Кротовые норы в космосе доступным языком


Звездная вселенная таит в себе множество загадок. Согласно общей теории относительности (ОТО), созданной Эйнштейном, мы живем в четырехмерном пространстве-времени. Оно искривлено, а гравитация, знакомая всем нам, является проявлением этого свойства. Материя искривляет, «прогибает» пространство вокруг себя, и тем больше, чем она плотнее. Космос, пространство и время — все это очень интересные темы. Прочитав эту статью, вы наверняка узнаете что-то новое о них.

Идея кривизны

Множество других теорий тяготения, которых существует сегодня целые сотни, в деталях отличается от ОТО. Однако все эти астрономические гипотезы сохраняют основное – идею кривизны. Если пространство кривое, то можно предположить, что оно могло принять, например, форму трубы, соединяющей области, которые разделены множеством световых лет. А возможно, даже эпохи, далекие друг от друга. Ведь мы ведем речь не о пространстве, привычном нам, а о пространстве-времени, когда рассматриваем космос. Дыра в нем может появиться лишь при определенных условиях. Предлагаем вам поближе познакомиться с таким интересным явлением, как кротовые норы.

Первые идеи о кротовых норах


Далекий космос и его загадки манят к себе. Мысли об искривлении появились сразу же после того, как была опубликована ОТО. Л. Фламм, австрийский физик, уже в 1916 году говорил о том, что пространственная геометрия может существовать в виде некоей норы, которая соединяет два мира. Математик Н. Розен и А. Эйнштейн в 1935 году заметили, что простейшие решения уравнений в рамках ОТО, описывающие изолированные электрически заряженные или нейтральные источники, создающие гравитационное поля, обладают пространственной структурой «моста». То есть они соединяют две вселенные, два почти плоских и одинаковых пространства-времени.

Позднее эти пространственные структуры стали именоваться «кротовыми норами», что является довольно вольным переводом с английского языка слова wormhole. Более близкий его перевод – «червоточина» (в космосе). Розен и Эйнштейн даже не исключали возможности использования этих «мостов» для описания с их помощью элементарных частиц. Действительно, в этом случае частица является сугубо пространственным образованием. Следовательно, необходимости моделировать источник заряда или массы специально не появится. А удаленный внешний наблюдатель в случае, если кротовая нора имеет микроскопические размеры, видит лишь точечный источник с зарядом и массой при нахождении в одном из этих пространств.

«Мосты» Эйнштейна-Розена


С одной стороны в нору входят электрические силовые линии, а с другой они выходят, не заканчиваясь и не начинаясь нигде. Дж. Уилер, американский физик, по этому поводу сказал, что получается «заряд без заряда» и «масса без массы». Вовсе не обязательно в этом случае считать, что мост служит для соединения двух разных вселенных. Не менее уместным будет и предположение о том, что у кротовой норы оба «устья» выходят в одинаковую вселенную, однако в разные времена и в разных ее точках. Получается что-то, напоминающее пустотелую «ручку», если ее пришить к практически плоскому привычному миру. Силовые линии входят в устье, которое можно понимать как отрицательный заряд (допустим, электрон). Устье, из которого они выходят, имеет положительный заряд (позитрон). Что же касается масс, они с обеих сторон будут одинаковыми.

Условия образования «мостов» Эйнштейна-Розена

Эта картина, при всей своей привлекательности, не получила распространение в физике элементарных частиц, на что было множество причин. Нелегко приписать «мостам» Эйнштейна-Розена квантовые свойства, без которых в микромире не обойтись. Такой «мост» и вовсе не образуется при известных значениях зарядов и масс частиц (протонов или электронов). «Электрическое» решение вместо этого предсказывает «голую» сингулярность, то есть точку, где электрическое поле и кривизна пространства делаются бесконечными. В таких точках понятие пространства-времени даже в случае искривления теряет смысл, так как невозможно решать уравнения, имеющие бесконечное множество слагаемых.

Когда не работает ОТО?


Сама по себе ОТО определенно заявляет, когда именно она прекращает работать. На горловине, в наиболее узком месте «моста», наблюдается нарушение гладкости соединения. И оно, следует сказать, достаточно нетривиально. С позиции удаленного наблюдателя на этой горловине останавливается время. То, что Розен и Эйнштейн считали горловиной, в настоящее время определяется как горизонт событий черной дыры (заряженной или нейтральной). Лучи или частицы с разных сторон «моста» попадают на различные «участки» горизонта. А между левой и правой его частями, условно говоря, находится нестатическая область. Для того чтобы пройти область, нельзя не преодолеть ее.

Невозможность пройти через черную дыру

Космический корабль, который приближается к горизонту довольно крупной относительно него черной дыры, как будто застывает навеки. Все реже и реже доходят сигналы от него… Напротив, горизонт по корабельным часам достигается за конечное время. Когда корабль (луч света или частица) минует его, он вскоре упрется в сингулярность. Это место, где кривизна делается бесконечной. В сингулярности (еще на подходе к ней) протяженное тело неизбежно будет разорвано и раздавлено. Такова реальность устройства черной дыры.

Дальнейшие исследования


В 1916-17 гг. были получены решения Райснера-Нордстрема и Шварцшильда. В них сферически описываются симметричные электрически заряженные и нейтральные черные дыры. Однако физики смогли до конца разобраться в непростой геометрии данных пространств только на рубеже 1950-60-х годов. Именно тогда Д. А. Уилер, известный благодаря своим работам в теории гравитации и ядерной физике, предложил термины «кротовая нора» и «черная дыра». Выяснилось, что в пространствах Райснера-Нордстрема и Шварцшильда действительно существуют кротовые норы в космосе. Они полностью не видны удаленному наблюдателю, как и черные дыры. И, подобно им, кротовые норы в космосе вечны. А вот если путешественник проникнет за горизонт, они схлопываются настолько быстро, что через них не сможет пролететь ни луч света, ни массивная частица, а не то что корабль. Чтобы пролететь к другому устью, минуя сингулярность, нужно двигаться быстрее света. В настоящее время физики считают, что сверхновые скорости перемещения энергии и материи принципиально невозможны.

Черные дыры Шварцшильда и Райснера-Нордстрема

Черная дыра Шварцшильда может считаться непроходимой кротовой норой. Что касается черной дыры Райснера-Нордстрема, она устроена несколько сложнее, однако также непроходима. Тем не менее придумать и описать четырехмерные кротовые норы в космосе, которые можно было бы пройти, не так уж сложно.


оит лишь подобрать необходимый вид метрики. Метрический тензор, или метрика, — набор величин, используя который, можно вычислить четырехмерные интервалы, существующие между точками-событиями. Этот набор величин полностью характеризует также и поле тяготения, и геометрию пространства-времени. Геометрически проходимые кротовые норы в космосе даже проще, нежели черные дыры. В них нет горизонтов, которые ведут к катаклизмам с ходом времени. В различных точках время может идти а разном темпе, однако оно не должно при этом бесконечно останавливаться или ускоряться.

Два направления исследования кротовых нор

Природа поставила барьер на пути появления кротовых нор. Однако человек устроен так, что если находится препятствие, всегда будут желающие его преодолеть. И ученые не исключение. Труды теоретиков, которые занимаются исследованием кротовых нор, условно можно разделить на два направления, дополняющих друг друга. Первое занимается рассмотрением их следствий, заранее предполагая то, что кротовые норы действительно существуют. Представители второго направления пытаются понять, из чего и как они могут появиться, какие условия необходимы для их возникновения. Работ этого направления больше, чем первого и, пожалуй, они более интересны. К данному направлению можно отнести поиск моделей кротовых нор, а также исследование их свойств.

Достижения российских физиков

Как выяснилось, свойства материи, являющейся материалом для строительства кротовых нор, могут реализоваться за счет поляризации вакуума квантовых полей.


ссийские физики Сергей Сушков и Аркадий Попов совместно с испанским исследователем Давидом Хохбергом, а также Сергей Красников недавно пришли к этому выводу. Вакуум в этом случае не является пустотой. Это квантовое состояние, характеризующееся наименьшей энергией, то есть поле, в котором отсутствуют реальные частицы. В этом поле постоянно возникают пары частиц «виртуальных», исчезающие до того, как их обнаруживают приборы, однако оставляющие свой след в виде тензора энергии, то есть импульса, характеризующегося необычными свойствами. Несмотря на то что квантовые свойства материи в основном проявляются в микромире, кротовые норы, рождаемые ими, при некоторых условиях способны достигать значительных размеров. Одна из статей Красникова, кстати, называется «Угроза кротовых нор».

Вопрос философии

Если кротовые норы когда-нибудь все-таки удастся построить или обнаружить, область философии, связанная с интерпретацией науки, столкнется с новыми задачами и, нужно сказать, весьма непростыми. При всей, казалось бы, абсурдности временных петель и нелегких проблемах, касающихся причинности, данная область науки, вероятно, когда-нибудь с этим разберется. Так же, как разобрались в свое время с проблемами квантовой механики и созданной Эйнштейном теории относительности. Космос, пространство и время — все эти вопросы во все века интересовали людей и, видимо, будут интересовать нас всегда. Познать их полностью едва ли удастся. Изучение космоса вряд ли когда-либо будет завершено.

Источник: FB.ru


Кротовые норы в космосе доступным языком

Все хотят иметь личную червоточину. В том смысле, что кто захочет путешествовать по вселенной обычным способом, когда банальный полет от одной звезды до другой может занять тысячи и десятки тысяч лет? Гораздо интереснее, если вы можете заскочить в ближайшее отверстие кротовой норы, совершить небольшую прогулку в ней и оказаться в каком-нибудь экзотическом отдаленном уголке вселенной.

Однако есть одна небольшая техническая трудность: червоточины, которые являются настолько сильными изгибами пространства-времени, что образуют короткий туннель между двумя точками вселенной, катастрофически нестабильны. Например, если вы пошлете в кротовую нору фотон, то она разрушится быстрее, чем он по ней пролетит, то есть быстрее скорости света.

Но недавняя статья, опубликованная в журнале arXiv 29 июля, показала способ построить почти устойчивую червоточину, которая, конечно, разрушается, но достаточно медленно, что позволяет отправлять через нее сообщения — и, возможно, даже вещи — прежде, чем она коллапсирует. Все, что вам нужно, это пара черных дыр и несколько бесконечно длинных космических струн. 

Проще простого.


Кротовые норы в космосе доступным языком
Принцип работы червоточины: зачем сто лет лететь по обычному (красному пути), если можно добраться до нужной точки за секунду через кротовую нору (зеленый путь).

Проблемы создания кротовой норы

В принципе, построить червоточину довольно просто. Согласно общей теории относительности Эйнштейна, масса и энергия деформируют ткань пространства-времени. И определенная особая конфигурация материи и энергии позволяет сформировать туннель — максимально короткий путь между двумя удаленными частями вселенной.

К сожалению, даже на бумаге эти червоточины фантастически нестабильны. Всего один фотон, проходящий через червоточину, запускает катастрофический каскад, который разрывает ее. Тем не менее, некоторое количество материи с отрицательной массой может противодействовать дестабилизирующему воздействию обычной материи, пытающейся пройти через червоточину, делая ее проходимой.

Есть, правда, одна загвоздка — вещества с отрицательной массой не существует, поэтому нам нужен запасной план.

Давайте начнем с самой кротовой норы. Нам нужен вход и выход. Теоретически, возможно соединить вместе черную дыру (область пространства, из которой ничто не может уйти) с белой дырой (теоретическая область пространства, куда ничто не может войти). Когда эти два необычных космических объекта объединяются, они образуют совершенно новую структуру: червоточину. Таким образом, вы можете прыгнуть в любой конец этого туннеля, и вместо того, чтобы пугать людей, сбрасывая книги с бесконечных полок в черной дыре, вы без всякого вреда для себя вылетите с другой стороны.


Правда, белых дыр тоже не существует. Становится все сложнее, не правда ли?

Зарядить черные дыры!

Кротовые норы в космосе доступным языком
Вот так теоретически выглядит один из видов червоточин, мост Эйнштейна-Розена: наблюдатель видит свет из другой части вселенной внутри черной дыры.

Поскольку белых дыр не существует, нам нужен запасной план для запасного плана. К счастью, умные математики подсказывают нам возможное решение: заряженная черная дыра. Черные дыры могут нести электрический заряд — да, при естественном формировании заряда они не приобретают, но мы используем то, что можем получить. Внутри любой черной дыры находится странное место с так называемой гравитационной сингулярностью: это, пожалуй, самая необычная область во вселенной, в которой не работают большинство базовых физических теорий, а величины, описывающие гравитационное поле, становится или бесконечно большими, или неопределенными. И если у обычной черной дыры эта область — вообще говоря точка в ее центре, то у заряженной она может быть искажена, а у двух противоположно заряженных черных дыр они и вовсе могут соединяться мостом.


Вуаля: мы получили червоточину, используя только то, что действительно может существовать.

Но у этой кротовой норы, созданной с помощью заряженных черных дыр, есть две проблемы. Во-первых, она все еще нестабильна, и если что-то или кто-то на самом деле попытается ее использовать, то она развалится. Вторая проблема заключается в том, что две противоположно заряженные черные дыры будут притягиваться друг к другу как гравитационными, так и электрическими силами, и если они сольются, то вы просто получите одну большую нейтрально заряженную и совершенно бесполезную черную дыру.

Игра на космических струнах

Таким образом, чтобы все это работало, нам нужно убедиться, что две заряженные черные дыры находятся в безопасности, достаточно далеко друг от друга, и при этом туннель червоточины может оставаться открытым. Потенциальное решение этой новой задачи — космические струны.

Космические струны — это теоретические дефекты в ткани пространства-времени, похожие на трещины, которые образуются при замерзании льда. Эти космические остатки образовались в первые доли секунды после Большого взрыва. Это действительно экзотические объекты, не шире протона, но всего дюйм их длины перевешивает гору Эверест. Вы никогда не захотите встретиться с ними, ибо они разрежут вас пополам, как космический световой меч, но вам не нужно сильно беспокоиться, поскольку мы даже не уверены, что они существуют, и никогда не видели их во вселенной.

Тем не менее, нет никаких причин, по которым они не могут существовать, так что мы не сильно лукавим, используя их для создания устойчивых кротовых нор.

Кротовые норы в космосе доступным языком
Бесконечный провал на схеме и есть гравитационная сингулярность.

Когда дело доходит до червоточин, то у космических струн есть одно очень полезное свойство: огромная инертность. Другими словами, им действительно не нравится, когда их толкают. Если вы пронизываете червоточину космической струной и позволяете ей проходить вдоль внешних краев черных дыр, то натяжение струны мешает им притягиваться друг к другу. Говоря простым языком, космические струны тут выступают как стальные тросы, которые крепятся к берегам и удерживают мост от падения.

Наращиваем стабильность

Одна космическая струна решает одну из проблем — удерживает черные дыры в определенных местах, что позволяет входу и выходу из кротовой норы быть открытыми. Но она не предотвращает разрушение самой червоточины, если вы действительно решите ее использовать. Итак, давайте добавим еще одну космическую струну, также пронизывающую кротовую нору, но при этом проходящую и через нормальное пространство между этими двумя черными дырами, образуя своеобразную петлю.

Когда космические струны замыкаются в петлю, они, теоретически, начинают сильно вибрировать. Эти вибрации перемешивают саму ткань пространства-времени вокруг них, и при правильной настройке вибрации могут привести к тому, что энергия пространства в их окрестностях станет отрицательной, эффективно действуя как отрицательная масса внутри червоточины, потенциально стабилизируя ее.

Это не идеальное решение: в конце концов, внутренние вибрации космических струн — те самые, которые могут держать червоточину открытой — вытягивают энергию и, следовательно, массу из струны, делая ее все тоньше и тоньше. По сути, с течением времени используемая таким образом космическая струна исчезнет, что приведет к полному разрушению кротовой норы. Но все же червоточина, стабилизированная таким образом, может существовать достаточно долго, чтобы передавать через нее сообщения или даже объекты.

Но сначала нам нужно найти несколько космических струн и зарядить парочку черных дыр.

Источник: www.iguides.ru

Хотите уехать? Очень далеко? Такая возможность есть. Может быть.

В научной фантастике кротовые норы (они же кротовины, червоточины), представляющие собой пространственно-временные тоннели, давно уже стали предпочтительным средством перемещения во Вселенной. В фильме «Интерстеллар» режиссера Кристофера Нолана (Christopher Nolan), снятом в сотрудничестве с физиком из Калифорнийского технологического института и нобелевским лауреатом Кипом Торном (Kip Thorne), астронавты через кротовую нору летят из Солнечной системы в другую галактику, чтобы найти замену нашей умирающей Земле.

Поэтому я был заинтригован, когда пара физиков недавно выступила с предположением о том, что можно определить, существует ли в центре нашей галактики такая космическая станция метро. Ну, это где-то там, за пылевыми облаками созвездия Стрельца, где окутанная тайной и безудержным воображением скрывается гигантская черная дыра — этакая невидимая космическая громадина в четыре миллиона раз массивнее Солнца.

Такие кротовые норы стали еще одним предсказанием Эйнштейна из его общей теории относительности, которая уже дала нам такие чудеса как расширяющаяся Вселенная и черные дыры — объекты настолько плотные, что они поглощают свет. Есть одна простая версия кротовой норы, названная мостом Эйнштейна — Розена. Она состоит из пары черных дыр, сросшихся своими задними частями. Каждая из таких дыр раскрывается в пространство собственной вселенной (или вселенных), а соединяются они «горлышком», или кротовой норой.

© CC0 / Public Domain, NASA/JPL-Caltech | Перейти в фотобанк
Черная дыра, видение художника

Но никто не знает, существуют ли кротовые норы на самом деле. Если кротовины существуют, они не позволят вам никуда перебраться и даже отправить послание. Как только вы попытаетесь это сделать, червоточина сморщится и раздавит вас.

Чтобы она не сжалась, ее надо наполнить некоей экзотической субстанцией, которую иногда называют фантомной энергией, создающей отрицательную гравитацию. Однако большинство ученых полагает, что законы физики исключают существование такой энергии.

«Чтобы получить стабильную, проходимую червоточину, понадобится определенное волшебство», — сказал физик Деян Стойкович (Dejan Stojkovic), работающий в Университете Баффало и недавно написавший в соавторстве работу на эту тему.

Доктор Торн написал по электронной почте, что у верящих в волшебство теоретиков есть миллион способов спроектировать кротовую нору. «Поскольку мы не знаем ничего определенного о технологиях и материалах, доступных очень развитым цивилизациям, у нас, физиков, есть бесконечная свобода действий для построения моделей проходимых кротовых нор», — заявил он.

В своей работе, опубликованной 10 октября в научном журнале «Физикал Ревю» (Physical Review), доктор Стойкович и Дэ-Чан Дай (De-Chang Dai) из Университета Янчжоу описали слой этой экзотической фантомной энергии, сосредоточенной вокруг входа в черную дыру Стрелец, открывающего кротовину, через которую можно безопасно пройти. Когда достаточно малый объект приближается к дыре, перед моментом достижения горизонта событий (так называют точку гравитационного невозврата) он внезапно оказывается в другом времени и месте, возможно, в другой вселенной.

Авторы предполагают, что их гипотеза дает возможность проверить, существуют ли на самом деле кротовины. Даже если такая червоточина слишком мала для прохождения звезды или космического корабля, гравитация сможет через нее пройти, утверждают ученые.

«Гравитация — это просто свойство пространства-времени, и поэтому если потрясти его за один конец, на другом конце это тоже почувствуется», — объяснил доктор Стойкович.

Таким образом, звезда по одну сторону кротовины может ощущать гравитационное притяжение звезды или иного массивного объекта по другую ее сторону. По мнению астрономов, странные отклонения в траектории одной звезды могут указывать на воздействие «звезды-призрака» с другой стороны через кротовую нору.

Доктор Дай с коллегами хочет проверить эту гипотезу, имея в виду вполне конкретную звезду. Это голубая звезда S2 (также известная как S02), которая обращается вокруг черной дыры Стрелец А, каждые 16 лет приближаясь к ней на расстояние 17,7 миллиарда километров. Астрономы уже несколько лет следят за этой звездой в надежде получить подсказки о теории тяготения Эйнштейна и внутреннем устройстве черной дыры. Но не исключено, что им удастся заглянуть глубже.

Представьте себе, что черная дыра Млечного пути, которая носит официальное название Стрелец А*, таит в себе такую червоточину, написали в своей работе доктор Дай и доктор Стойкович. Предположительно, гравитация звезд и других массивных объектов на противоположной стороне может просочиться через кротовину и немного сместить S2 с ее орбиты.

Они отметили, что через несколько лет, проведя дополнительные исследования, астрономы будут достаточно точно знать орбиту S2 и обнаружат такое притяжение, которое ускоряет звезду на одну миллионную метра в секунду в квадрате. Астрономы могут также поискать аналогичные воздействия возле других известных черных дыр.

«Если такое удастся обнаружить, это будет очень эффектно», — написал доктор Торн. Но он предупредил, что хотя его модель кротовины интересна и привлекательна, это лишь одна из бесчисленного множества возможностей. Доктор Торн, получивший в 2017 году Нобелевскую премию за работу по гравитационным волнам, написал книгу «Черные дыры и разрывы времени. Возмутительное наследие Эйнштейна» (Black Holes and Time Warps: Einstein’s Outrageous Legacy). В ней он исследует явление кротовых нор как машин времени.

По этой причине я связался по электронной почте с Райнхардом Генцелем (Reinhard Genzel) из Института внеземной физики общества Макса Планка, который уже много лет следит за звездой S2 при помощи современного телескопа в Чили. Он разбил мне сердце.

Генцель написал, что он с коллегами в ближайшее время сможет достаточно точно измерить орбиту S2. «Это не проблема, — добавил он. — Есть другое препятствие, которое существенно все осложнит».

На нашей стороне кротовины достаточно материи, вызывающей флуктуации S2. Это тусклые звезды, звездные черные дыры. Их турбулентность вполне способна погасить любой сигнал с противоположной стороны. Если где-то и есть космическая станция метро, то она может быть скрыта большим количеством помех.

Генцель, называющий себя «деревенским мальчишкой», сказал, что не уверен в нашей способности отыскать волшебную кротовую нору.

Пока дверь закрыта. Кротовые норы могут существовать, но не исключено, что мы никогда не сможем достоверно обнаружить их существование. Удивительные свойства нашей собственной Вселенной могут помешать нам рассмотреть чудеса других миров.

Источник: inosmi.ru

Ученые, когда рассказывают о черных дырах, иногда упоминают кротовые норы, но что это такое? Откуда кроты в космосе?! Давайте выясним.

Ученые предполагают, что у черных дыр есть братья близнецы — кротовые норы. Принято считать, что черная дыра это колодец без выхода, который будет являться печальным концом вашего космического путешествия.

Иногда кротовые норы называют "червоточинами".

И ведь дело в том, что это не научная фантастика, а вполне себе реальный объект, существование которого допускает общая теория относительности.

Пространство-время порой обладает удивительными свойствами и одно из них возможность существования туннелей в нём. Теоретически такой туннель может не только переместить вас из пункта А в пункт Б, но и дать возможность войти в портал и открыть вам выбор через какой портал выйти.

Подробно такую возможность не описывали теоретически, но искажения во времени вблизи кротовых нор, может сделать путешественника не просто космическим туристом, а самым настоящим путешественником во времени.

Николай Семёнович Кардашёв, которого к сожалению не стало в августе этого года, развил идею, что в центрах галактик не сверхмассивные черные дыры, а огромные кротовые норы.

Неизвестно, какие участки вселенной соединяют кротовые норы и есть ли возможность перемещаться по ним безопасно.

Некоторые ученые полагают что кротовые норы могут существовать буквально мгновения и только на ранних этапах существования вселенной. Однако есть и теории описывающие возможность существования самоподдерживающейся кротовой норы, которая будет стабильна.

Кротовая нора это не просто дверь в другой конец вселенной, это сложнейшее физическое явление, которое придется изучать еще очень долго.

Подписывайтесь на канал чтобы не пропустить больше публикаций.

Источник: zen.yandex.by

Такое понятие, как нетривиальная топология, в математике известно давно, но в физике и в восприятии большинства людей это темный лес, то есть совершенно непонятное явление. С помощью нетривиальной топологии мы можем путешествовать между различными Вселенными, из одного мира в другой, не прибегая к специальным средствам: космическим кораблям, ускорителям и так далее. Возникает закономерный вопрос: как же мы можем куда-то путешествовать, попадая в черную дыру? В конце прошлого века стало понятно явление нетривиальной топологии для черных дыр. Оказалось, что черные дыры могут быть не только черными, но и белыми, но уже не для нашей Вселенной. А именно, попадая в черную дыру, мы уже не попадем в сингулярность, а попадем в другую Вселенную. И также наша черная дыра является белой дырой для какой-то третьей Вселенной. То есть из третьей Вселенной частица или объект через свою черную дыру попадает в нашу Вселенную. А мы из нашей второй Вселенной можем попасть в первую Вселенную. Все три Вселенные разные. Таким образом, одно и то же тело, упав в черную дыру, в эту же Вселенную вернуться никогда не сможет.

Возникает логичный вопрос: почему же такие явления не были известны достаточно давно, а стали обсуждаться только сейчас? Это происходит потому, что сложную топологию исследовать математически строго намного более сложно, чем обычную топологию, скажем, обычного мира.

Понятия нетривиальной топологии появились после открытия других решений для черных дыр — не самых простейших, которые открыл Шварцшильд около 100 лет назад, а с открытием более сложной черной дыры Рейснера — Нордстрема. Это заряженная черная дыра, то есть черная дыра, обладающая электрическим зарядом. И также решение Кера — это вращающаяся черная дыра.

Чем же принципиально эти черные дыры отличаются от черной дыры Шварцшильда? У черной дыры Шварцшильда сингулярность находится в центре, если можно так сказать, потому что понятие центра для черной дыры, вообще говоря, отсутствует. Но для человека, не специализирующегося в области гравитации, можно сказать и так. У решения Шварцшильда сингулярность притягивает. Любое вещество, любая материя, которая в нее попадает, во-первых, будет притягиваться к ней все ближе и ближе и, во-вторых, будет разрывать любую материю. Таким образом, невозможно никуда проникнуть просто по причине сильных приливных сил. Дело в том, что самые обычные приливные силы, которые вызывают приливы океанов, морей на Земле, при приближении к черной дыре становятся настолько сильными, что способны разорвать на части любое вещество, любую материю.

Например, у человека, который падает вниз ногами в черную дыру, голова будет притягиваться к черной дыре слабее, чем ноги.

Причем настолько слабее, что просто в конце концов голову оторвет, как и все остальное. Также в поперечном направлении туловище будет сжиматься все больше и больше при приближении к сингулярности. То есть человек уже попал под горизонт событий, все еще продолжает лететь к сингулярности, и его разрывает.

Но если черная дыра у нас не шварцшильдовская, самая простейшая, а либо заряженная Рейснера — Нордстрема, либо вращающаяся, как у Кера, то сингулярность обладает принципиально другими свойствами. Например, у заряженной черной дыры сингулярность отталкивает объект. То есть сначала объект притягивается, и после того, как он попадает под горизонт событий, он какое-то время еще продолжает двигаться в том же направлении и ускоряется в том же направлении. После этого он попадает под другой внутренний горизонт, также именуемый иногда горизонтом Коши, и уже под горизонтом Коши объект начинает отталкиваться от сингулярности. При этом отталкивание возрастает и возрастает, и в конце концов объект останавливается по радиальным координатам, начинает двигаться в направлении другой Вселенной (нельзя сказать «в обратном направлении») и вылетает из белой дыры. Белая дыра является объектом в другой Вселенной, не нашей, как я сказал до этого.

Аналогично нашу черную дыру можно представить белой дырой для третьей Вселенной, из которой объект может попасть к нам. Эти необычные свойства — следствие нетривиальной топологии необычной (заряженной или вращающейся) черной дыры. Надо сказать, что вращающаяся черная дыра является еще более сложным объектом, чем просто заряженная. У нее сингулярность находится не в точке, как у Шварцшильда или как у Рейснера — Нордстрема, а на кольце. Это кольцо лежит на экваторе вращающейся черной дыры, и размер этого кольца описывается точной формулой. Также это кольцо является отталкивающим для всех частиц, которые попали под второй внутренний горизонт.

Существует и комбинированное решение, когда черная дыра и заряжена, и вращающаяся. В этом случае принцип не меняется. То есть до внешнего горизонта частица будет притягиваться и ускоряться внутрь. Между двумя горизонтами продолжает двигаться в том же направлении, а под внутренним горизонтом она начинает резко тормозиться и потом выталкивается в другую Вселенную. Почему же так получается? Потому что простейшее решение Шварцшильда для незаряженной и невращающейся черной дыры является вырожденным, как говорят в физике, то есть не отображает истинной картины. Любой сколь угодно малый заряд или любое сколь угодно малое вращение, которое всегда будет иметь место в природе, приведут к тому, что у нас сингулярность окажется кольцевой и отталкивающей.

Источник: postnauka.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.