Температура открытого космоса


Понятие «температура в космосе»

Любой предмет в окружающем нас мире имеет температуру, отличную от абсолютного нуля. По этой причине он излучает в окружающее пространство электромагнитные волны всех длин. Это утверждение верно, разумеется, и для человеческих тел. И мы с вами — излучатели не только тепла, но и радиоволн, и ультрафиолетового излучения. И, строго говоря, электромагнитных волн любого диапазона. Правда, интенсивность излучения для различных волн весьма различна. И если, скажем, тепловое излучение нашего тела легко ощутимо, то как радиостанция тело работает очень плохо.

Для обычных, реальных предметов распределение интенсивности излучения в зависимости от длины волны весьма сложно. Поэтому физики вводят понятие идеального излучателя. Им служит так называемое абсолютно черное тело. То есть тело, которое поглощает все падающее на него излучение. А при нагревании излучает во всех диапазонах по так называемому закону Планка. Закон этот показывает распределение энергии излучения в зависимости от длины волны. Для каждой температуры существует своя кривая Планка. И по ней (или по формуле Планка) легко найти, как будет испускать, скажем, радиоволны или рентгеновское излучение данное абсолютно черное тело.

Солнце как абсолютно черное тело


Разумеется, таких тел в природе не существует. Но есть объекты, по характеру излучения очень напоминающие абсолютно черные тела. Как это ни странно, к ним принадлежат звезды. И, в частности, наше Солнце. Распределение энергии в их спектрах напоминает кривую Планка. Если излучение подчиняется закону Планка, оно называется тепловым. Всякое отступление от этого правила заставляет астрономов искать причины таких аномалий.

Все это вступление понадобилось для того, чтобы читатель понял суть недавнего выдающегося открытия. Оно в значительной мере раскрывает роль человека во Вселенной.

Спутник «Ирас»

В январе 1983 г. на околоземную полярную орбиту с высотой 900 км был выведен международный спутник «Ирас». В его создании участвовали специалисты Великобритании, Нидерландов и США. Спутник имел рефлектор с поперечником зеркала 57 см. В фокусе него располагался приемник инфракрасного излучения. Главная цель, поставленная исследователями, — обзор неба в инфракрасном диапазоне для длин волн от 8 до 120 мкм. В декабре 1983 г. бортовая аппаратура спутника прекратила свою работу. Но тем не менее за 11 месяцев был собран колоссальный научный материал. Его обработка заняла несколько лет, но уже первые результаты привели к поразительным открытиям. Из 200000 инфракрасных космических источников излучения, зарегистрированных «Ирасом», прежде всего обратила на себя внимание Вега.


Эта главная звезда в созвездии Лиры является ярчайшей звездой северного полушария неба. Она удалена от нас на 26 световых лет и потому считается близкой звездой. Вега — горячая голубовато-белая звезда с температурой поверхности около 10000 кельвинов. Для нее легко вычислить и нарисовать соответствующую этой температуре кривую Планка. К удивлению астрономов оказалось, что в инфракрасном диапазоне излучение Веги не подчиняется закону Планка. Оно было почти в 20 раз мощнее, чем положено по этому закону. Источник инфракрасного излучения оказался протяженным, имеющим поперечник 80 а. е., что близко к поперечнику нашей планетной системы (100 а.е.). Температура этого источника близка к 90 К, и излучение от него наблюдается в основном в инфракрасной части спектра.

Облако вокруг Веги

Специалисты пришли к выводу, что источником излучения служит облако твердой пыли, со всех сторон окутывающее Вегу. Частицы пыли не могут быть очень мелкими — в противном случае их выбросит в пространство световым давлением лучей Веги. Немного более крупные частицы также просуществовали бы недолго. На них весьма заметно действовало бы боковое световое давление (эффект Пойнтинга — Робертсона). Тормозя полет частиц, оно заставляло бы частицы по спирали падать на звезду. Значит, пылевая оболочка Веги состоит из частиц, поперечник которых не меньше нескольких миллиметров. Вполне возможно, что спутниками Веги могут быть и гораздо более крупные твердые тела планетного типа.


Вега — звезда молодая. Её возраст вряд ли превышает 300 миллионов лет. Тогда как возраст Солнца оценивается в 5 миллиардов лет. Поэтому естественно предположить, что около Веги открыта молодая планетная система. Она находится в процессе своего формирования.

Вега не единственная звезда, окруженная по-видимому планетной системой. Вскоре пришло сообщение об открытии пылевого облака вокруг Фомальгаута — главной звезды из созвездия Южной Рыбы. Она почти на 4 световых года ближе Веги и также представляет собой горячую бело-голубую звезду.

Протопланетные диски

В последние годы японские астрономы обнаружили газовые диски, окружающие ряд звезд в созвездиях Тельца и Ориона. Их поперечники весьма внушительны — десятки тысяч астрономических единиц. Не исключено, что внутренние части этих дисков в будущем станут планетными системами. Рядом с молодой звездой типа Т Тельца американские астрономы нашли точечный инфракрасный источник. Он очень похож на зарождающуюся протопланету.

Все эти открытия заставляют оптимистически расценивать распространенность планетных систем во Вселенной. Еще совсем недавно звезды типа Веги и Фомальгаута исключались из числа тех, которые могут иметь такие системы.


и очень горячи, быстро вращаются вокруг оси и, как считалось, не отделили от себя планеты. Но если образование планет не связано с отделением от центральной звезды, её быстрое вращение не может служить аргументом против наличия у звезды каких-либо планет. В то же время не исключено, что в природе планетные системы в разных ситуациях возникают по-разному. Одно ныне бесспорно — наша планетная система далеко не уникальна во Вселенной.

Источник: alivespace.ru

Что такое тепло

Для начала необходимо понять, чем же в принципе является температура, как образуется тепло и отчего возникает холод. Чтобы ответить на эти вопросы, необходимо рассмотреть строение материи на микроуровне. Все вещества во Вселенной состоят из элементарных частиц — электронов, протонов, фотонов и так далее. Из их сочетания образуются атомы и молекулы.

температура в космосе

Микрочастицы не являются неподвижными объектами. Атомы и молекулы постоянно колеблются. А элементарные частицы и вовсе перемещаются со скоростями, близкими к световым. Какая тут связь с температурой? Прямая: энергия движения микрочастиц — это и есть тепло. Чем сильнее колеблются молекулы в куске металла, например, тем горячее он будет.

Состояние невесомости


Температура открытого космоса

Этот миф кажется настолько очевидным, что многие люди никак не хотят переубеждать себя. Спутники, космические аппараты, астронавты и другое не испытывают невесомости. Настоящая невесомость, или микрогравитация, не существует и никто ее не испытывал никогда. Большинство людей находятся под впечатлением: как же так, астронавты и корабли плавают, поскольку находятся далеко от Земли и не испытывают действие ее гравитационного притяжения. На самом деле именно гравитация позволяет им плавать. Во время облета Земли или любого другого небесного тела, обладающего значительной гравитацией, объект падает. Но поскольку Земля постоянно движется, эти объекты не врезаются в нее.

Гравитация Земли пытается затащить корабль на свою поверхность, но движение продолжается, поэтому объект продолжает падать. Это вечное падение и приводит к иллюзии невесомости. Астронавты внутри корабля тоже падают, но кажется, будто они плавают. Такое же состояние можно испытать в падающем лифте или самолете. И вы можете испытать 23 секунды невесомости в самолете, свободно падающем на высоте 9000 метров.

Что такое холод


Но если тепло — это энергия движения микрочастиц, то какой будет температура в космосе, в вакууме? Конечно, межзвездное пространство не совсем пустое — сквозь него движутся фотоны, несущие свет. Но плотность материи там намного ниже, чем на Земле.

Чем меньше атомы сталкиваются друг с другом, тем слабее греется вещество, которое из них состоит. Если находящийся под большим давлением газ выпустить в разреженное пространство, его температура резко понизится. На этом принципе основана работа всем известного компрессорного холодильника. Таким образом, температура в открытом космосе, где частицы находятся очень далеко друг от друга и не имеют возможности сталкиваться, должна стремиться к абсолютному нулю. Но так ли это на практике?

Факт #4. Телескоп Hubble — не самый мощный

Температура открытого космоса

Благодаря колоссальному объему снимков и впечатляющим открытиям, совершенным телескопом Hubble, у многих существует представление, что этот телескоп обладает самым высоким разрешением и способен увидеть такие детали, которые не увидеть с Земли. Какое-то время так и было: несмотря на то, что на Земле можно собрать большие зеркала на телескопах, существенное искажение в изображения вносит атмосфера. Поэтому даже “скромное” по земным меркам зеркало диаметром 2,4 метра в космосе, позволяет добиться впечатляющих результатов.


Однако, за годы, прошедшие с момента запуска Hubble и земная астрономия не стояла на месте, было отработано несколько технологий, позволяющих, если не полностью избавиться от искажающего действия воздуха, то существенно снизить его воздействие. Сегодня самое впечатляющее разрешение способен дать Very Large Telescope Европейской Южной обсерватории в Чили. В режиме оптического интерферометра, когда вместе работают четыре основных и четыре вспомогательных телескопа, возможно достичь разрешающей способности превышающей возможности Hubble примерно в пятьдесят раз.

Температура открытого космоса

К примеру, если Hubble дает разрешение на Луне около 100 метров на пиксель (привет всем, кто думает, что так можно рассмотреть посадочные аппараты Apollo), то VLT может различить детали до 2 метров. Т.е. в его разрешении американские спускаемые аппараты или наши луноходы выглядели бы как 1-2 пикселя (но смотреть не будут из-за чрезвычайно высокой стоимости рабочего времени).

Пара телескопов обсерватории Keck, в режиме интерферометра, способны превысить разрешение Hubble в десять раз. Даже по отдельности, каждый из десятиметровых телескопов Keck, используя технологию адаптивной оптики, способны превзойти Hubble примерно в два раза. Для примера фото Урана:


Температура открытого космоса

Впрочем Hubble без работы не остается, небо большое, а широта охвата камеры космического телескопа превышает наземные возможности. А для наглядности можно посмотреть сложноватый, но информативный график.

Как происходит передача тепла

Когда вещество нагревается, его атомы испускают фотоны. Это явление тоже хорошо всем знакомо — накалившийся металлический волосок в электрической лампочке начинает ярко светиться. При этом фотоны переносят тепло. Таким образом энергия переходит от горячего вещества к холодному.

какая температура в космосе

Космическое пространство не только пронизано фотонами, которые испускают бесчисленные звезды и галактики. Вселенная заполнена также так называемым реликтовым излучением, которое образовалось на ранних этапах ее существования. Именно благодаря этому явлению температура в космосе не может опуститься до абсолютного нуля. Даже вдали от звезд и галактик материя будет получать рассеянное по Вселенной тепло от реликтового излучения.

Люди замерзают


Замерз человек
Это заблуждение часто используется в фильмах. Кто из вас не видел, как кто-то оказывается за бортом космического корабля без костюма? Он быстро замерзает, и если его не вернуть обратно, превращается в сосульку и уплывает прочь. В реальности происходит прямо противоположное. Вы не замерзнете, если попадете в космос, вы, наоборот, перегреетесь. Вода над источником тепла будет нагреваться, подниматься, остывать и опять по новой. Но в космосе нет ничего, что могло бы принять тепло воды, а значит остывание до температуры замерзания невозможно. Ваше тело будет работать, производя тепло. Правда, к тому времени, когда вам станет нестерпимо жарко, вы уже будете мертвы.

Что такое абсолютный нуль

Никакое вещество нельзя охладить ниже определенной температуры. Ведь остывание — это потеря энергии. В соответствии с законами термодинамики в определенной точке энтропия системы достигнет нуля. В этом состоянии вещество уже не сможет терять энергию. Это и будет предельно возможная низкая температура.

Абсолютный нуль — это минус 273,15 °C или ноль по шкале Кельвина. Теоретически такую температуру можно получить в замкнутых системах. Но на практике нигде во Вселенной невозможно создать область пространства, на которую не действовали бы никакие внешние силы.


Какая температура в космосе

Наша Вселенная не однородна. Ядра звезд раскалены до миллионов градусов. Но большая часть пространства, конечно же, значительно холодней. Если говорить о том, какая температура в открытом космосе, то она всего на 2,7 градуса выше значения абсолютного нуля и составляет минус 270,45 по Цельсию.

открытый космос

Это тепло возникает за счет уже упоминавшегося реликтового излучения. Но Вселенная расширяется, а это означает, что ее температура будет постепенно снижаться. Теоретически через триллионы лет вещество в ней может охладиться до минимально возможной отметки. Но вопрос о том, закончится ли расширение Вселенной «тепловой смертью», либо же она станет более разнородной и структурированной из-за действия сил гравитации, остается предметом дискуссий.

В местах скопления материи теплее, но ненамного. Облака газа и пыли, встречающиеся между звездами нашей галактики, имеют температуру от 10 до 20 градусов выше абсолютного нуля, то есть минус 263-253 °C. И только вблизи звезд, внутри которых протекают реакции ядерного синтеза, можно найти достаточно тепла для комфортного существования белковых форм жизни.

Черные дыры — это воронки

Космос
Есть еще одно распространенное заблуждение, которое можно списать на изображение черных дыр в кино и мультфильмах. Разумеется, черные дыры «невидимы» по своей сути, но для аудитории вроде нас с вами их рисуют похожими на зловещие водовороты судьбы. Их изображают двухмерными воронками с выходом только на одной стороне. В реальности черная дыра — это сфера. У нее нет одной стороны, которая засосет вас, скорее она похожа на планету с гигантской гравитацией. Если вы подойдете к ней слишком близко с любой стороны, вот тогда вас поглотит.

Температура на околоземной орбите

А какова температура вблизи нашей планеты? Стоит ли космонавтам, отправляющимся на МКС, запасаться теплыми вещами? На околоземной орбите металл под прямыми лучами солнца прогревается до 160 градусов Цельсия. В то же время в тени предметы будут остывать до минус 100 °C. Поэтому для выхода в открытый космос используются скафандры с надежной теплоизоляцией, нагревателями и системой охлаждения, защищающие человека от столь серьезного перепада температур.

космическое пространство

Не менее экстремальные условия на поверхности Луны. На ее освещенной стороне жарче, чем в Сахаре. Температура там может превысить 120 °C. Но на темной стороне она падает приблизительно до минус 170 °С. Во время высадки на Луну американцы использовали скафандры, в которых было 17 слоев защитных материалов. Терморегуляция обеспечивалась специальной системой трубочек, в которых циркулировала вода.

Факт #2. На Венере местами идет свинцовый снег

Температура открытого космоса

Это, наверно, самый поразительный факт о космосе, который я узнал не так давно. Условия на Венере настолько отличаются от всего, что мы могли бы вообразить, что венериане спокойно могли бы летать в земной ад, чтобы отдохнуть в мягком климате и комфортных условиях. Поэтому, как бы ни казалась фантастической фраза “свинцовый снег”, для Венеры — это реальность.

Благодаря радару американского зонда Magellan вначале 90-х, ученые обнаружили на вершинах венерианских гор некое покрытие, обладающее высокой отражающей способностью в радиодиапазоне. Поначалу предполагалось несколько версий: последствие эрозии, отложение железосодержащих материалов и т.п. Позже, после нескольких экспериментов на Земле, пришли к выводу, что это самый натуральный металлический снег, состоящий из сульфидов висмута и свинца. В газообразном состоянии они выбрасываются в атмосферу планеты во время извержений вулканов. Затем термодинамические условия на высоте 2600 м способствуют конденсации соединений и выпадению на возвышенностях.

Температура на других планетах Солнечной системы

На климат большое влияние оказывает наличие либо отсутствие атмосферы. Это второй по значению фактор после расстояния до Солнца. Понятно, что по мере удаления от светила температура в космосе падает. Но наличие атмосферы позволяет удержать часть тепла благодаря парниковому эффекту.

Наиболее яркой иллюстрацией этого явления может служить климат Венеры. Температура на ее поверхности достигает 477 °C. Благодаря атмосфере Венера жарче, чем Меркурий, который находится ближе к Солнцу.

Средняя температура поверхности Меркурия 349,9 °C днем и минус 170,2 °C ночью.

Марс может нагреваться до 35 градусов Цельсия летом на экваторе и охлаждаться до -143 °C зимой в районе полярных шапок.

На Юпитере температура достигает -153 °C.

температура в открытом космосе

Но чем дальше от Солнца, тем холоднее. Уран уже не спасает даже атмосферный слой. Он хоть и задерживает тепло, не давая ему сразу уходить в открытый космос, но температура там все равно падает до минус 224 °C.

Но холоднее всего на Плутоне. Температура его поверхности — минус 240 °C. Это лишь на 33 градуса выше абсолютного нуля.

Факт #5. Медведи в России встречаются в 19 раз чаще чем астероиды в Главном астероидном поясе

Температура открытого космоса

Американский научно популярный сайт приводит, а Компьютерра переводит любопытные расчеты, которые показывают, что путешествие в поясе астероидов не так опасно как представлялось Джорджу Лукасу. Если все астероиды крупнее 1 метра расположить на плоскости, равной площади Главного астероидного пояса то получится, что одна каменюка приходится примерно на 3200 квадратных километров. 100 тыс. медведей России должны распределяться по штуке на каждые 170 квадратных километров территории. Разумеется и астероиды и медведи стараются держаться ближе к себеподобным и оскверняют чистую математику своим неравномерным распределением, но ради праздника такими мелочами можно пренебречь.

| источник |

Самое холодное место в космосе

Выше было сказано, что межзвездное пространство прогревается реликтовым излучением, а потому температура в космосе по Цельсию не опускается ниже минус 270 градусов. Но оказывается, могут существовать и более холодные участки.

В 1998 году телескоп Хаббл обнаружил газо-пылевое облако, которое стремительно расширяется. Туманность, названная Бумерангом, образовалась вследствие явления, известного как звездный ветер. Это очень интересный процесс. Суть его состоит в том, что из центральной звезды с огромной скоростью «выдувается» поток материи, которая попадая в разреженное космическое пространство охлаждается вследствие резкого расширения.

какая температура в открытом космосе

По оценкам ученых, температура в туманности Бумеранг составляет всего один градус по шкале Кельвина, или минус 272 °C. Это самая низкая температура в космосе, которую на данный момент удалось зафиксировать астрономам. Туманность Бумеранг находится на расстоянии 5 тысяч световых лет от Земли. Наблюдать ее можно в созвездии Центавра.

Исследования

Температура открытого космоса
Люди начали физическое исследование космоса в течение 20-го века с появлением высотных полетов на воздушном шаре, а затем пилотируемых ракетных запусков.
Земная орбита была впервые достигнута Юрием Гагариным из Советского Союза в 1961 году, а беспилотные космические аппараты с тех пор добрались до всех известных планет Солнечной системы.

Из-за высокой стоимости полёта в космос, пилотируемый космический полет был ограничен низкой земной орбитой и Луной.

Космическое пространство представляет собой сложную среду для изучения человека из-за двойной опасности: вакуума и излучения.

Микрогравитация также отрицательно влияет на физиологию человека, которая вызывает, как атрофию мышц, так и потерю костной массы. В дополнение к этим проблемам здравоохранения и окружающей среды, экономическая стоимость помещения объектов, в том числе людей, в космос очень высока.

Насколько холодно в космосе? Может быть температура еще ниже?

Температуры в разных точках вселенной

Самая низкая температура на Земле

Итак, мы выяснили, какая температура в космосе и какое место самое холодное. Теперь остается узнать, какие самые низкие температуры были получены на Земле. А произошло это в ходе недавних научных экспериментов.

В 2000 году исследователи из Технологического университета в Хельсинки охладили кусок металла родия почти до абсолютного нуля. В ходе эксперимента была получена температура равная 1*10-10 Кельвина. Это всего на 0,000 000 000 1 градуса выше нижнего предела.

температура в космосе по цельсию

Целью исследований было не только получение сверхнизких температур. Основная задача заключалась в изучении магнетизма ядер атомов родия. Это исследование было весьма успешным и принесло ряд интересных результатов. Эксперимент помог понять, как магнетизм влияет на сверхпроводящие электроны.

Достижение рекордно низких температур состоит из нескольких последовательных этапов охлаждения. Вначале с помощью криостата металл охлаждается до температуры 3*10-3 Кельвина. На следующих двух этапах используется метод адиабатического ядерного размагничивания. Родий охлаждается до температуры сначала 5*10-5 Кельвина, а затем достигает рекордно низкой температуры.

Запуски космических аппаратов

Миф №8: Человек отправлял космические корабли только к поверхности Марса
Все, конечно, слышали о марсоходе «Кьюриосити»

и его важной научной работе, которую он выполняет, находясь сегодня на поверхности Марса. Вероятно, многие забыли о том, что на Красную планету
отправлялись и другие аппараты
.

Марсоход «Оппортьюнити»

приземлился на Марсе в 2003 году. Ожидалось, что он проработает
не более 90 дней
, однако этот аппарат до сих пор в рабочем состоянии, хотя прошло уже 10 лет!

Марсоход Curiosity отметил 1 год на Марсе (видео)

Многие полагают, что мы никогда не сможем запустить космические аппараты

для работы на поверхности других планет. Конечно, человек отправлял различные спутники на орбиты планет, но добраться до поверхности и благополучно приземлиться — задача не из легких.

Температура открытого космоса

Впрочем, попытки были. Между 1970 и 1984 годами

СССР удачно запустил 8 аппаратов на Венеру. Атмосфера этой планеты крайне не гостеприимна, поэтому все корабли проработали там очень недолго. Самое долгое пребывание —
всего 2 часа
, это даже больше, чем рассчитывали ученые.

Интересные факты о космических кораблях и исследованиях планет

Также человек добрался и до более удаленных планет

, например, до Юпитера. Эта планета практически полностью состоит из газа, поэтому приземляться на нее в обычном смысле несколько затруднительно. Ученые все же отправили к ней аппарат.

Корабль Юнона отправился к Юпитеру «за водой»

В 1989 году космический корабль «Галилео»

полетел к Юпитеру, чтобы изучить эту гигантскую планету и ее спутники. Это путешествие заняло
14 лет
. 6 лет Аппарат усердно выполнял свою миссию, а затем был сброшен на Юпитер.

Температура открытого космоса

Он успел отправить важную информацию о композиции планеты

, а также ряд других данных, которые позволили ученым пересмотреть свои представления о формировании планет. Также еще один корабль под названием
«Юнона»
сейчас на пути к гиганту. Планируется, что он доберется до планеты только через 3 года.

Источник: maginarius.ru

Что такое тепло

Для начала необходимо понять, чем же в принципе является температура, как образуется тепло и отчего возникает холод. Чтобы ответить на эти вопросы, необходимо рассмотреть строение материи на микроуровне. Все вещества во Вселенной состоят из элементарных частиц — электронов, протонов, фотонов и так далее. Из их сочетания образуются атомы и молекулы.

Микрочастицы не являются неподвижными объектами. Атомы и молекулы постоянно колеблются. А элементарные частицы и вовсе перемещаются со скоростями, близкими к световым. Какая тут связь с температурой? Прямая: энергия движения микрочастиц — это и есть тепло. Чем сильнее колеблются молекулы в куске металла, например, тем горячее он будет.

Что такое холод

Но если тепло — это энергия движения микрочастиц, то какой будет температура в космосе, в вакууме? Конечно, межзвездное пространство не совсем пустое — сквозь него движутся фотоны, несущие свет. Но плотность материи там намного ниже, чем на Земле.

Чем меньше атомы сталкиваются друг с другом, тем слабее греется вещество, которое из них состоит. Если находящийся под большим давлением газ выпустить в разреженное пространство, его температура резко понизится. На этом принципе основана работа всем известного компрессорного холодильника. Таким образом, температура в открытом космосе, где частицы находятся очень далеко друг от друга и не имеют возможности сталкиваться, должна стремиться к абсолютному нулю. Но так ли это на практике?

Как происходит передача тепла

Когда вещество нагревается, его атомы испускают фотоны. Это явление тоже хорошо всем знакомо — накалившийся металлический волосок в электрической лампочке начинает ярко светиться. При этом фотоны переносят тепло. Таким образом энергия переходит от горячего вещества к холодному.

Космическое пространство не только пронизано фотонами, которые испускают бесчисленные звезды и галактики. Вселенная заполнена также так называемым реликтовым излучением, которое образовалось на ранних этапах ее существования. Именно благодаря этому явлению температура в космосе не может опуститься до абсолютного нуля. Даже вдали от звезд и галактик материя будет получать рассеянное по Вселенной тепло от реликтового излучения.

Что такое абсолютный нуль

Никакое вещество нельзя охладить ниже определенной температуры. Ведь остывание — это потеря энергии. В соответствии с законами термодинамики в определенной точке энтропия системы достигнет нуля. В этом состоянии вещество уже не сможет терять энергию. Это и будет предельно возможная низкая температура.

Абсолютный нуль — это минус 273,15 °C или ноль по шкале Кельвина. Теоретически такую температуру можно получить в замкнутых системах. Но на практике нигде во Вселенной невозможно создать область пространства, на которую не действовали бы никакие внешние силы.

Какая температура в космосе

Наша Вселенная не однородна. Ядра звезд раскалены до миллионов градусов. Но большая часть пространства, конечно же, значительно холодней. Если говорить о том, какая температура в открытом космосе, то она всего на 2,7 градуса выше значения абсолютного нуля и составляет минус 270,45 по Цельсию.

Это тепло возникает за счет уже упоминавшегося реликтового излучения. Но Вселенная расширяется, а это означает, что ее температура будет постепенно снижаться. Теоретически через триллионы лет вещество в ней может охладиться до минимально возможной отметки. Но вопрос о том, закончится ли расширение Вселенной «тепловой смертью», либо же она станет более разнородной и структурированной из-за действия сил гравитации, остается предметом дискуссий.

В местах скопления материи теплее, но ненамного. Облака газа и пыли, встречающиеся между звездами нашей галактики, имеют температуру от 10 до 20 градусов выше абсолютного нуля, то есть минус 263-253 °C. И только вблизи звезд, внутри которых протекают реакции ядерного синтеза, можно найти достаточно тепла для комфортного существования белковых форм жизни.

Температура на околоземной орбите

А какова температура вблизи нашей планеты? Стоит ли космонавтам, отправляющимся на МКС, запасаться теплыми вещами? На околоземной орбите металл под прямыми лучами солнца прогревается до 160 градусов Цельсия. В то же время в тени предметы будут остывать до минус 100 °C. Поэтому для выхода в открытый космос используются скафандры с надежной теплоизоляцией, нагревателями и системой охлаждения, защищающие человека от столь серьезного перепада температур.

Не менее экстремальные условия на поверхности Луны. На ее освещенной стороне жарче, чем в Сахаре. Температура там может превысить 120 °C. Но на темной стороне она падает приблизительно до минус 170 °С. Во время высадки на Луну американцы использовали скафандры, в которых было 17 слоев защитных материалов. Терморегуляция обеспечивалась специальной системой трубочек, в которых циркулировала вода.

Температура на других планетах Солнечной системы

На климат большое влияние оказывает наличие либо отсутствие атмосферы. Это второй по значению фактор после расстояния до Солнца. Понятно, что по мере удаления от светила температура в космосе падает. Но наличие атмосферы позволяет удержать часть тепла благодаря парниковому эффекту.

Наиболее яркой иллюстрацией этого явления может служить климат Венеры. Температура на ее поверхности достигает 477 °C. Благодаря атмосфере Венера жарче, чем Меркурий, который находится ближе к Солнцу.

Средняя температура поверхности Меркурия 349,9 °C днем и минус 170,2 °C ночью.

Марс может нагреваться до 35 градусов Цельсия летом на экваторе и охлаждаться до -143 °C зимой в районе полярных шапок.

На Юпитере температура достигает -153 °C.

Но чем дальше от Солнца, тем холоднее. Уран уже не спасает даже атмосферный слой. Он хоть и задерживает тепло, не давая ему сразу уходить в открытый космос, но температура там все равно падает до минус 224 °C.

Но холоднее всего на Плутоне. Температура его поверхности — минус 240 °C. Это лишь на 33 градуса выше абсолютного нуля.

Самое холодное место в космосе

Выше было сказано, что межзвездное пространство прогревается реликтовым излучением, а потому температура в космосе по Цельсию не опускается ниже минус 270 градусов. Но оказывается, могут существовать и более холодные участки.

В 1998 году телескоп Хаббл обнаружил газо-пылевое облако, которое стремительно расширяется. Туманность, названная Бумерангом, образовалась вследствие явления, известного как звездный ветер. Это очень интересный процесс. Суть его состоит в том, что из центральной звезды с огромной скоростью «выдувается» поток материи, которая попадая в разреженное космическое пространство охлаждается вследствие резкого расширения.

По оценкам ученых, температура в туманности Бумеранг составляет всего один градус по шкале Кельвина, или минус 272 °C. Это самая низкая температура в космосе, которую на данный момент удалось зафиксировать астрономам. Туманность Бумеранг находится на расстоянии 5 тысяч световых лет от Земли. Наблюдать ее можно в созвездии Центавра.

Самая низкая температура на Земле

Итак, мы выяснили, какая температура в космосе и какое место самое холодное. Теперь остается узнать, какие самые низкие температуры были получены на Земле. А произошло это в ходе недавних научных экспериментов.

В 2000 году исследователи из Технологического университета в Хельсинки охладили кусок металла родия почти до абсолютного нуля. В ходе эксперимента была получена температура равная 1*10-10 Кельвина. Это всего на 0,000 000 000 1 градуса выше нижнего предела.

Целью исследований было не только получение сверхнизких температур. Основная задача заключалась в изучении магнетизма ядер атомов родия. Это исследование было весьма успешным и принесло ряд интересных результатов. Эксперимент помог понять, как магнетизм влияет на сверхпроводящие электроны.

Достижение рекордно низких температур состоит из нескольких последовательных этапов охлаждения. Вначале с помощью криостата металл охлаждается до температуры 3*10-3 Кельвина. На следующих двух этапах используется метод адиабатического ядерного размагничивания. Родий охлаждается до температуры сначала 5*10-5 Кельвина, а затем достигает рекордно низкой температуры.

Источник: www.syl.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.