Происхождение космоса




Вселенная

Содержание:

  1. Смысл теории
  2. Экскурс в историю
  3. Откуда взялось название
  4. Хронология событий
  5. Эпохальный период становления
  6. Прогнозы на будущее
  7. Другие варианты
  8. Итог

Не многие люди, живущие в современном обществе, смогут уверенно рассказать о том, каким образом возникла Вселенная. Мало кто на сегодняшний день задумывается, а как она смогла превратиться в громадное колоссальное пространство, не знающее определенных и четких границ. Немногие думают о том, что может произойти с Вселенной через миллиарды лет.Тематика подобного рода всегда мучила древние умы ученых мужей, в лице неутомимых исследователей и философов, которые в порыве минутного озарения создавали собственные шедевры – интересные и очень безумные теории, касающиеся истории возникновения Вселенной.

Современные ученые зашли дальше в рамках научного познания, чем их древние предшественники. Многие астрономы, физики, а вместе с ними и космологи убеждены в том, что Вселенная могла появиться в результате масштабного взрыва, который смог стать не только родоначальником основной части материи, но и стать базисом для формирования всех главнейших физических законов, определившим существование космоса. Это явление принято называть «теорией Большого взрыва».

Смысл теории


МатерияЕе основы чрезвычайно просты. Теория констатирует тот факт, что материя современная и материя, существовавшая в далекой-предалекой древности, идентичны друг другу, так как по сути своей они являются одним и тем же изучаемым объектом. Вся материя сформировалась примерно 13,8 миллиардов лет назад. В те далекие времена она существовала в виде точки, или компактно сформированного абстрактного тела в форме шара, обладающего в свою очередь бесконечной плотностью и определенной температурой. Данное состояние учеными принято называть «сингулярностью». По неизвестным причинам эта самая сингулярность внезапно начала стремительно расширяться в разные стороны, вследствие чего и появилась Вселенная.Данная точка зрения является на самом деле лишь гипотезой, причем одной из самых распространенных и популярных на сегодняшний день. Она принята наукой в качестве объяснения, касающегося возникновения материи, основных физических законов и колоссальной структуры самой Вселенной. Это связано с тем, что в теории Большого взрыва описаны причины, которые повлияли на расширение Вселенной, так же в ней содержится огромное количество прочих аспектов и феноменов, связанных с безграничным пространством.

Экскурс в историю


Большой взрывТематика Большого взрыва стала актуальна для науки с самого начала прошлого столетия. В 1912 году астроном из США по имени Весто Слайфер в течение некоторого времени провел ряд наблюдений за спиральными галактиками (раннее принимались за туманности), в ходе которых ученому удалось измерить допплеровское красное смещение этих самых галактик. Он пришел к выводу, что объект его исследования на протяжении определенного временного интервала все дальше и дальше удаляется прочь от Млечного Пути.Наука на месте долго не стояла, и уже в 1922-м году советский космолог и математик А. Фридман, опираясь на труды Эйнштейна, смог из уравнений, относящихся к теории относительности, вывести свои уравнения. Именно он стал первым ученым, кто смог заявить ученому обществу о расширении Вселенной, высказав одно только личное предположение.

Эдвин Хаббл в 1924-м году измерил дистанцию от Земли до ближайшей к ней спиральной туманности, чем доказал, что рядом могут находиться другие галактические системы. Проводя свои эксперименты при помощи мощного телескопа, ученый установил взаимосвязь, образованную между расстоянием галактик и скоростью, с которой те друг от друга удалялись.


Церковь всегда навязывала людям то мнение, что Бог сотворил мир практически за неделю, то есть за 6 дней. Это догмата христианской религии активно поддерживается и по сей день. Однако не все церковные канонники убеждены в данной точке зрения.

Отцом-основателем концепции теории Большого взрыва принято считать священнослужителя, Жоржа Леметра. Он стал первым человеком, который поставил перед обществом вопрос о происхождении такого мирового безграничного пространства, как Вселенная. Он занимался исследованием первобытного атома и его превращения многочисленных осколков в небесные тела – звезды с галактиками. В 1927 году священник опубликовал собственные доводы в газете. Бог сотворил мирКогда с размышлениями Леметра ознакомился великий Эйнштейн, он отметил, что священник абсолютно все правильно рассчитал, однако познания святого отца в области физики мэтра не удовлетворили. Теория Большого взрыва была принята только в 1933 году, когда сам Эйнштейн сдался под напором тезисов и фактов научного открытия, признав версию Леметра одной из самых убедительных из всех тех, с которыми ему только доводилось сталкиваться.Над тайной происхождения Вселенной работал и сам Эйнштейн. Ученый в 1931 году написал рукопись, в которой он изложил свой вариант событий, отличный от версии Жоржа Леметра. Точно в таком же направлении была в 1940-х годах написана работа еще одного выдающегося ученого Альфреда Хойла, который работал независимо от других знаменитых исследователей.


Эйнштейн скептически относился к одному факту, имевшему быть в теории Большого взрыва, а именно к сингулярности материи, в которой она пребывала до взрыва. Он попытался высказать свое собственное суждение, относящееся к бесконечному расширению космического пространства. Согласно его убеждениям, материя во Вселенной возникла и вовсе неоткуда, она нужна была для поддержания космической плотности в условиях постоянного расширения. Согласно мнению Эйнштейна, данный процесс можно описать, используя теорию относительности, однако позднее ученый осознал, что совершил в своих расчетах ошибку и отказался от своего открытия.

Подобной этой теории придерживался всемирно известный писатель-фантаст Эдгар Аллан По, который размышлял над происхождением Вселенной в далеком 1848 году. Физиком этот человек не был, следовательно, все его размышления никакой научной ценности не несли вследствие того, что не были закреплены никакими вычислениями. К тому же в те далекие времена не были изобретены необходимые математические аппараты, позволяющие рассчитывать исследования такого рода. По мог воплотить свою идею только лишь в литературном произведении, что он и сделал с большим успехом, написав поэму «Эврика», в которой уже рассказывается о таком явлении, как черная дыра, и доступно объясняется парадокс Олберса. Сам фантаст называл свое литературное творение откровением, о котором прежде человечество даже и не слышало.


Теория относительности ЭйнштейнаПарадокс Олберса являет собой косвенное подтверждение теории Большого взрыва, он заключается в следующем: если в ночное время суток поднять голову и увидеть какую-нибудь звезду (акцентируя на ней свое пристальное внимание), то мысленно прочерченная линия, имеющая начало на земле на этой самой звезде и закончится. По в своей «Эврике» написал о первобытной частице, которая по его словам являлась совершенно уникальной и индивидуальной. Его литературный труд был подвергнут жестокой критике, поэма оказалась разнесенной буквально в пух и прах, она оказалась неудачной работой с художественной точки зрения. Современные ученые же, наоборот, повергнуты в смятение, они не могут до сих пор понять, как человек, не имеющий научного образования, мог прогнозировать такие факты. По их словам Эдгар Аллан По своей книгой намного опередил официальные научные познания.Открытия физиков и астрономов 20-х – 30-х годов прошлого столетия взбудоражили научный мир, так как большинство ученых придерживались той точки зрения, что Вселенная находится в стационарном положении.

Уже после окончания Второй Мировой войны в обществе ученых вновь стали говорить о теории Большого взрыва и размышлять над ее концептуальностью. Именно этот вариант происхождения Вселенный с каждым годом набирал обороты популярности, отставляя позади другие вариации, которые время от времени предлагались неутомимыми исследователями космоса и объектов ему принадлежащих.


Время шло, а теория Большого взрыва все прочнее занимала свою нишу на научном Олимпе, стационарность же Вселенной стала и вовсе ставиться под сомнение. В 1965-м году было обнаружено реликтовое излучение: открытие подобного рода, ставшее фундаментальным, окончательно укрепило Большой взрыв, и связанное с ним рождение Вселенной в науке. С 60-х по 90-е годы XX века огромное количество космологов и астрономов проводили целые серии исследовательских работ, касающихся знаменитой теории, вследствие чего ими было обнаружено множество проблем теоретического характера и соответственно их решений, которые относились к предмету возникновения огромной Вселенной из одной точки. СингулярностьО том, что сингулярность – есть неоспоримое начальное состояние общей относительности, а также космологического состояния самого взрыва, высказался всемирно известный физик, имя которого на сегодняшний день знает каждый человек, Стивен Хокинг.1981 год ознаменовался появлением теории, описывающей период стремительного расширения космического пространства: она в свою очередь позволила решить огромное количество проблемных вопросов, на которые ранее никто не мог дать конкретного ответа.

К концу XX века у многих ученых появился неподдельный интерес, сопровождающийся любопытством, к такому объекту исследования, как темная энергия. Она была рассмотрена в качестве ключа, позволяющего раскрыть важность многих космологических проблем. Ученых интересовало, по какой причине происходит потеря веса Вселенной, а также, почему теряет свою массу и темная энергия. Гипотеза такого рода была создана давно ученым Яном Оортом, еще в 1932 году.


В последнее десятилетие прошлого столетия интенсивно создавались телескопы, усовершенствованные и позволяющие проводить четкое обследование космического пространства. Спутники, напичканные компьютерным оборудованием, позволяют современным ученым исследовать буквально каждый миллиметр Вселенной, и передавать через спутниковую систему данные прямиком в исследовательские центры различных государств.

Откуда взялось название

Большой Взрыв - с точки зрения наукиАвтором названия для теории Большого взрыва явился ее противник Альфред Хойл, английский физик. Именно он придумал фразу «Big Bang», но сделал это физик не чтобы возвысить суждение Леметра, а чтобы наоборот его унизить, объявив абсурдом, а не величайшим феноменом в области космологии, физики и астрономии.

Хронология событий

ГалактикаСовременные исследователи, имеющие достоверные сведения о состоянии положения дел во Вселенной, сводятся к единому мнению, согласно которому все создалось из точки.


стоянно увеличивающиеся бесконечная плотность и конечное время, непременно должны были иметь свое собственное начало в определенной точке. Когда произошло первоначальное расширение, согласно уже вышеупомянутой теории, Вселенная смогла пройти фазу охлаждения, ставшую соавтором создания субатомных частиц, а немного позднее и самых простых атомов. Спустя некоторое время, огромных размеров облака, состоящие из первоначальных древних элементов, благодаря исключительно лишь гравитации, стали формировать звезды, которые теперь каждой ночью может лицезреть абсолютно любой человек, и галактики, где, по мнению уфологов, могут находиться параллельные миры и сосредотачиваться высокоразвитые цивилизации инопланетных существ. Весь этот механизм, по предположению исследователей, запустился как раз 13,8 миллиардов лет назад: следовательно, данную отправную точку можно указывать в качестве возраста Вселенной. В ходе исследования огромного количества теоретической информации, проведения многочисленных экспериментов, которые базировались на привлечении ускорителей частиц и всевозможных высокоэнергетических состояний, обследования при помощи телескопа дальних потаенных углов космического пространства, была установлена хронологическая событийность, начавшаяся с момента Большого взрыва и приведшая Вселенную к современному виду, или как его иначе называют физики и астрономы — к «состоянию космической эволюции».

Космическое пространствоСреди ученых бытует мнение о том, что первоначальные периоды формирования космического пространства могли длиться от 10-43 до 10-11 секунды от взрыва; однако на этот счет однозначного мнения на сегодняшний день не существует. Стоит иметь в виду, что все известные современному обществу физические законы в далеком прошлом просто-напросто еще не существовали в полном наборе, который известен человечеству, следовательно, сам процесс формирования молодой Вселенной остается непонятным. Эту таинственность подкрепляет и тот факт, что до настоящего времени, включая также и его, ни в одном развитом государстве не был проведен ни один эксперимент, относящийся к исследованию тех видов энергии, которые существовали в момент создания безграничного космического пространства. В одном только сходятся мнения ученых мужей: некогда существовала точка, ставшая опорной, вот с нее-то и все началось.

Эпохальный период становления

Эпоха сингулярности1. Эпоха сингулярности (планковская). Ее принято считать первичной, в качестве раннего эволюционного периода Вселенной. Материя была сосредоточена в одной точке, имеющей свою температуру и бесконечную плотность. Ученые утверждают, что эта эпоха характерна для доминирования квантовых эффектов, принадлежащих гравитационному взаимодействию над физическими, причем ни одна физическая сила из всех существовавших в те далекие времена по своей силе не была идентична гравитации, то есть не была ей равна.


емя продолжительности планковской эры сосредотачивается в интервале от 0 до 10-43 секунды. Она получила такое название по причине того, что полноценно измерить ее протяженность смогло лишь планковское время. Этот временной интервал считается очень нестабильным, что в свою очередь тесным образом связано с экстремальной температурой и безграничной плотностью материи. Следом за эпохой сингулярности произошел период расширения, а вместе с ним и охлаждения, приведшие к формированию основных физических сил.

С периода с 10-43 до 10-3 секунды в безграничном пространстве происходит новое событие в виде столкновения переходных температур, это, в свою очередь, отображается на их состоянии. Бытует мнение, что фундаментальные силы, ныне главенствующие в современной космическом безграничном пространстве, в данный момент начали стремительно удаляться друг от друга. Следствием этого процесса стало формирование слабых гравитационных сил, такого состояния, как электромагнетизм, а вместе с тем слабых, наряду с сильными, ядерных взаимодействий.

С 10-36 до 10-32 секунды от Большого взрыва во Вселенной устанавливается очень низкая температура, равная 1028К, этот факт в свою очередь становится причиной разделения электромагнитных сил, что происходит в процессе сильного взаимодействия со слабым (ядерным). Эпоха инфляции2. Эпоха инфляции. С появлением на безграничных просторах Вселенной первых сил, названных учеными не иначе, как фундаментальными, начинается новая эпоха, длившаяся с 10-32 секунды (согласно планковскому времени) до абсолютно никому неизвестному времени.Огромное количество космологических моделей устанавливают, что в данный временной интервал Вселенная могла пребывать в состоянии бариогенезиса – очень высокая температура влияет на хаотичное движение частиц в пространственной среде, происходящее с запредельной скоростью.

Это время характерно для столкновения и отталкивания античастиц – разрушающихся пар частиц. Исследователи склонны считать, что именно тогда произошло доминирование материи над ее антиподом, антиматерией, что является на сегодняшний день характерной особенностью Вселенной, имеется в виду доминант. К моменту завершения эпохи инфляции Вселенная сформировалась на основе кварк-глюоновой плазмы и прочих элементарных частиц. Она стала постепенно остывать, а материя в свою очередь начала активное образование и соединение. Эпоха охлаждения3. Эпоха охлаждения. С момента понижения уровня плотности и температуры в самой Вселенной стали происходить существенные изменения каждой частицы – у них стала снижаться энергия. Состояние подобного рода закончилось лишь тогда, когда к своему современному виду пришли элементарные частицы, а вместе с ними и фундаментальные силы. Энергия частиц стала опускаться до тех параметров, которые на сегодняшний день удается получить исключительно лишь в рамках лабораторных условий, в ходе проведения многочисленных опытов и наряду с ними экспериментов.Ученые ни на секунду не сомневаются, что данный временной интервал существовал в истории формирования Вселенной. Они отмечают, что сразу же после Большого взрыва энергия частиц постепенно уменьшилась, в результате чего она приобрела значительные размеры. На 10-6 секунде барионы в виде протонов и нейтронов стали образовываться из глюонов и кварков. Вместе с этим появился диссонанс в форме преобладания кварков над антикварками, барионов над антибарионами. Вследствие понижения температуры началось прекращение выработки протонно-нейтронных пар и соответственно, их антиподов, протоны и нейтроны стали стремительно исчезать, а их античастицы и вовсе прекратили свое существование. Подобный процесс вновь произошел спустя некоторое время. Однако на этот раз действие коснулось позитронов и электронов.

Вследствие стремительного уничтожения частицы прекратили свое хаотичное движение, а энергетическую плотность, относящуюся к Вселенной, стали интенсивно заполнять фотоны.

С момента расширения безграничного пространства формируется процесс запуска нуклеосинтеза. Благодаря низкой температуре и понижению плотности энергии нейтрон и протон своим симбиозом создали первый в мире дейтерий (изотоп водорода), также они приняли непосредственное участие в формировании атомов гелия. Огромное количество протонов в свою очередь стали базой для создания ядра водорода.

Через 379 000 лет ядра водорода соединятся с электронами, вследствие чего появятся уже атомы все того же водорода. В данный момент времени происходит отделение радиации от материи, она отныне самостоятельно заполняет все вселенское пространство. Эта радиация получила название реликтового излучения, ее принято считать самым древнейшим источником света из всех существующих. Эпоха структуры4. Эпоха структуры. В течение последующего временного интервала, насчитывающего пару миллиардов лет, материя уже смогла распространиться по всей Вселенной, а ее наиболее плотные регионы стали активней притягиваться друг к другу, становясь плотнее. Вследствие такого действия начали возникать облака, состоящие из газа, галактики, звезды и прочие космические объекты, которые можно увидеть и сегодня. Данный период известен еще под одним названием, его принято именовать «Иерархической эпохой».Этот временной период связан с тем, что Вселенная удалось обрести определенную форму. Материя начала образовываться в разнообразные структуры, имеющие разнообразные размеры:
— звезды,
— галактики,
— планеты,
— галактические скопления и сверхскопления, разделенные между собой при помощи межгалактических перемычек и включающие в себя несколько галактик.

 

Прогнозы на будущее

Конец ВселеннойВследствие того, что Вселенная имеет собственную точку начала, у ученых периодически создаются гипотезы относительно того, что когда-нибудь появится и та точка, которая прекратит ее существование. Также физиков и астрономов интересует вопрос, касающийся расширения Вселенной всего из одной точки, они даже строят прогнозы на предмет того, что она может расширяться еще больше. Или же и вовсе однажды может произойти обратный процесс, в безграничном пространстве по неизвестным причинам может прекратить действовать экспансивная сила, вследствие чего может произойти обратный процесс, заключающийся в сжатии.В 1990-х годах в качестве основной модели развития Вселенной была принята теория Большого взрыва, именно тогда же примерно и были разработаны два основных пути дальнейшего существования космического безграничного пространства.

1. Большое сжатие. В один момент Вселенная может достигнуть максимального пика в виде огромного размера, а потом начнется ее разрушение. Подобный вариант развития станет возможным только в том случае, когда плотность массы Вселенной будет больше, чем ее критическая плотность.

2. В данном случае будет происходить иная картина действий: плотность приравняется или даже станет ниже критический. Итог – замедление расширения, которое никогда не остановится. Этот вариант был назван тепловой смертью Вселенной. Расширение будет длиться до тех времен, пока звездообразованиями не перестанет активно потребляться газ, находящийся внутри близлежащих галактик. В таком случае произойдет следующее: от энергии и материи просто-напросто прекратится передача от одного космического объекта к другому. Всех звезд, которые невооруженным взглядом можно лицезреть каждые вечер и ночь на небосводе, постигнет одна и та же печальная участь: они станут не чем иным, как белым карликом, черной дырой либо же нейтронной звездой. Черная дыраЧерные дыры всегда представляли неприятность не только для космологов. Новообразованные дыры будут соединяться с собой, образовывая себе подобные же объекты гораздо большего размера. Между тем показатель средней температуры в безграничном пространстве может достичь отметки в 0. Следствием данной ситуации станет абсолютное испарение черных дыр, которые напоследок начнут выдавать в окружающую среду излучение Хокигнга. Завершающим этапом в данном случае будет тепловая смерть.Современные ученые проводят огромное количество исследований, касающихся не только существования темной энергии, но и ее непосредственного влияния на расширение космического пространства. В ходе проведения своих исследований они в свою очередь установили, что расширение Вселенной происходит настолько быстрыми темпами, что скоро человечество даже не будет и знать, насколько безграничным на самом деле является безграничное пространство. Конечно же, по какому именно дальнейшему пути развития может пойти планета, умы ученых мужей даже и представить себе не могут. Они лишь прогнозируют результат, обосновывая свой выбор теми или иными критериями. Однако, многие из светил предрекают безграничному пространству такой конец, как тепловая смерть, считая его наиболее вероятным.

Также в научной среде бытует мнение, что все планеты, ядра атомов, атомы, материя и звезды будут в далеком будущем сами собой разрываться, что приведет к большому разрыву. Это еще один вариант гибели Вселенной, однако, он формируется на расширении.

Другие варианты

Возникновение ВселеннойКонечно же, теория Большого Взрыва единственной не является, о чем было не раз указано выше. Человечество на протяжении всего своего существования имело право на свою версию возникновения Вселенной.

1. В очень глубокой древности люди задумывались о том, в каком мире они живут и существуют. Еще не установилась религиозное мировоззрение, а человек уже задумывался над тем, как устроен мир, какое именно место он сам занимает в окружающем его пространстве.
Древние развитые народы связывали свою жизнь тесным образом с религиозными догмами. Кто, как не божество могло создать дерево, человека, огонь? А огда ему это все под силу, следовательно, весь мир тоже создан каким-нибудь богом. Жизнь и смертьЕсли сделать обзор жизни одной из самых древних цивилизации, проживающей некогда на территории Междуречья (современные земли Ирака, Ирана, Сирии, Турции), то можно на примере антагонистов добра и зла – Ахурамазды и Ахримана увидеть, что именно эти боги, согласно древним письменным источникам, являются непосредственными творцами Вселенной. Каждый древний народ связывал образование космического пространства с деятельностью какого-нибудь божества (чаще всего верховного).Великие мыслители древности пытались понять происхождение Вселенной, они понимали, что боги не имеют к ней абсолютно никакого отношения. Космологией занимался Аристотель, который пытался доказать, что Вселенная имеет собственную эволюцию. На Востоке всем известно имя врача Авиценны, но не только медицина довлела над его пытливым разумом. Авиценна был одним из первых исследователей, который попытался при помощи разума и собственной логики опровергнуть божественное образование Вселенной. Планета Земля2. Время неумолимо движется вперед, а вместе с ним происходит стремительное развитие человеческой мысли. Исследователи Средневековья (те люди, которые прятались от Святой Инквизиции) и Нового времени, идя наперекор авторитарной религиозной власти, доказали не только, что из себя представляет планета Земля, но и заложили методики астрологического исследования, а немного позже и астрофизиеского.Над вопросами космогонии ломали свои светлые головы многие философы, среди которых следует выделить француза Рене Декарта. Декарт предпринял попытку при помощи теории разобраться в происхождении небесных тел, объединив при этом все математические, физические и биологические знания, которыми обладал этот талантливый человек. Успехов он на своем поприще не добился. Бесконечная Вселенная3. Вплоть до начала XX века люди считали, что Вселенная четких границ в ни пространстве, ни во времени не имеет, да к тому же в добавок к этому является статичной и однородной.О том, что космическое пространство безгранично посмел высказаться Исаак Ньютон. Немецкий философ Эммануил Кант прислушался к его доводам и на основе ньютоновских рассуждений выдвинул собственную теорию, о том, что Вселенная не имеет своего времени и совсем не имеет начала. Все процессы, имевшие место быть во Вселенной, он относил к законам механики.

Свою теорию Кант развивал, подкрепив знаниями из биологии. Ученый говорил о том, что в просторах Вселенной может существовать огромное количество возможностей, которые дают жизнь биологическому продукту. Подобным утверждением позднее заинтересуется не менее знаменитый ученый – Чарльз Дарвин.

Кант создал свою теорию, опираясь на опыт исследователей-астрономов, являющихся практически его современниками. Она считалась единственной верной и непоколебимой вплоть до того момента, покуда не возникла теория Большого взрыва.
Теория относительности4. Автор знаменитой теории относительности Альберт Эйнштейн тоже не остался в стороне от проблематики сотворения Вселенной. В 1917 году он представил обществу свой проект.Эйнштейн также думал, что Вселенная стационарна, он стремился доказать, что космическое безграничное пространство не должно ни сжиматься, ни расширяться. Однако его собственные мысли шли наперекор его главному труду (теории относительности), согласно которому Вселенная одновременно у Эйнштейна и расширялась, и сжималась.

Ученый поспешил установить, что Вселенная является статической, это он обосновал тем, что космическая сила отталкивания влияет на уравновешивание притяжения звезд и тем самым прекращает движение небесных тел в пространстве.

У Эйнштейна Вселенная обладала конечными размерами, однако четких границ он вместе с этим не устанавливал: это становится возможным лишь в случае искривления пространства. Сотворение мира и человека5. Отдельной теорией сотворения Вселенной стоит Креационизм. Она в свою очередь основана на том, что человечество и Вселенная основаны творцом. Конечно же, речь идет о христианской догматике.Теория эта возникла в XIX веке, ее сторонники утверждали, что создание космического пространства записано в Ветхом Завете. В это время в единое научное течение складывались знания из области биологии, физики, астрономии. Теория эволюции Дарвина занимала весомое место в жизни общества. Вследствие этого наука пошла против религии: знания против божественной концепции сотворения мира. Креационизм стал своеобразным протестом против новшества. Консервативные христиане выступали против научных открытий. Креационизм и ЭволюцияКреационизм был известен публике в виде двух направлений:

  1. Младоземельный (буквалистский). Бог трудился над созданием мира ровно 6 дней, как это указано в Библии. Они утверждают, что мир был создан около 6 000 лет назад.

  2. Староземельный (метафорический). Описанные в Библии 6 дней – есть не что иначе, как метафора, которая была понятна исключительно лишь людям, жившим в глубокой древности. На самом деле такое христианское понятие, как «день» может не включать в себя установленные 24 часа, оно сосредоточено в неопределенном отрезке времени (то есть не имеющим фиксированных четких границ), который в свою очередь может исчисляться миллионами лет.

Староземельный креационизм принимает некоторые научные идеи и открытия, его последователи соглашаются с астрофизическим возрастом небесных тел, но существование теории эволюции вместе с естественным отбором они напрочь отрицают, утверждая, что только лишь Бог может оказывать влияние на появление и исчезновение биологических видов.

 

Итог

ВселеннаяИстория создания Вселенной на протяжении всего человеческого существования не раз претерпевала изменения, которые диктовались религиозными верованиями или научными исследованиями.На сегодняшний день существует одна версия, удовлетворяющая ученые умы. Теория Большого взрыва является наиболее удачным вариантом, точно описывающим, как именно происходило рождение безграничного пространства, какие эпохи оно проживало. На ее основе ученые прогнозируют дальнейшее развитие Вселенной.

Однако, как показывает предыдущий опыт, не всегда теория, даже если она и весьма популярна в человеческом обществе, верна. Наука на одном месте не стоит, она постоянно прогрессирует, находя все новые и новые источники пополнения знаний.

Не исключено, что однажды в научной среде появится очередной физик, космолог или астроном, который представит свою собственную теорию сотворения Вселенной, которая, быть может, окажется вернее, чем теория Большого взрыва.

Похожие статьи:

Источник: mostinfo.su

-1-728История освоения космоса — самый яркий пример торжества человеческого разума над непокорной материей в кратчайший срок. С того момента, как созданный руками человека объект впервые преодолел земное притяжение и развил достаточную скорость, чтобы выйти на орбиту Земли, прошло всего лишь чуть более пятидесяти лет — ничто по меркам истории! Большая часть населения планеты живо помнит времена, когда полёт на Луну считался чем-то из области фантастики, а мечтающих пронзить небесную высь признавали, в лучшем случае, неопасными для общества сумасшедшими. Сегодня же космические корабли не только «бороздят просторы», успешно маневрируя в условиях минимальной гравитации, но и доставляют на земную орбиту грузы, космонавтов и космических туристов. Более того — продолжительность полёта в космос ныне может составлять сколь угодно длительное время: вахта российских космонавтов на МКС, к примеру, длится по 6-7 месяцев. А ещё за прошедшие полвека человек успел походить по Луне и сфотографировать её тёмную сторону, осчастливил искусственными спутниками Марс, Юпитер, Сатурн и Меркурий, «узнал в лицо» отдалённые туманности с помощью телескопа «Хаббл» и всерьёз задумывается о колонизации Марса. И хотя вступить в контакт с инопланетянами и ангелами пока не удалось (во всяком случае, официально), не будем отчаиваться — ведь всё ещё только начинается!

Мечты о космосе и пробы пера

Впервые в реальность полёта к дальним мирам прогрессивное человечество поверило в конце 19 века. Именно тогда стало понятно, что если летательному аппарату придать нужную для преодоления гравитации скорость и сохранять её достаточное время, он сможет выйти за пределы земной атмосферы и закрепиться на орбите, подобно Луне, вращаясь вокруг Земли. Загвоздка была в двигателях. Существующие на тот момент экземпляры либо чрезвычайно мощно, но кратко «плевались» выбросами энергии, либо работали по принципу «ахнет, хряснет и пойдёт себе помаленьку». Первое больше подходило для бомб, второе — для телег. Вдобавок регулировать вектор тяги и тем самым влиять на траекторию движения аппарата было невозможно: вертикальный старт неизбежно вёл к её закруглению, и тело в результате валилось на землю, так и не достигнув космоса; горизонтальный же при таком выделении энергии грозил уничтожить вокруг всё живое (как если бы нынешнюю баллистическую ракету запустили плашмя). Наконец, в начале 20 века исследователи обратили внимание на ракетный двигатель, принцип действия которого был известен человечеству ещё с рубежа нашей эры: топливо сгорает в корпусе ракеты, одновременно облегчая её массу, а выделяемая энергия двигает ракету вперёд. Первую ракету, способную вывести объект за пределы земного притяжения, спроектировал Циолковский в 1903 году.

1304019078_1303818941_nasa_earth-1003

Вид на Землю с МКС

Первый искусственный спутник

28

Время шло, и хотя две мировые войны сильно замедлили процесс создания ракет для мирного использования, космический прогресс всё же не стоял на месте. Ключевой момент послевоенного времени — принятие так называемой пакетной схемы расположения ракет, применяемой в космонавтике и поныне. Её суть — в одновременном использовании нескольких ракет, размещённых симметрично по отношению к центру массы тела, которое требуется вывести на орбиту Земли. Таким образом обеспечивается мощная, устойчивая и равномерная тяга, достаточная, чтобы объект двигался с постоянной скоростью 7,9 км/с, необходимой для преодоления земного тяготения. И вот 4 октября 1957 года началась новая, а точнее первая, эра в освоении космоса — запуск первого искусственного спутника Земли, как всё гениальное названного просто «Спутник-1», с помощью ракеты Р-7, спроектированной под руководством Сергея Королёва. Силуэт Р-7, прародительницы всех последующих космических ракет, и сегодня узнаваем в суперсовременной ракете-носителе «Союз», успешно отправляющей на орбиту «грузовики» и «легковушки» с космонавтами и туристами на борту — те же четыре «ноги» пакетной схемы и красные сопла. Первый спутник был микроскопическим, чуть более полуметра в диаметре и весил всего 83 кг. Полный виток вокруг Земли он совершал за 96 минут. «Звёздная жизнь» железного пионера космонавтики продлилась три месяца, но за этот период он прошёл фантастический путь в 60 миллионов км!

Первые живые существа на орбите

belka-i-strelka

Успех первого запуска окрылял конструкторов, и перспектива отправить в космос живое существо и вернуть его целым и невредимым уже не казалась неосуществимой. Всего через месяц после запуска «Спутника-1» на борту второго искусственного спутника Земли на орбиту отправилось первое животное — собака Лайка. Цель у неё была почётная, но грустная — проверить выживаемость живых существ в условиях космического полёта. Более того, возвращение собаки не планировалось… Запуск и вывод спутника на орбиту прошли успешно, но после четырёх витков вокруг Земли из-за ошибки в расчётах температура внутри аппарата чрезмерно поднялась, и Лайка погибла. Сам же спутник вращался в космосе ещё 5 месяцев, а затем потерял скорость и сгорел в плотных слоях атмосферы. Первыми лохматыми космонавтами, по возвращении приветствовавшими своих «отправителей» радостным лаем, стали хрестоматийные Белка и Стрелка, отправившиеся покорять небесные просторы на пятом спутнике в августе 1960 г. Их полёт длился чуть более суток, и за это время собаки успели облететь планету 17 раз. Всё это время за ними наблюдали с экранов мониторов в Центре управления полётами — кстати, именно по причине контрастности были выбраны белые собаки — ведь изображение тогда было чёрно-белым. По итогам запуска также был доработан и окончательно утверждён сам космический корабль — всего через 8 месяцев в аналогичном аппарате в космос отправится первый человек.

Помимо собак и до, и после 1961 г в космосе побывали обезьяны (макаки, беличьи обезьяны и шимпанзе), кошки, черепахи, а также всякая мелочь – мухи, жуки и т. д.

В этот же период СССР запустил первый искусственный спутник Солнца, станция «Луна-2» сумела мягко прилуниться на поверхность планеты, а также были получены первые фотографии невидимой с Земли стороны Луны.

День 12 апреля 1961 г. разделил историю освоения космических далей на два периода — «когда человек мечтал о звёздах» и «с тех пор, как человек покорил космос».

Человек в космосе

День 12 апреля 1961 г. разделил историю освоения космических далей на два периода — «когда человек мечтал о звёздах» и «с тех пор, как человек покорил космос». В 9:07 по московскому времени со стартовой площадки № 1 космодрома Байконур был запущен космический корабль «Восток-1» с первым в мире космонавтом на борту — Юрием Гагариным. Совершив один виток вокруг Земли и проделав путь в 41 тыс. км, спустя 90 минут после старта, Гагарин приземлился под Саратовом, став на долгие годы самым знаменитым, почитаемым и любимым человеком планеты. Его «поехали!» и «всё видно очень ясно — космос чёрный — земля голубая» вошли в список наиболее известных фраз человечества, его открытая улыбка, непринуждённость и радушие растопили сердца людей по всему миру. Первый полёт человека в космос управлялся с Земли, сам Гагарин являлся скорее пассажиром, хотя и великолепно подготовленным. Нужно отметить, что условия полёта были далеки от тех, что предлагаются ныне космическим туристам: Гагарин испытывал восьми-десятикратные перегрузки, был период, когда корабль буквально кувыркался, а за иллюминаторами горела обшивка и плавился металл. В течение полёта произошло несколько сбоев в различных системах корабля, но к счастью, космонавт не пострадал.

ussr_6

С тех пор каждое 12 апреля мы отмечаем День космонавтики.

Вслед за полётом Гагарина знаменательные вехи в истории освоения космоса посыпались одна за другой: был совершён первый в мире групповой космический полёт, затем в космос отправилась первая женщина-космонавт Валентина Терешкова (1963 г), состоялся полёт первого многоместного космического корабля, Алексей Леонов стал первым человеком, совершившим выход в открытый космос (1965 г) — и все эти грандиозные события — целиком заслуга отечественной космонавтики. Наконец, 21 июля 1969 г состоялась первая высадка человека на Луну: американец Нил Армстронг сделал тот самый «маленький-большой шаг».

Лучший вид в Солнечной системе

Космонавтика — сегодня, завтра и всегда

Сегодня путешествия в космос воспринимаются как нечто само собой разумеющееся. Над нами летают сотни спутников и тысячи прочих нужных и бесполезных объектов, за секунды до восхода солнца из окна спальни можно увидеть вспыхнувшие в ещё невидимых с земли лучах плоскости солнечных батарей Международной космической станции, космические туристы с завидной регулярностью отправляются «бороздить просторы» (тем самым воплощая в реальность ерническую фразу «если очень захотеть, можно в космос полететь») и вот-вот начнётся эра коммерческих суборбитальных полётов с чуть ли не двумя отправлениями ежедневно. Освоение космоса управляемыми аппаратами и вовсе поражает всякое воображение: тут и снимки давно взорвавшихся звёзд, и HD-изображения дальних галактик, и веские доказательства возможности существования жизни на других планетах. Корпорации-миллиардеры уже согласовывают планы по строительству на орбите Земли космических отелей, да и проекты колонизации соседних нам планет давно не кажутся отрывком из романов Азимова или Кларка. Очевидно одно: однажды преодолев земное тяготение, человечество будет вновь и вновь стремиться ввысь, к бесконечным мирам звёзд, галактик и вселенных. Хочется пожелать только, чтобы нас никогда не покидала красота ночного неба и мириадов мерцающих звёзд, по-прежнему манящих, таинственных и прекрасных, как в первые дни творения.

Космос раскрывает свои тайны

Planet-x-planeta-x

Академик Благонравов остановился на некоторых новых достижениях советской науки: в области физики космоса.

Начиная со 2 января 1959 года, при каждом полете советских космических ракет проводилось исследование излучений на больших расстояниях от Земли. Детальному изучению подвергся открытый советскими учеными так называемый внешний радиационный пояс Земли. Изучение состава частиц радиационных поясов с помощью различных сцинтилляционных и газоразрядных счетчиков, находившихся на спутниках и космических ракетах, позволило установить, что во внешнем поясе присутствуют электроны значительных энергий до миллиона электронвольт и даже выше. При торможении в оболочках космических кораблей они создают интенсивное пронизывающее рентгеновское излучение. При полете автоматической межпланетной станции в сторону Венеры была определена средняя энергия этого рентгеновского излучения на расстояниях от 30 до 40 тысяч километров от центра Земли, составляющая около 130 килоэлектронвольт. Эта величина мало изменялась с изменением расстояния, что позволяет судить о постоянном энергетическом спектре электронов в этой области.

Уже первые исследования показали нестабильность внешнего пояса радиации, перемещения максимума интенсивности, связанные с магнитными бурями, вызываемыми солнечными корпускулярными потоками. Последние измерения с автоматической межпланетной станции, запущенной в сторону Венеры, показали, что хотя ближе к Земле происходят изменения интенсивности, но наружная граница внешнего пояса при спокойном состоянии магнитного поля практически на протяжении двух лет оставалась постоянной как по интенсивности, так и по пространственному расположению. Исследования последних лет позволили также построить модель ионизованной газовой оболочки Земли на основе экспериментальных данных для периода, близкого к максимуму солнечной деятельности. Наши исследования показали, что на высотах меньше тысячи километров основную роль играют ионы атомарного кислорода, а начиная с высот, лежащих между одной и двумя тысячами километров, в ионосфере превалируют ионы водорода. Протяженность самой внешней области ионизованной газовой оболочки Земли, так называемой водородной «короны», весьма велика.

Обработка результатов измерений, проведенных на первых советских космических ракетах, показала, что на высотах примерно от 50 до 75 тысяч километров за пределами внешнего радиационного пояса обнаружены потоки электронов с энергиями, превышающими 200 электронвольт. Это позволило предположить существование третьего самого внешнего пояса заряженных частиц с большой интенсивностью потоков, но меньшей энергией. После пуска в марте 1960 года американской космической ракеты «Пионер V» были получены данные, которые подтвердили наши предположения о существовании третьего пояса заряженных частиц. Этот пояс, по-видимому, образуется в результате проникновения солнечных корпускулярных потоков в периферийные области магнитного поля Земли.

Astr03

Были получены новые данные в отношении пространственного расположения радиационных поясов Земли, обнаружена область повышенной радиации в южной части Атлантического океана, что связано с соответствующей магнитной земной аномалией. В этом районе нижняя граница внутреннего радиационного пояса Земли опускается до 250 – 300 километров от поверхности Земли.

Полеты второго и третьего кораблей-спутников дали новые сведения, которые позволили составить карту распределения радиации по интенсивности ионов над поверхностью земного шара. (Докладчик демонстрирует эту карту перед слушателями).

Впервые токи, создаваемые положительными ионами, входящими в состав солнечного корпускулярного излучения, были зарегистрированы вне магнитного поля Земли на расстояниях порядка сотен тысяч километров от Земли, при помощи трехэлектродных ловушек заряженных частиц, установленных на советских космических ракетах. В частности, на автоматической межпланетной станции, запущенной по направлению к Венере, были установлены ловушки, ориентированные на Солнце, одна из которых предназначалась для регистрации солнечного корпускулярного излучения. 17 февраля, во время сеанса связи с автоматической межпланетной станцией, было зарегистрировано прохождение ее через значительный поток корпускул (с плотностью порядка 109 частиц на квадратный сантиметр в секунду). Это наблюдение совпало с наблюдением магнитной бури. Такие опыты открывают пути к установлению количественных соотношений между геомагнитными возмущениями и интенсивностью солнечных корпускулярных потоков. На втором и третьем кораблях-спутниках была изучена в количественном выражении радиационная опасность, вызываемая космическими излучениями за пределами земной атмосферы. Эти же спутники были использованы для исследования химического состава первичного космического излучения. Новая аппаратура, установленная на кораблях-спутниках, включала фотоэмульсионный прибор, предназначенный для экспонирования и проявления непосредственно на борту корабля стопки толстослойных эмульсий. Полученные результаты имеют большую научную ценность для выяснения биологического влияния космических излучений.

Технические проблемы полета

Далее докладчик остановился на ряде существенных проблем, обеспечивших организацию полета человека в космос. Прежде всего надо было решить вопрос о методах выведения на орбиту тяжелого корабля, для чего нужно было иметь мощную ракетную технику. Такая техника у нас создана. Однако недостаточно было сообщить кораблю скорость, превышающую первую космическую. Необходима была еще и высокая точность выведения корабля на заранее рассчитанную орбиту.

Следует иметь в виду, что требования к точности движения по орбите в дальнейшем будут повышаться. Это потребует проведения коррекции движения с помощью специальных двигательных установок. К проблеме коррекции траекторий примыкает проблема маневра направленного изменения траектории полета космического аппарата. Маневры могут осуществляться с помощью импульсов, сообщаемых реактивным двигателем на отдельных специально выбранных участках траекторий, либо с помощью тяги, действующей длительное время, для создания которой применены двигатели электрореактивного типа (ионные, плазменные).

В качестве примеров маневра можно указать переход на более высоко лежащую орбиту, переход на орбиту, входящую в плотные слои атмосферы для торможения и посадки в заданном районе. Маневр последнего типа применялся при посадке советских кораблей-спутников с собаками на борту и при посадке корабля-спутника «Восток».

Для осуществления маневра, выполнения ряда измерений и для других целей необходимо обеспечить стабилизацию корабля-спутника и его ориентацию в пространстве, сохраняемую в течение определенного промежутка времени или изменяемую по заданной программе.

Переходя к проблеме возвращения на Землю, докладчик остановился на следующих вопросах: торможение скорости, защита от нагрева при движении в плотных слоях атмосферы, обеспечение приземления в заданном районе.

Торможение космического аппарата, необходимое для гашения космической скорости, может быть осуществлено либо с помощью специальной мощной двигательной установки, либо посредством торможения аппарата в атмосфере. Первый из этих способов требует весьма больших запасов веса. Использование сопротивления атмосферы для торможения позволяет обойтись сравнительно небольшими дополнительными весами.

Комплекс проблем, связанных с разработкой защитных покрытий при торможении аппарата в атмосфере и организацией процесса входа с приемлемыми для организма человека перегрузками, представляет собой сложную научно-техническую задачу.

Бурное развитие космической медицины поставило на повестку дня вопрос о биологической телеметрии как об основном средстве врачебного контроля и научного медицинского исследования во время космического полета. Использование радиотелеметрии накладывает специфический отпечаток на методику и технику медико-биологических исследований, поскольку к аппаратуре, размещаемой на борту космических кораблей, предъявляется ряд специальных требований. Эта аппаратура должна иметь очень небольшой вес, малые габариты. Она должна быть рассчитана на минимальное энергопотребление. Кроме того, бортовая аппаратура должна устойчиво работать на активном участке и при спуске, когда действуют вибрации и перегрузки.

Датчики, предназначенные для преобразования физиологических параметров в электрические сигналы, должны быть миниатюрными, рассчитанными на длительную работу. Они не должны создавать неудобств космонавту.

Широкое применение радиотелеметрии в космической медицине заставляет исследователей обратить серьезное внимание на конструирование такой аппаратуры, а также на согласование объема необходимой для передачи информации с емкостью радиоканалов. Поскольку новые задачи, стоящие перед космической медициной, приведут к дальнейшему углублению исследований, к необходимости значительного увеличения количества регистрируемых параметров, потребуется внедрение систем, запоминающих информации, и методов кодирования.

В заключение докладчик остановился на вопросе о том, почему для первого космического путешествия был выбран именно вариант облета Земли по орбите. Этот вариант представлял собою решительный шаг к завоеванию космического пространства. Им обеспечивалось исследование вопроса о влиянии длительности полета на человека, решалась задача управляемого полета, задача управления спуском, вхождения в плотные слои атмосферы и благополучного возвращения на Землю. По сравнению с этим полет, осуществленный недавно в США, представляется малоценным. Он мог иметь значение как промежуточный вариант для проверки состояния человека при этапе набора скорости, при перегрузках во время спуска; но после полета Ю. Гагарина в такой проверке уже не было надобности. В этом варианте эксперимента безусловно преобладал элемент сенсации. Единственную ценность этого полета можно видеть в проверке действия разработанных систем, обеспечивающих вхождение в атмосферу и приземление, но, как мы видели, проверка подобных систем, разработанных у нас в Советском Союзе для более сложных условий, была надежно осуществлена еще ранее первого космического полета человека. Таким образом, ни в какое сравнение не могут быть поставлены достижения, полученные у нас 12 апреля 1961 г., с тем, что до настоящего времени оказалось достигнуто в США.

И как бы ни старались, говорит академик, враждебно настроенные по отношению к Советскому Союзу люди за рубежом своими измышлениями умалить успехи нашей науки и техники, весь мир оценивает эти успехи должным образом и видит, насколько вырвалась наша страна вперед по пути технического прогресса. Я лично был свидетелем того восторга и восхищения, которые были вызваны известием об историческом полете нашего первого космонавта среди широких масс итальянского народа.

Полет прошел исключительно успешно

51594012

Доклад о биологических проблемах космических полетов сделал академик Н. М. Сисакян. Он охарактеризовал основные этапы развития космической биологии и подвел некоторые итоги научных биологических исследований, связанных с космическими полетами.

Докладчик привел медико-биологические характеристики полета Ю. А. Гагарина. В кабине поддерживалось барометрическое давление в пределах 750 – 770 миллиметров ртутного столба, температура воздуха – 19 – 22 градуса Цельсия, относительная влажность – 62 – 71 процент.

В предстартовом периоде, примерно за 30 минут до старта космического корабля, частота сердечных сокращений составила 66 в минуту, частота дыхания – 24. За три минуты до старта некоторое эмоциональное напряжение проявилось в увеличении частоты пульса до 109 ударов в минуту, дыхание продолжало оставаться ровным и спокойным.

В момент старта корабля и постепенного набора скорости частота сердцебиения возросла до 140 – 158 в минуту, частота дыхания составляла 20 – 26. Изменения физиологических показателей на активном участке полета, по данным телеметрической записи электрокардиограмм и пнеймограмм, были в допустимых пределах. К концу активного участка частота сердечных сокращений составила уже 109, а дыхания – 18 в минуту. Иными словами, эти показатели достигли значений, характерных для ближайшего к старту момента.

При переходе к невесомости и полете в этом состоянии показатели сердечно-сосудистой и дыхательной систем последовательно приближались к исходным значениям. Так, уже на десятой минуте невесомости частота пульса достигла 97 ударов в минуту, дыхания – 22. Работоспособность не нарушилась, движения сохранили координацию и необходимую точность.

На участке спуска, при торможении аппарата, когда вновь возникали перегрузки, были отмечены кратковременные, быстро преходящие периоды учащения дыхания. Однако уже при подходе к Земле дыхание стало ровным, спокойным, с частотой около 16 в минуту.

Через три часа после приземления частота сердечных сокращений составляла 68, дыхание – 20 в минуту, т. е. величины, характерные для спокойного, нормального состояния Ю. А. Гагарина.

Все это свидетельствует о том, что полет прошел исключительно успешно, самочувствие и общее состояние космонавта на всех участках полета было удовлетворительным. Системы жизнеобеспечения работали нормально.

В заключение докладчик остановился на важнейших очередных проблемах космической биологии.

Источник: kosmik2016.wordpress.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.