, а дигидрофосфат калия (КН2РО4) или дигидрофосфат аммония (NH4H2PO4), — замечательные кристаллы, которые растят для приборов, управляющих лучом Лазаря. Их растворимости на 100 г воды:

При температуре 20˚C 40˚C
КН2РО4 22,5г 33г
NH4H2PO4 36,5г 56,6г

Основные области применения кристаллов

Живя на Земле, сложенной кристаллическими породами, мы, безусловно, никак не можем отвлечься от проблемы кристалличности: мы ходим по кристаллам, строим из кристаллов, обрабатываем кристаллы на заводах, выращиваем их в лабораториях, широко применяем в технике и науке, едим кристаллы, лечимся ими… Изучением многообразия кристаллов занимается наука кристаллография. Она всесторонне рассматривает кристаллические вещества, исследует их свойства и строение. В давние времена считалось, что кристаллы представляют собой редкость. Действительно, нахождение в природе крупных однородных кристаллов — явление нечастое. Однако мелкокристаллические вещества встречаются весьма часто. Так, например, почти все горные породы: гранит, песчаники, известняк — кристалличны. По мере совершенствования методов исследования кристалличными оказались вещества, до этого считавшиеся аморфными. Сейчас мы знаем, что даже некоторые части организма кристалличны, например, роговица глаза, витамины, мелиновая оболочка нервов — это кристаллы. Долгий путь поисков и открытий, от измерения внешней формы кристаллов в глубь, в тонкости их атомного строения еще не завершен. Но теперь исследователи довольно хорошо изучили его структуру и учатся управлять свойствами кристаллов.

Кристаллы – это красиво, можно сказать чудо какое-то, они притягивают к себе; говорят же «кристальной души человек» о том, в ком чистая душа. Кристальная – значит, сияющая светом, как алмаз … И если говорить о кристаллах с философским настроем, то можно сказать, что это материал, который является промежуточным звеном между живой и неживой материей. Кристаллы могут зарождаться, стареть, разрушаться. Кристалл, когда растет на затравке (на зародыше), наследует дефекты этого самого зародыша. Вообще можно привести множество примеров, настраивающих на такой философский лад, хотя конечно здесь много от лукавого… Например, по телевидению теперь можно услышать о непосредственной связи степени упорядоченности молекул воды со словом, с музыкой и о том, что вода изменяется в зависимости от мыслей, от состояния здоровья наблюдателя. Кристаллы нашли своё применение в различных областях: для изготовления украшений, в технике, например рубиновый лазер, жидко-кристаллические экраны и т.д

Алмаз

Около 80% всех добываемых природных алмазов и все искусственные алмазы используются в Промышленности. Алмазные инструменты используются для обработки деталей из самых твёрдых материалов, для бурения скважин при разведке и добыче полезных ископаемых, служат опорными камнями в хронометрах высшего класса для морских судов и других, особо точных приборах. На алмазных подшипниках не обнаруживается никакого износа даже после 25 млн. оборотов. Высокая теплопроводность алмаза позволяет использовать его в качестве теплоотводящей подложки в полупроводниковых электронных микросхемах. Конечно, алмазы используются и в ювелирных изделиях — это бриллианты.

Рубин

Image022.jpg

Высокая твёрдость рубинов, или корундов, обусловила их широкое применение в промышленности. Из 1 кг синтетического рубина получается около 40 000 опорных камней для часов. Незаменимыми оказались рубиновые стержни-нитеводители на фабриках по изготовлению химического волокна. Они практически не изнашиваются, в то время как нитеводители из самого твёрдого стекла при протяжке через них искусственного волокна изнашиваются за несколько дней.

Новые перспективы для широкого применения рубинов в научных исследованиях и в технике открылись с изобретением рубинового лазера, в котором рубиновый стержень служит мощным источником света, испускаемого в виде тонкого луча.

Жидкие кристаллы

Это необычные вещества, которые совмещают в себе свойства кристаллического твёрдого тела и жидкости. Подобно жидкостям они текучи, подобно кристаллам обладают анизотропией. Строение молекул жидких кристаллов таково, что концы молекул очень слабо взаимодействуют друг с другом, в то же время боковые поверхности взаимодействуют очень сильно и могут прочно удерживать молекулы в едином ансамбле. Жидкие кристаллы применяются в различного рода управляемых экранах, оптических затворах, плоских телевизионных экранах.

Лазер

Image023.jpg

Практическая часть. Этапы работы над проектом.

Содержание работы на этапе Деятельность учителя Деятельность учащихся
Проведение эксперимента
  1. Отбор информации по теме проекта.
  2. Изготовление каркасов.
  3. Приготовление насыщенных растворов солей.
  4. Создание центров кристаллизации на каркасах.
  5. Фильтрование растворов.
  6. Выращивание кристаллов.

Наблюдает, советует, косвенно руководит деятельностью, организует и координирует в случае необходимости отдельные этапы проекта.

  • проводят исследования, решая промежуточные задачи,
  • ведут фотосъемку всех этапов работы.
Анализ полученных данных и подведение итогов
Анализ полученных данных и подведение итогов Корректирование выводов участников проекта в ходе анализа полученных данных.
  • рассматривают структуру выращенных кристаллов, сравнивают форму, размер, прозрачность.
  • отмечают наличие кристаллов неправильной формы (кристаллов- паразитов).
  • отмечают разную скорость роста кристаллов, возможность использования выращенного кристалла в качестве затравки для дальнейшего роста.

Источник: www.surwiki.admsurgut.ru

Случалось ли вам слышать слово «кристалл»? Разумеется. Но спросите себя, какие кристаллы вам знакомы? Первыми на ум приходят скорее всего яркие самоцветы: изумруд, кто-то вспомнит лиловый аметист, кто-то вишнёво-красный гранат, а кто-то горный хрусталь – бесцветный кварц. Не будь этих блестящих разноцветных камушков, жизнь потускнела бы, лишившись их красок, их маленьких тайн.

В кристаллах есть что-то удивительное и завораживающее. Они поражают своей четкостью линий и симметрией, в которой скрывается необыкновенная красота. Я сразу заинтересовалась темой «кристаллы». Природные кристаллы всегда возбуждали любопытство у людей. Удивительные многогранники издавна привлекали внимание людей. Средневековые алхимики думали, что природные кристаллы были сотворены богом раз и навсегда. Их цвет, блеск и форма затрагивали человеческое чувство прекрасного, и люди украшали ими себя и жилище. С давних пор с кристаллами были связаны суеверия; как амулеты, они должны были не только ограждать своих владельцев от злых духов, но и наделять их сверхъестественными способностями.

Кристаллы так хороши собой, что ими можно любоваться часами. Каких только кристаллических форм не создала природа! Столбики, кубики, пирамиды, звёзды! Поражает разнообразие причудливых форм и цветов кристаллов.

Красота кристаллов всегда восхищала человека. Раньше считалось, что горный хрусталь (вид кварца) – это окаменевший лед, который никогда не растает. На самом деле кристаллы (от греческого слова «Криос» — «ледяной холод») – это твердые тела со строгим внутренним расположением атомов, которому соответствуют симметрия их внешних гладких поверхностей – граней.

Наука, занимающаяся изучением кристаллов и их свойств, называется кристаллографией.

Кристаллография зародилась в древности и развивалась в тесной связи с минералогией как наука, устанавливающая законы огранения кристаллов.

Наблюдение и измерение огранения кристаллов, установление законов огранения — предмет геометрической кристаллографии. На основе геометрической кристаллографии возникла гипотеза об упорядоченном, трёхмерно-периодическом расположении в кристалле составляющих его частиц, в современном понимании — атомов и молекул, которые образуют кристаллическую решетку. Структурная кристаллография исследует атомно-молекулярное строение кристаллов методами рентгеноструктурного анализа, электронографии, нейтронографии, электронной микроскопии.

Симметрийные и структурные закономерности, изучаемые кристаллографией, находят применение в рассмотрении общих закономерностей строения и свойств конденсированного состояния вещества: аморфных тел и жидкостей, полимеров, биологических макромолекул, надмолекулярных структур и т. п. Этим занимается обобщенная кристаллография. Изучать кристаллы – это значит изучать почти все окружающие нас тела. Изучением строения и свойств кристаллов занимаются такие науки, как физика, химия.

Кристаллы – это твердые тела, атомы или молекулы которых занимают определенные, упорядоченные положения в пространстве. Поэтому кристаллы имеют плоские грани. Кристаллы характеризуются значительными силами межмолекулярного взаимодействия.

Они имеют правильную геометрическую форму, которая является результатом упорядоченного расположения частиц, составляющих кристалл. Регулярное расположение частиц с периодической повторяемостью в трех измерениях, называется пространственной (кристаллической) решеткой. Форму, которую принимает монокристалл тогда, когда при его росте устранены все случайные факторы, называют идеальной. Идеальная форма кристалла имеет вид многогранника. Такой кристалл ограничен плоскими гранями, прямыми рёбрами и обладает симметрией.

Не все кристаллы одинаковы. Существуют монокристаллы и поликристаллы. Твердое тело, состоящее из большого числа маленьких кристаллов, называют поликристаллическим. Одиночные кристаллы называются монокристаллами.

Особенностью монокристаллов является зависимость физических свойств (упругих, механических, тепловых, электромагнитных, оптических и т. д. ) от направления наблюдения, т. е. анизотропность. Поликристалл состоит из множества беспорядочно ориентированных мелких монокристаллов и поэтому анизотропностью не обладает.

Анизотропность сохраняется на уровне мелких монокристаллов

Кристаллы обладают симметрией атомной структуры, соответствующей ей симметрии внешней формы, а также анизотропией физических свойств. При изменении внешних условий структура кристаллов может измениться. Большинство природных твёрдых материалов являются поликристаллами.

1. 2 Жидкие и твердые кристаллы

В природе часто можно встретить переливчатые крылья жука или стрекозы, наблюдать за быстро меняющимися цифрами электронных часов. Трудно догадаться, что может объединять эти вроде бы совсем не связанные вещи. Оказывается, общими их участниками являются жидкие кристаллы.

Есть такие вещества, и природные, и искусственные, которые в определенном диапазоне температур текучи, как жидкости, но сохраняют внутренний порядок составляющих их частиц-молекул, присущий твердым телам. При понижении температуры они превращаются в твердые кристаллы, а нагрей их — станут обычными жидкостями.

Эти вещества объединяют в себе свойства кристаллов и жидкостей. Образуются они из органических цепочек, похожих на полимеры. Удлиненная форма этих мельчайших частиц определяет необычные качества жидких кристаллов. Известно несколько тысяч органических соединений, образующих жидкие кристаллы, молекулы которых имеют удлиненную или дискообразную форму.

Однако при температурах ниже критической (которая у каждого вещества своя) в жидкости возникает выделенное направление, вдоль которого начинают ориентироваться оси молекул. В результате образуется жидкий кристалл с характерной анизотропией свойств.

Частицы жидких кристаллов способны сразу, по внешнему сигналу, менять свою ориентацию. При наблюдении за сменой цифр на табло микрокалькулятора или часов, там происходит похожий процесс – на определённые участки подаётся электрический сигнал и они изменяют свою прозрачность.

Всё чаще мы стали встречаться с термином “жидкие кристаллы”. Мы все часто с ними общаемся, и они играют немаловажную роль в нашей жизни. Многие современные приборы и устройства работают на них. К таким относятся часы, термометры, дисплеи, мониторы и прочие устройства. Что же это за вещества с таким парадоксальным названием “жидкие кристаллы” и почему к ним проявляется столь значительный интерес? В наше время наука стала производительной силой, и поэтому, как правило, повышенный научный интерес к тому или иному явлению или объекту означает, что это явление или объект представляет интерес для материального производства. В этом отношении не являются исключением и жидкие кристаллы. Интерес к ним, прежде всего, обусловлен возможностями их эффективного применения в ряде отраслей производственной деятельности. Внедрение жидких кристаллов означает экономическую эффективность, простоту, удобство.

В конце девятнадцатого — начале двадцатого века многие очень авторитетные учёные весьма скептически относились к открытию Рейнитцера и Лемана. Дело в том, что не только описанные противоречивые свойства жидких кристаллов представлялись многим авторитетам весьма сомнительными, но и в том, что свойства различных жидкокристаллических веществ (соединений, обладавших жидкокристаллической фазой) оказывались существенно различными. Так, одни жидкие кристаллы обладали очень большой вязкостью, у других вязкость была невелика. Одни жидкие кристаллы проявляли с изменением температуры резкое изменение окраски, так что их цвет пробегал все тона радуги, другие жидкие кристаллы такого резкого изменения окраски не проявляли. Наконец, внешний вид образцов, или, как принято говорить, текстура, различных жидких кристаллов при рассматривании их под микроскопом оказывался совсем различным. В одном случае в поле поляризационного микроскопа могли быть видны образования, похожие на нити, в другом — наблюдались изображения, похожие на горный рельеф, а в третьем — картина напоминала отпечатки пальцев. Стоял также вопрос, почему жидкокристаллическая фаза наблюдается при плавлении только некоторых веществ? Жидкие кристаллы обладающие анизотропией свойств, связанной с упорядоченностью в ориентации молекул. Благодаря сильной зависимости свойств жидких кристаллов от внешних воздействий они находят разнообразное применение в технике.

Твердые тела подразделяются на кристаллические и аморфные.

Кристаллические тела характеризуются наличием дальнего порядка — пространственной периодичностью в расположении атомов. В аморфных телах атомы колеблются вокруг хаотически расположенных точек, в этом случае говорят о наличии ближнего порядка.

Устойчивым является кристаллическое состояние, аморфное состояние – нестабильное, с течением времени аморфные тела должны закристаллизоваться.

Аморфное состояние — это твердое некристаллическое состояние вещества, характеризующееся изотропией физических свойств и отсутствием определенной температуры плавления. При повышении температуры аморфное вещество (стекло, многие пластмассы) размягчается и переходит в жидкое состояние постепенно. При продолжительном воздействии с малой силой аморфные тела, подобно жидкостям, обнаруживают текучесть.

По типам связи между частицами твёрдые тела делят на пять классов:

1) ионные кристаллы в которых основными силами притяжения, действующими между ионами, являются электростатические силы;

2) кристаллы с ковалентной связью, в которых валентные электроны соседних кристаллов обобществлены; кристалл представляет собой как бы огромную молекулу;

3) металлы, у которых энергия связи обусловлена коллективным взаимодействием подвижных электронов с ионным островом — металлическая связь;

4) молекулярные кристаллы, в которых молекулы связаны слабыми электростатическими силами (ван-дерваальсовы силы), обусловленными динамической поляризацией молекул;

5) кристаллы с водородными связями, в которых каждый атом водорода связан силами притяжения одновременно с двумя другими атомами. Именно водородная связь вместе с электростатическим притяжением дипольных моментов молекул воды определяет свойства воды и льда.

1. 3 Снежинки

Каждую зиму на землю падают миллиарды снежных кристаллов. Их холодное совершенство и абсолютная симметрия поражают. Странно, что люди разглядели эти «драгоценности изо льда» совсем недавно.

Сколько писателей и философов были очарованы этой недолговечной красотой! Вот какими увидел снежинки герой Томаса Манна: «С виду это была бесформенные клочочки, но он уже не раз смотрел на них через свое увеличительное стекло и отлично знал, из каких изящных, отчетливо сделанных крохотных драгоценностей они составляются – из подвесок, орденских звезд, брильянтовых аграфов; роскошнее и тщательнее их не мог бы сработать самый умелый ювелир».

Снежинки (снег), твердые атмосферные осадки, состоящие из ледяных кристаллов различной формы.

Рассматривать снежинки очень интересно хотя бы потому, что еще ни разу на землю не упало двух одинаковых.

Снежинки не раз становились предметом серьезных научных исследований. Самый первый трактат о снежинках написал в 1611 году Иоанн Кеплер. В нем он размышляет о том, почему кристаллы снега имеют шестигранную форму.

С тех пор многие ученые пытались ответить на этот вопрос. Им на помощь приходила даже рентгеновская техника, но точного объяснения нет и сегодня.

Отчаявшись, ученые решились предположить, что Кеплер был прав, считая, будто снежинки, как растения, обладают подобием души, которая и моделирует их форму.

В 1635 году философ и математик Рене Декарт впервые занялся описанием видов снежинок, разглядывая их невооруженным глазом. Он первый нашел и описал достаточно редкую 12-конечную снежинку.

В 1665 г. Роберт Хук рассматривал снежинки уже под микроскопом.

А первый снимок снежного кристалла под микроскопом сделал 15 января 1885 года молодой Уилсон Бентли, сын фермера из штата Вермонт. И был так поражен результатом, что всю оставшуюся жизнь Снежинка -так прозвали Бентли –посвятил снегу. За 47 лет (умер он в 1931 году) Бентли успел сфотографировать около 5600 снежных кристаллов.

Сравнивая снимки, фотограф-самоучка обнаружил, что среди них нет двух одинаковых. И, между прочим, до него этого никто не замечал! Влюбленный в снег фотограф, снимавший снежинки самодельной громоздкой камерой, признавался: «Каждый раз я не могу до конца поверить в то, что вся эта красота через мгновение растает и исчезнет без следа».

Первые систематические исследования снежных кристаллов предпринял в 1930-х годах японец Укихиро Накайя. Началось всё с отсутствия денег. В лаборатории профессора Хоккайдского университета катастрофически не хватало необходимых приборов. А вот снега вокруг было сколько угодно. Как и многие японцы, физик Накайя всегда восхищался его красотой – в японской культуре есть даже особое понятие «юкими», что значит «любование снегом».

В Японии существует Музей снега и льда имени Укихиро Накайя, в котором хранятся первые снимки и машина для получения снежинок.

Учёный решил приглядеться к снежинкам внимательнее. Соорудив морозильную камеру, Накайя стал наблюдать под микроскопом, какие формы принимают снежные кристаллы в различных условиях. Несмотря на головокружительное разнообразие снежинок, Накайя сумел усмотреть в них что-то общее. В результате он выделил 41 тип снежинок и составил первую классификацию. Кроме того, трудолюбивый японец вырастил первую «искусственную» снежинку и выяснил, что величина и форма образующихся кристаллов льда зависят от температуры воздуха и влажности.

Хотя двух одинаковых снежинок не найти, можно условно разделить их на несколько видов:

ЗВЕЗДОЧКИ

Имеют обычно шесть симметричных лучей, идущих от центра и разветвляющихся, как ветки дерева, на концах. Диаметр – 5 мм и больше, толщина 0,1 мм.

ПЛАСТИНЧАТЫЕ

Плоские, как будто расплющенные, звезды с разным количеством граней и ошеломляющим разнообразием форм кончиков.

ПОЛЫЕ КОЛОНКИ – главные элементы большинства снегопадов – подобны деревянному карандашу, с коническими полыми концами. Бывает, из-за резкого перепада температуры колонка вдруг продолжается пластинчатым фрагментом.

ИГОЛЬЧАТЫЕ

Снежинки с длинными, тонкими концами.

НЕСТАНДАРТНЫЕ

Вообще у снежинок трудная жизнь. Оказавшись в турбулентном облаке, многие ломаются, не успевают приобрести правильную форму. “Теплые” снегопады с сильным ветром приносят больше всего нестандартных, бракованных снежинок.

А иногда они обрастают снегом и превращаются в шарики.

Лабораторные опыты по выращиванию снежинок показали, что форма снежинок напрямую зависит от температуры и влажности воздуха.

Каждый снежный кристалл уникален. Однако все снежинки имеют общую черту – они обладают гексагональной симметрией. Поэтому у «звёздочек» всегда вырастают три, шесть или двенадцать лучей.

В градинах размером от нескольких миллиметров до 20 см чередуются прозрачные и мутные слои льда, иногда в них «застревают» частицы пыли и даже насекомые.

Мало кого приводит в восторг град, но даже в таких кристаллах есть своя прелесть: чем сложнее и необычнее путь градин, тем уникальнее их форма. И тем удивительнее загадка. Недаром однажды Укихиро Накайя сказал: «Снег – это послание небес, написанное тайными иероглифами».

Симметрия многолика. Она обладает свойствами, которые одновременно и просты. И сложны, способны проявляться и единожды, и бесконечно много раз.

«Я считаю, что теплоту, охранявшую до сих пор вещество, одолел холод, и она как действовала (исполненная формообразующего начала), соблюдая порядок, и как сражалась, не нарушая его, так и в бегство обратилась, сохраняя известный порядок, и отступила». И. Кеплер

II. Симметрия в кристаллах

Рассматривая различные кристаллы, мы видим, что все они разные по форме, но любой из них представляет симметричное тело. И действительно, симметричность это одно из основных свойств кристаллов. К понятию о симметрии мы привыкли с детства. Симметричными мы называем тела, которые состоят из равных одинаковых частей.

Идеальные формы кристаллов симметричны. По выражению известного русского кристаллографа Е. С. Фёдорова (1853-1919), «кристаллы блещут симметрией».

В кристаллах можно найти различные элементы симметрии: ось симметрии, плоскость симметрии, центр симметрии.

Например, кристаллы в форме куба (Хлорид калия, поваренная соль и др. ) имеют девять плоскостей симметрии, три из которых проходят параллельно граням куба, а шесть – по диагоналям. Кроме того, куб имеет три оси симметрии 4-го порядка, четыре оси 3-го порядка и шесть осей 2-го порядка. Куб ещё имеет центр симметрии. Всего в кубе 23 элемента симметрии.

Кристаллы алмаза, калиевых квасцов имеют форму октаэдров. Октаэдры обладают такими же элементами симметрии, что и кубы. На рисунке показаны оси вращения октаэдра.

У кристаллов магния, имеющих форму гексагональной призмы (т. е. призмы, опирающейся на правильный шестиугольник), 6 плоскостей симметрии и одна ось симметрии 6-го порядка.

У кристаллов медного купороса имеется лишь центр симметрии, других элементов симметрии у них нет.

Из этого небольшого обзора симметрий различных кристаллов можно сделать вывод, что различные кристаллы обладают разной симметрией.

Симметричность кристаллов всегда привлекала внимание учёных. Уже в 79 г. нашего летоисчисления Плиний Старший упоминает о плоскогранности и прямобедренности кристаллов. Этот вывод и может считаться первым обобщением геометрической кристаллографии. С тех пор на протяжении многих столетий весьма медленно и постепенно накапливался материал, позволивший в конце XVIII в. открыть важнейший закон геометрической кристаллографии — закон постоянства двухгранных углов. Этот закон связывается обычно с именем французского учёного Роме де Лиля, который в 1783г. опубликовал монографию, содержащую обильный материал по измерению углов природных кристаллов. Для каждого вещества (минерала), изученного им, оказалось справедливым положение, что углы между соответственными гранями во всех кристаллах одного и того же вещества являются постоянными.

Не следует думать, что до Роме де Лиля никто из учёных не занимался данной проблемой. История открытия закона постоянства углов прошла огромный, почти двухвековой путь, прежде чем этот закон был отчётливо сформулирован и обобщён для всех кристаллических веществ. Так, например, И. Кеплер уже в 1615 г. указывал на сохранение углов в 60° между отдельными лучиками у снежинок. В 1669 г. Н. Стенон открыл закон постоянства углов в кристаллах кварца и гематита. Внимательно разглядывая реальные кристаллы кварца, Стенон также обратил внимание на их отклонение от идеальных геометрических многогранников с плоскими гранями и прямыми рёбрами. В своём тракте он впервые ввёл в науку реальный кристалл с его несовершенствами и отклонениями от идеализированных схем. Однако все эти отклонения не помешали учёному открыть на тех же кристаллах кварца основной закон геометрической кристаллографии. Однако написал он об этом очень кратко в пояснениях к рисункам, приложенным к его сочинению, поэтому честь называться автором закона досталась Лилю. Годом позже Стенона Э. Бартолин сделал тот же вывод применительно к кристаллам кальцита, а в 1695г. Левенгук – к кристаллам гипса. Он показал, что и у микроскопически малых и у больших кристаллов гипса углы между соответственными гранями одинаковы. В России закон постоянства углов был открыт М. В. Ломоносовым для кристаллов селитры (1749г. ) пирита, алмаза и некоторых других минералов.

Однако вернёмся к определению данному Лилем. В его версии закон постоянства углов звучит следующим образом: «Грани кристалла могут изменяться по своей форме и относительным размерам, но их взаимные наклоны постоянны и неизменны для каждого рода кристаллов».

Что же понимают под соответственными гранями?

В геометрии грани (плоские многоугольники) считаются равными, если они при наложении совпадают всеми своими точками. В кристаллографии равенство граней означает совершенно иное. Грани могут отличаться межу собой по форме и всё-таки считаться равными, если они обладают одинаковыми физическими и химическими свойствами. Установить равенство граней в кристаллографическом смысле удаётся иногда путём внешнего их осмотра. В сомнительных случаях производят травление поверхности кристалла кислотой. На равных гранях рисунок, полученный при травлении, будет одинаковым.

В кристалле кварца можно установить три сорта граней Хотя в разных кристаллах кварца грани имеют разный размер и форму, они считаются равными.

Закон постоянства углов утверждает, что двугранный угол, образованный гранями а и b, в различных кристаллах данного вещества будет один и тот же. Соответственно во всех кристаллах данного вещества будут равны и двугранные углы, образованные гранями а и с, b и c.

Итак, все кристаллы обладают тем свойством, что углы между соответственными гранями постоянны. Грани у отдельных кристаллов могут быть развиты по-разному: грани, наблюдающиеся на одних экземплярах, могут отсутствовать на других – но если мы будем измерять углы между соответственными гранями, то значения этих углов будут оставаться постоянными независимо от формы кристалла.

Однако по мере совершенствования методики и повышения точности измерения кристаллов выяснилось, что закон постоянства углов оправдывается лишь приблизительно. В одном и том же кристалле углы между одинаковыми по типу гранями слегка отличаются друг от друга. У многих веществ отклонения двухгранных углов между соответственными гранями достигает 10 – 20’, а в некоторых случаях и градуса.

Грани реального кристалла никогда не представляют собой идеальных плоских поверхностей. Нередко они бывают покрыты ямками или бугорками роста, в некоторых случаях грани представляют собой кривые поверхности, например у кристаллов алмаза.

III. Практические исследования

Кристалл, поэтом обновленный

Укрась мой мирный уголок,

Залог поэзии священной,

И дружбы сладостный залог.

В тебе таится жар целебный.

А. С. Пушкин

Кристаллы могут расти как в природе, так и в искусственных условиях.

В природе кристаллы растут вблизи водоёмов.

В соляных озёрах, на мелководье вода, нагреваясь, испаряется. Соль выпадает в осадок, наращиваясь на дне. Так образуются солончаки, представляющие дно высохших озёр.

Рост кристаллов в искусственных условиях:

В искусственных условиях кристаллы выращивают из раствора или из расплава.

Развитие науки и техники привело к тому, что многие редко встречающиеся в природе кристаллы стали необходимыми для изготовления деталей приборов, машин, для выполнения научных исследований. Потребность во многих кристаллах возросла настолько, что удовлетворить ее за счет выработки старых и поисков новых природных месторождений оказалось невозможным. Возникла задача разработки технологии искусственного изготовления кристаллов

Наиболее распространенные способы выращивания кристаллов ― кристаллизация из расплава и кристаллизация из раствора. Эти технологии очень сложны.

Однако каждый желающий может вырастить некоторые кристаллы в домашних условиях путём кристаллизации из водного раствора кристаллического вещества.

Выращивают кристаллы из раствора, в основном, двумя способами. Один из них — охлаждение насыщенного раствора вещества. С понижением температуры растворимость большинства веществ уменьшается, и они, как говорят, выпадают в осадок. Сначала в растворе появляются крошечные кристаллы-зародыши и постепенно они превращаются в красивые кристаллы правильной формы.

Другой метод выращивания кристаллов — постепенное удаление воды (испарение) из насыщенного раствора. В этом случае, чем медленнее удаляется вода, тем лучше получаются кристаллы. Надо оставить открытый сосуд с раствором при комнатной температуре — вода при этом будет испаряться медленно.

Вырастить кристаллы – это не пустая забава. В природе кристаллы растут на протяжении миллионов лет. А нельзя ли ускорить этот процесс? Оказывается можно.

Ни рубинов, ни алмазов, ни других драгоценных камней в условиях школьной лаборатории мы вырастить не можем.

Но и то, что нам по плечу, тоже достаточно красиво. Все кристаллы мы получали из насыщенных растворов, то есть из таких, в которых растворено так много вещества, что больше оно уже не растворяется. Воду для этих целей необходимо нагреть, тогда она вместит больше вещества.

Раствор мы готовили так: в горячую (но не кипящую) воду насыпали порциями вещество и размешивали стеклянной палочкой до полного растворения. Как только вещество перестаёт растворяться, это значит, что при данной температуре раствор насыщен.

Мы начали выращивать кристаллы с простых веществ – с поваренной соли и сахара. В двух тонких стаканах приготовили горячие насыщенные растворы. Сверху положили палочку, вокруг которых обмотана нитка. К свободному концу нитки привесили маленький груз – пуговицу. Чтобы нить распрямилась и висела в растворе вертикально, не доставая до дна.

Стакан мы оставляли на 2 – 3 дня.

Мы увидели, что нитка обросла кристалликами: в одном сосуде сахарными, а в другом – соляными. Проведя испытания с поваренной солью и сахаром, мы заинтересовались вопросом выращивания кристаллов из других веществ, которые имеются в нашей лаборатории.

Все кристаллы мы выращивали методом испарения насыщенного раствора.

IV. Кристаллы в современном мире.

Кристаллы играли и играют до сих пор немаловажную роль в жизни человека. Они обладают оптическими и механическими свойствами, именно поэтому первые линзы, в том числе и для очков, изготавливались из них. Кристаллы до сих пор применяются для изготовления призм и линз оптических приборов. Кристаллы сыграли важную роль во многих технических новинках XX века. Опираясь на законы оптики, ученые искали прозрачный бесцветный и бездефектный минерал, из которого можно было бы шлифованием и полированием изготавливать линзы. Нужными оптическими и механическими свойствами обладают кристаллы неокрашенного кварца, и первые линзы, в том числе и для очков, изготавливались из них.

Даже после появления искусственного оптического стекла потребность в кристаллах полностью не отпала; кристаллы кварца, кальцита и других прозрачных веществ, пропускающих ультрафиолетовое и инфракрасное излучения, до сих пор применяются для изготовления призм и линз оптических приборов.

Первым их значительным применением было изготовление генераторов радиочастоты со стабилизацией кварцевыми кристаллами. Заставив кварцевую пластинку вибрировать в электрическом поле радиочастотного колебательного контура, можно тем самым стабилизировать частоту приема или передачи. Полупроводниковые приборы, революционизировавшие электронику, изготавливаются из кристаллических веществ, главным образом кремния и германия. При этом важную роль играют легирующие примеси, которые вводятся в кристаллическую решетку.

Полупроводниковые диоды используются в компьютерах и системах связи, транзисторы заменили электронные лампы в радиотехнике, а солнечные батареи, помещаемые на наружной поверхности космических летательных аппаратов, преобразуют солнечную энергию в электрическую. Полупроводники широко применяются также в преобразователях переменного тока в постоянный.

В последнее время по несколько миллиардов долларов в год вкладывают в развитие новейших технологий, на смену обычным телевизорам и компьютерным мониторам приходят жидкокристаллические. С жидкими кристаллами связывают большие надежды – многие учёные прогнозируют в ближайшее десятилетие самый быстрый рост этого направления в микроэлектронике. Жидкие кристаллы широко применяются в производстве наручных часов и небольших калькуляторов. Создаются плоские телевизоры с тонким жидкокристаллическим экраном. Сравнительно недавно было получено углеродное и полимерное волокно на основе жидкокристаллических матриц.

Жидкие кристаллы применяют так же и в медицине. Идея замены рентгеновского излучения ультразвуком возникла давно, ведь ультразвук для человеческого организма безвреден. Однако трудность заключалась в регистрации ультразвукового потока, прошедшего тело пациента. И вот тут жидкие кристаллы предложили свою помощь – они оказались чувствительны к ультразвуку. При этом нарушается молекулярная упаковка жидкого кристалла, и оптическая картина этих нарушений позволяет судить о состоянии внутренних органов человека.

Кроме этого, в последнее время серьёзно рассматривается вопрос о роли жидких кристаллов в возникновении некоторых заболеваний в организме человека. Распространённость жидких кристаллов в живых тканях не удивительна. Основная деятельность клетки – обмен веществ. Жидкие кристаллы являются идеальным образованием для этого. Они могут поглощать вещества из газовой или жидкой фазы, могут растворять многие вещества, даже другой молекулярной структуры. Важную роль жидкокристаллическое состояние играет в системах, обеспечивающих смазку различных поверхностей в организме. На основе многих исследований созданы новые лазерные установки, которые используются в стоматологии для лечения кариеса.

V. Заключение

Человек встречается с кристаллами повсюду: употребляет в пищу, соль и сахар, любуется искрящимся снегом в ясную зимнюю погоду и, вообще, живёт в поражающем своим многообразием мире кристаллов. Кристаллы необычайно интересны и удивительны.

Источник: www.hintfox.com

Нестандартные занятия

И.А.ДОРОГОВЦЕВА,
школа № 1976 ЮВАО, г. Москва
[email protected]

Урок-семинар с компьютерной презентацией. 10–11-й классы

Цели: показать роль моно- и поликристаллов в технике и науке, многообразие форм кристаллических решёток; рассмотреть различные методы выращивания монокристаллов и способы повышения их прочности.

Ход урока

1. Организационный этап (1 мин)

2. Изложение нового материала (43 мин)

Физика твёрдого тела (раздел физики, изучающий структуру и свойства твёрдых тел) – это одна из основ современного технологического общества. В сущности, огромная армия инженеров всего мира работает над созданием твёрдых материалов с заданными свойствами, необходимыми для использования в самых разнообразных станках, механизмах и устройствах в области связи, транспорта и компьютерной техники. Сегодня на уроке речь пойдёт о кристаллах. Наша задача: узнать, как устроены кристаллы; объяснить с физической точки зрения многообразие их форм и свойств; рассмотреть методы искусственного выращивания кристаллов и способы увеличения их прочности; увидеть, как и для чего используются кристаллы в быту и технике.

Кристаллическими считаются вещества, атомы которых расположены регулярно, так что образуют правильную трёхмерную решётку, называемую кристаллической. Кристаллам ряда химических элементов и их соединений присущи замечательные механические, электрические, магнитные и оптические свойства. (Слайд-шоу «Многообразие кристаллов».)

Лазурит, Малахит, Кварц Натролит, Силиманит, Берилл Опал, Титанит, Топаз

Главным отличием кристаллов от других твёрдых тел является, как уже говорилось, наличие кристаллической решётки – совокупности периодически расположенных атомов, молекул или ионов.

Сообщение ученика. Русский учёный Е.С.Фёдоров установил, что в природе может существовать только 230 различных пространственных групп, охватывающих все возможные кристаллические структуры. Большинство из них (но не все) обнаружены в природе или созданы искусственно. Кристаллы могут иметь форму различных призм, основанием которых могут быть правильный треугольник, квадрат, параллелограмм и шестиугольник. (Слайд.)

Примеры простых кристаллических решёток

Примеры простых кристаллических решёток: 1 – простая кубическая; 2 – гранецентрированная кубическая; 3 – объёмно-центрированная кубическая; 4 – гексагональная

Кристаллические решётки металлов часто имеют форму гранецентрированного (медь, золото) или объёмно-центрированного куба (железо), а также шестигранной призмы (цинк, магний).

В основе классификации кристаллов и объяснения их физических свойств может лежать не только форма элементарной ячейки, но и другие виды симметрии, например, поворот вокруг оси. Осью симметрии называют прямую, при повороте вокруг которой на 360° кристалл несколько раз совмещается сам с собой. Число этих совмещений называют порядком оси. Существуют кристаллические решётки, обладающие осями симметрии 2-го, 3-го, 4-го и 6-го порядков. Возможна симметрия кристаллической решётки относительно плоскости симметрии, а также комбинация разных видов симметрии. (Слайд.)

Где используются кристаллы

Большинство кристаллических тел являются поликристаллами, т.к. в обычных условиях вырастить монокристаллы достаточно сложно, этому мешают всевозможные примеси. В свете растущей потребности техники в кристаллах высокой степени чистоты перед наукой встал вопрос о разработке эффективных методов искусственного выращивания монокристаллов различных химических элементов и их соединений.

Сообщение ученика. Существует три способа образования кристаллов: кристаллизация из расплава, из раствора и из газовой фазы. Примером кристаллизации из расплава может служить образование льда из воды (ведь вода – это расплавленный лёд), а также образования вулканических пород. Пример кристаллизации из раствора в природе – выпадение сотен миллионов тонн соли из морской воды. При охлаждении газа (или пара) электрические силы притяжения объединяют атомы или молекулы в кристаллическое твёрдое вещество – так образуются снежинки.

Наиболее распространёнными способами искусственного выращивания монокристаллов являются кристаллизация из раствора и из расплава. В первом случае кристаллы растут из насыщенного раствора при медленном испарении растворителя или при медленном понижении температуры. Такой процесс можно продемонстрировать в лаборатории с водным раствором поваренной соли. Если дать воде возможность медленно испаряться, то в конце концов раствор станет насыщенным, и дальнейшее испарение приведёт к выпадению соли.

Кристаллизация из раствора

Если твёрдое вещество нагреть, оно перейдёт в жидкое состояние – расплав. Трудности выращивания монокристаллов из расплавов связаны с высокой температурой плавления. Например, для получения кристалла рубина нужно расплавить порошок оксида алюминия, а для этого его нужно нагреть до температуры 2030 °С. Порошок высыпают тонкой струйкой в кислородно-водородное пламя, где он плавится и каплями падает на стержень из тугоплавкого материала. На этом стержне постепенно и вырастает монокристалл рубина.

Кристаллизация из расплава

3. Применение кристаллов

1. Алмаз. Около 80% всех добываемых природных алмазов и все искусственные алмазы используются в промышленности. Алмазные инструменты используются для обработки деталей из самых твёрдых материалов, для бурения скважин при разведке и добыче полезных ископаемых, служат опорными камнями в хронометрах высшего класса для морских судов и других, особо точных приборах. На алмазных подшипниках не обнаруживается никакого износа даже после 25 млн оборотов. Высокая теплопроводность алмаза позволяет использовать его в качестве теплоотводящей подложки в полупроводниковых электронных микросхемах.

Конечно, алмазы используются и в ювелирных изделиях – это бриллианты.

2. Рубин. Высокая твёрдость рубинов, или корундов, обусловила их широкое применение в промышленности. Из 1 кг синтетического рубина получается около 40 000 опорных камней для часов. Незаменимыми оказались рубиновые стержни-нитеводители на фабриках по изготовлению химического волокна. Они практически не изнашиваются, в то время как нитеводители из самого твёрдого стекла при протяжке через них искусственного волокна изнашиваются за несколько дней.

Новые перспективы для широкого применения рубинов в научных исследованиях и в технике открылись с изобретением рубинового лазера, в котором рубиновый стержень служит мощным источником света, испускаемого в виде тонкого луча.

3. Жидкие кристаллы. Это необычные вещества, которые совмещают в себе свойства кристаллического твёрдого тела и жидкости. Подобно жидкостям они текучи, подобно кристаллам обладают анизотропией. Строение молекул жидких кристаллов таково, что концы молекул очень слабо взаимодействуют друг с другом, в то же время боковые поверхности взаимодействуют очень сильно и могут прочно удерживать молекулы в едином ансамбле.

Жидкие кристаллы

Жидкие кристаллы: смектические (слева) и холестерические (справа)

Наибольший интерес для техники представляют холестерические жидкие кристаллы. В них направление осей молекул в каждом слое немного отличается друг от друга. Углы поворота осей зависят от температуры, а от угла поворота зависит окраска кристалла. Эта зависимость используется в медицине: можно непосредственно наблюдать распределение температуры по поверхности человеческого тела, а это важно для выявления скрытых под кожей очагов воспалительного процесса. Для исследования изготовляют тонкую полимерную плёнку с микроскопическими полостями, заполненными холестериком. Когда такую плёнку накладывают на тело, то получается цветное отображение распределения температуры. Этот же принцип используется в жидкокристаллических термометрах.

Где используются кристаллыНаиболее широкое применение жидкие кристаллы получили в буквенно-цифровых индикаторах электронных часов, микрокалькуляторов и т.д. Нужная цифра или буква воспроизводится с помощью комбинации небольших ячеек, выполненных в виде полосок. Каждая ячейка заполнена жидким кристаллом и имеет два электрода, на которые подаётся напряжение. В зависимости от величины напряжения, «загораются» те или иные ячейки. Индикаторы можно делать чрезвычайно миниатюрными, они потребляют мало энергии.

Жидкие кристаллы применяются в различного рода управляемых экранах, оптических затворах, плоских телевизионных экранах.

4. Полупроводники. Исключительная роль выпала на долю кристаллов в современной электронике. Многие вещества в кристаллическом состоянии не являются такими хорошими проводниками электричества, как металлы, но их нельзя отнести и к диэлектрикам, т.к. они не являются и хорошими изоляторами. Такие вещества относят к полупроводникам. Это большинство веществ, их общая масса составляет 4/5 массы земной коры: германий, кремний, селен и др., множество минералов, различные оксиды, сульфиды, теллуриды и др.

Наиболее характерным свойством полупроводников является резкая зависимость их удельного электрического сопротивления под воздействием различных внешних воздействий: температуры, освещения. На этом явлении основана работа таких приборов, как термисторы, фоторезисторы.

Объединяя полупроводники различного типа проводимости, можно пропускать электрический ток только в одном направлении. Это свойство широко используется в диодах, транзисторах.

Исключительно малые размеры полупроводниковых приборов, иногда всего в несколько миллиметров, долговечность, связанная с тем, что их свойства мало меняются со временем, возможность легко изменять их электропроводность открывают широкие перспективы использования полупроводников сегодня и в будущем.

5. Полупроводники в микроэлектронике. Интегральной микросхемой называют совокупность большого числа взаимосвязанных компонентов – транзисторов, диодов, резисторов, конденсаторов, соединительных проводов, изготовленных на одном кристалле. При изготовлении интегральной схемы на пластинку из полупроводника (обычно это кристаллы кремния) наносятся последовательно слои примесей, диэлектриков, напыляются слои металла. В результате на одном кристалле формируется несколько тысяч электрических микроприборов. Размеры такой микросхемы обычно 5 Где используются кристаллы5 мм, а отдельных микроприборов – порядка 10–6 м.

В последнее время всё чаще стали обсуждать возможность создания электронных микросхем, в которых размеры элементов будут сопоставимы с размерами самих молекул, т.е. порядка 10–9–10–10 м. Для этого на очищенную поверхность монокристалла никеля или кремния с помощью туннельного микроскопа напыляются небольшие количества атомов или молекул других веществ. Поверхность кристалла охлаждается до –269 °С, чтобы исключить заметные перемещения атомов вследствие теплового движения. Размещение отдельных атомов в заданных местах открывают фантастические возможности создания хранилищ информации на атомном уровне. Это уже предел «миниатюризации».

6. Вольфрам и молибден. На современном уровне технического развития резко возросли скорости нагрева и охлаждения деталей приборов и машин, значительно увеличился интервал температур, при которых им приходится работать. Очень часто требуется длительная работа при очень высоких температурах, в агрессивных средах. Также необходимы машины, способные выдерживать большое число температурных циклов.

При таких сложных условиях эксплуатации детали и целые узлы многих машин и приборов очень быстро изнашиваются, покрываются трещинами и разрушаются. Для работы при высоких температурах широко применяются тугоплавкие металлы, например, молибден и вольфрам. монокристаллы вольфрама и молибдена, полученные при помощи зонной плавки, используются для изготовления сопел реактивных и прямоточных воздушно-реактивных двигателей, обшивок головных частей ракет, ионных двигателей, турбин, атомных силовых установок и во многих других устройствах и механизмах. Поликристаллические вольфрам и молибден применяются для изготовления анодов, катодов, нитей накаливания в лампах, высокотемпературных электрических печей.

7. Кварц. Это диоксид кремния, один из самых распространённых минералов земной коры, по сути, песок. Природные кристаллы кварца имеют размеры от песчинок до нескольких десятков сантиметров, встречаются кристаллы размером до одного метра и более. Чистый кристалл кварца бесцветен. Ничтожные посторонние примеси вызывают разнообразную окраску. Прозрачные бесцветные кристаллы – это горный хрусталь, фиолетовые – аметист, дымчатые – раухтопаз. Оптические свойства кварца обусловили широкое применение его в оптическом приборостроении: из него делают призмы для спектрографов, монохроматоров. Кварц в отличие от стекла хорошо пропускает ультрафиолетовое излучение, поэтому из него изготавливают специальные линзы, применяемые в ультрафиолетовой оптике.

Кварц также обладает пьезоэлектрическими свойствами, т.е. способен преобразовывать механическое воздействие в электрическое напряжение. Благодаря этому свойству кварц широко применяется в радиотехнике и электронике – в стабилизаторах частоты (в том числе и в часах), всевозможных фильтрах, резонаторах и т.д. С помощью кристаллов кварца возбуждают (и измеряют) малые механические и акустические воздействия.

Применение кристаллов в быту и технике

Из плавленного кварца изготавливают тигли, сосуды и другие ёмкости для химических лабораторий.

4. Способы повышения прочности твёрдых тел

Поликристаллическими являются стальные каркасы зданий и мостов, рельсы железных дорог, станки, детали машин и самолётов. Значения реальной и теоретической прочности расходятся в десятки, даже сотни раз. Причина кроется в наличии внутренних и поверхностных дефектов в кристаллических решётках.

Для получения высокопрочных материалов нужно выращивать монокристаллы по возможности без дефектов. Это очень сложная задача. Большинство современных методов упрочнения материалов основано на другом способе: в кристалле создаются препятствия перемещению дефектов. Ими могут служить дислокации (нарушения порядка расположения атомов в кристаллической решётке) и другие, специально созданные, дефекты.

Примеры точечных дислокаций – нарушений порядка расположения атомов в кристалле

Примеры точечных дислокаций

К таким методам относятся, например:

легирование стали: вводят в расплав небольшие добавки хрома или вольфрама, при этом прочность возрастает в три раза;

высокоскоростная кристаллизация: чем быстрее отводится тепло от затвердевшего слитка, тем меньше размеры кристаллов. При этом улучшаются физические и механические характеристики. Для быстрого отвода тепла расплавленный металл струёй нейтрального газа распыляется в мельчайшую пыль, которую затем спрессовывают при высоких давлении и температуре.

Повышение прочности кристаллических тел даёт выигрыш в размерах различных агрегатов, позволяет уменьшить их массу, повышает рабочую температуру и увеличивает срок службы.

5. Закрепление

Учащимся предлагается заполнить тест-таблицу «Применение кристаллов в технике». В конце урока как итог самостоятельной работы учащихся демонстрируется экспресс-газета, нарисованная двумя учениками в течение урока.

Литература

Учебник «Физика-10»: Под ред. А.А.Пинского. – М: Просвещение, 2001.

Физическая энциклопедия, т. 3: Под ред. А.М.Прохорова. – М: Советская энциклопедия, 1990.

Ресурсы интернета.

Ирина Александровна Дороговцева

Ирина Александровна Дороговцева – выпускница ГПИ г. Комсомольск-на-Амуре (1997 г.), учитель физики высшей квалификационной категории, педагогический стаж 8 лет. Участница финала профессионального конкурса «Учитель года-2003». Дочери 4 года. Увлекается компьютерным дизайном, программированием, научной фантастикой.

Источник: fiz.1sept.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.