Как образуются черные дыры в космосе


Меня на моем телеграм канале довольно часто спрашивают о том, откуда берутся черные дыры и как они возникают. Я уже пару раз довольно кратко отвечал на эти вопросы, но все же решил написать небольшую статью.

Простой ответ — черные дыры зарождаются из умирающих звезд при условии, что масса звезды достаточно велика. Считается, что масса звезды должна быть как минимум порядка 20 масс нашего Солнца, чтобы в конце своего существования звезда могла превратиться в черную дыру. При этом масса получившейся черной дыры будет всего порядка 3-5 масс Солнца!

Сразу возникает вопрос, который также нередко задают: если звезда такая массивная? Почему она не "схлопывается" в черную дыру под влиянием собственной гравитации?

Ответ на этот вопрос довольно прост. Пока звезда горит — в ней происходит противоборство двух сил — гравитации и давления. Гравитация стремится сжать материю звезды, давление сопротивляется этому. В течении всей жизни звезды эти силы уравновешивают друг друга. Именно поэтому звезды принимают форму гигантских шаров — граница шара как раз соответствует той границе где давление и гравитация уравновешивают друг друга.


Источник: tribuneindia.com

Пока звезда горит в ней происходят термоядерные реакции в ходе которых одни химические элементы (например водород в гелий) превращаются в другие и выделяется энергия. Когда в звезде заканчивается "топливо" для термоядерной реакции (например водород) гравитация начинает брать верх над давлением и материал ядра звезды начинает спрессовываться все сильнее. Чем более массивным становится ядро, тем сильнее гравитационное притяжение, которое сжимает материю все сильнее.

В малых звездах когда топливо термоядерных реакций истощается гравитация все-таки компенсируется силами взаимного отталкивания элементарных частиц. Сжатие ядер таких звезд прекращается и они достигают равновесия. Такие звезды называют белыми карликами.

Однако когда очень массивная звезда истощает термоядерное топливо, то сила гравитации ядра такой звезды становится настолько велика, что превозмогает силы взаимного отталкивания элементарных частиц и происходит гравитационный коллапс — образуется черная дыра. При этом умирающая звезда "сбрасывает" свои внешние слои, словно змея старую кожу, в величественной вспышке сверхновой. После звезды остается лишь туманность с черной дырой в центре.


Коллапсирующее ядро оказывается сжатое до микроскопической точки с практически нулевым радиусом до состояния практически бесконечной плотности. Эта точка называется сингулярностью.

Источник: zen.yandex.ru

Нобелевская премия по физике улетела в дыру

Черные дыры, где гравитационное притяжение настолько сильное, что в состоянии удерживать даже объекты, которые двигаются со скоростью света, — в наши дни одна из самых горячих тем в новостях.

Половина Нобелевской премии по физике в этом году была присуждена сэру Роджеру Пенроузу (Roger Penrose) «за открытие того, что образование черных дыр является строгим следствием общей теории относительности» Эйнштейна. Американский астроном Андреа Миа Гез (Andrea Mia Ghez) и немецкий астрофизик Райнхард Генцель (Reinhard Genzel) разделили с ним вторую половину Нобелевки за то, что показали, что в центре нашей галактики угнездилась крупная черная дыра.

Чем пугают черные дыры

Существует три основания опасаться черных дыр:

  1. Угодив в черную дыру, оставшуюся после гибели звезды, любое живое существо будет разорвано в клочья.
  2. Наблюдаемые в центре всех галактик крупные черные дыры обладают отменным аппетитом.
  3. В черных дырах нет места физическим законам.

Почетный профессор астрономии Аризонского университета Крис Импи (Chris Impey) более трех десятилетий занимается изучением черных дыр, в частности, сверхмассивных.

На веб-сайте The Conversation он пишет: «Большую часть времени они неактивны, но когда активны и поедают звезды и газ, область, близкая к черной дыре, может затмить всю галактику, в которой они находятся. Галактики, в которых активные черные дыры, называются квазарами. Несмотря на все, что мы узнали о черных дырах за последние несколько десятилетий, нам еще предстоит разгадать множество загадок».

«Оставь надежду, всяк сюда входящий»

Предположительно, черные дыры образуются при гибели массивной звезды. После того, как ядерное топливо звезды иссякнет, ее ядро ​​коллапсирует до самого плотного состояния материи: в 100 раз более плотного, чем атомное ядро. Настолько плотное, что протоны, нейтроны и электроны больше не являются дискретными частицами. Поскольку черные дыры темные, их обнаруживают, когда они вращаются вокруг обычной звезды.


Судьба любого угодившего в черную дыру объекта представляет собой болезненную «спагеттификацию». Под этим термином, который иногда называют «эффектом лапши», астрофизики понимают сильное растяжение объектов по вертикали и горизонтали, вызванное большой приливной силой в неоднородном гравитационном поле. В результате они напоминают спагетти.

Одним из первых данную мысль некогда растиражировал Стивен Хокинг в переведенной на многие языки «Краткой истории времени». При спагеттификации сильная гравитация черной дыры разбирает вас на части, разнимая не только ваши кости, мышцы и сухожилия, но даже молекулы. Вспомните надпись над вратами ада в классическом произведении Данте: Lasciate ogni speranza, voi ch’entrate.

Астрономические наблюдения выявили, что в центрах всех галактик есть черные дыры. В крупных черных дырах еще можно рассчитывать на выживание. Хотя их гравитация сильнее, растягивающая сила слабее, чем у маленькой черной дыры, она вас не погубит. Однако ничто не может ускользнуть из гравитационного радиуса (или радиуса Шварцшильда), поэтому вы не можете ни убежать, ни сообщить о своем опыте.

Источник: www.pravda.ru

Что такое черная дыра?

Определяющим свойством черной дыры является ее горизонт. Это граница, преодолев которую ничто, даже свет, не сможет вернуться обратно. Если отделенная область становится отделенной навсегда, мы говорим о «горизонте событий». Если же она только временно отделена, мы говорим о «видимом горизонте». Но это «временно» также может означать, что область будет отделенной гораздо дольше нынешнего возраста Вселенной. Если горизонт черной дыры является временным, но долгоживущим, разница между первым и вторым расплывается.


Насколько огромными бывают черные дыры?

Как образуются черные дыры в космосе

Самые маленькие — размером с крупный мегаполис, а размеры самых больших совершенно не с чем сравнивать. О маштабах черных дыр, известных в 2018 году, рассказывает новый ролик канала Harry Evett.

В этом году ученые с помощью телескопа ALMA впервые сфотографировали окрестности черной дыры, которая находится в центре активного ядра галактики М77, и измерили диаметр окружающего ее газопылевого кольца. Самой черной дыры на снимке, конечно, не видно, потому что черные дыры не излучают свет, который могли бы уловить телескопы. Если мы когда-нибудь получим снимок черной дыры и ее окрестностей, на нем будет виден только дик аккреции и окружающее его кольцо материи, заметный, поскольку в нем на субрелятивистских скоростях носятся частицы, выделяя энергию в виде электромагнитного излучения.
зможно, снимок окрестностей черной дыры Sagittarius A*, которая находится в центре нашей галактики, появится уже в этом году. Пока же что о том, как выглядят черные дыры, мы знаем только по представлениям художников. Зато мы знаем их массу и размеры, и они просто не укладываются в голове. Новый ролик о масштабах черных дыр позволяет получить хотя бы примерное представление о том, насколько огромными они бывают.

Диаметр некоторых черных дыр не больше протяженности большого города, скажем, Лондона, но весит такая «кроха» как пять тысяч Солнц; радиус других сравним с радиусом земного шара, но масса их при этом в пять миллионов больше, чем у нашей планеты. Еще немного о Солнце: самые легкие из известных черных дыр всего впятеро массивнее нашей звезды, но при этом в в 100 тысяч раз компактнее. Черная дыра, которая находится в центре Млечного Пути — относительный тяжеловес, но далеко не рекордсмен ни по массе, ни по размерам, хотя и весит как 4 миллиона Солнц. Она просто теряется на фоне, скажем, дыры в центре галактики Messier 60, масса которой составляет 4,5 миллиарда солнечных. Примерно с этой массы начинается класс ультрамассивных черных дыр, самые большие из которых заставляют даже 4,5 млрд Солнц казаться пушинкой. Самая большая (и массивная) из известных черных дыр — та, что находится в центре квазара TON 618: 66 миллиардов солнечных масс. А о том, насколько велика Вселенная, можно получить представление, посмотрев нашу подборку роликов о масштабах космоса.

Что происходит на горизонте?


Как образуются черные дыры в космосе

Когда вы пересекаете горизонт, вокруг вас ничего особенного не происходит. Все из-за принципа эквивалентности Эйнштейна, из которого следует, что нельзя найти разницу между ускорением в плоском пространстве и гравитационным полем, создающим кривизну пространства. Тем не менее наблюдатель вдали от черной дыры, который наблюдает за тем, как кто-то другой падает в нее, заметит, что человек будет двигаться все медленнее и медленнее, подходя к горизонту. Будто бы время вблизи горизонта событий движется медленнее, чем вдали от горизонта. Однако пройдет некоторое время, и падающий в дыру наблюдатель пересечет горизонт событий и окажется внутри радиуса Шварцшильда.

То, что вы испытываете на горизонте, зависит от приливных сил гравитационного поля. Приливные силы на горизонте обратно пропорциональны квадрату массы черной дыры. Это означает, что чем больше и массивнее черная дыра, тем меньше силы. И если только черная дыра будет достаточно массивна, вы сможете преодолеть горизонт еще до того, как заметите, что что-то происходит. Эффект этих приливных сил растянет вас: технический термин, который для этого используют физики, называется «спагеттификация».

В первые дни общей теории относительности считалось, что на горизонте существует сингулярность, но это оказалось не так.

Что внутри черной дыры: догадки


Как образуются черные дыры в космосе

Некоторые из математиков считают, что внутри этих загадочных объектов Вселенной находятся так называемые червоточины — переходы в другие Вселенные. Иными словами, в точке сингулярности расположен пространственно-временной туннель. Эта концепция послужила источником вдохновения для многих писателей и режиссеров. Однако подавляющее большинство астрономов считают, что никаких туннелей между Вселенными не существует. Однако даже если бы они действительно были, у человека нет никаких способов узнать, что находится внутри черной дыры.

Существует и другая концепция, согласно которой в противоположном конце такого туннеля находится белая дыра, откуда из нашей Вселенной в другой мир через черные дыры поступает гигантское количество энергии. Однако на данном этапе развития науки и техники о путешествиях подобного рода не может быть и речи. 

Как образуются черные дыры?

Существуют несколько теорий появления черных дыр, которые делятся на гипотетические и реалистичные. Самая простая и распространенная реалистичная — теория гравитационного каллапса больших звезды.

Когда достаточно массивная звезда перед «смертью» разрастается в размерах и становится не стабильной, расходуя последнее топливо.
то же время масса звезды остается неизменной, но её размеры уменьшаются так как происходит, так называемое, уплотнение. Иными словами при уплотнении тяжелое ядро «падает» в само себя. Параллельно с этим уплотнение приводит к резкому повышению температуры внутри звезды и внешние слои небесного тела отрываются, из них образуются новые звезды. В это же время в центре звезды — ядро падает в свой собственный «центр». В результате действия сил гравитации центр обваливается в точку — т.е силы гравитации на столько сильны, что поглощают уплотненное ядро. Так рождается черная дыра, которая начинает искажать пространство и время, что даже свет не может вырваться из неё.

В центрах всех галактик находится сверхмассивная черная дыра. Согласно теории относительности Эйнштейна:

«Любая масса искажает пространство и время».

А теперь представьте, как сильно черная дыра искажает время и пространство, ведь её масса огромна и одновременно втиснута в сверхмалый объем. Из-за этой способности возникает следующая странность:

«Черные дыры обладают способностью практически останавливать время и сжимать пространство. Из-за этого сильнейшего искажения дыры становятся не видимыми для нас».

Если черные дыры не видны, откуда мы знаем, что они существуют?

Как образуются черные дыры в космосе


Да, хоть черная дыра и невидимка, но она должна быть заметна за счет материи, которая падает в неё. А так же звездный газ, который притягивается черной дырой, при приближении к горизонту событий температура газа начинает расти до сверхвысоких значений, что приводит к свечению. Именно поэтому черные дыры светятся. Благодаря такому, хоть и слабому свечению, астрономы и астрофизики объясняют наличие в центре галактики объекта с малым объемом, но огромной массой. В данный момент в результате наблюдений обнаружено порядка 1000 объектов, которые похожи по поведению на черные дыры.

Почему Хокинг ошибся по поводу черных дыр?

Согласно недавнему исследованию Стивена Хокинга (Stephen Hawking), создавшего настоящий переполох, некоторые издания объявили о том, что черных дыр нет. Однако, это не совсем то, что утверждал Хокинг. Впрочем уже сейчас понятно, что предположение Хокинга о черных дырах ошибочно, потому что парадокс, который он пытается доказать, уже не парадокс вовсе.

Это все сводится к известному нам парадоксу огненной стены черных дыр. Главной особенностью черной дыры является ее горизонт событий. Горизонт событий черной дыры – точка невозврата при приближении к ней. В общей теории относительности Эйнштейна, горизонт событий представляет собой пространство и время, которые настолько деформированы под воздействием силы тяжести, что их невозможно покинуть. Пересечете горизонт событий — и вы навсегда в ловушке.

Это односторонняя природа горизонта событий уже давняя проблема для понимания гравитационной физики. Например, горизонт событий черной дыры, казалось бы, нарушает законы термодинамики. Один из принципов термодинамики гласит о том, что ничто не должно иметь температуру абсолютного нуля. Даже очень холодные вещи излучают немного тепла, но если черная дыра поглощает свет, то она не выделяет никакого тепла. Таким образом, температура черной дыры равна нулю, что не возможно.

Тогда в 1974 году Стивен Хокинг показал, что черные дыры излучают свет благодаря квантовой механике. В квантовой теории есть пределы тому, что может быть известно об объекте. Например, вы не можете знать точно энергию объекта. Из-за этой неопределенности, энергия системы может колебаться спонтанно, до тех пор, пока ее средняя величина остается постоянной. Хокинг продемонстрировал, что вблизи горизонта событий черной дыры пары частиц могут появиться, когда одна частица оказывается в ловушке внутри горизонта событий (немного снижая массу черной дыры), а другая может избежать этого, в виде излучения (унося немного энергии черной дыры).

Как образуются черные дыры в космосе

В то время как излучение Хокинга решило одну проблему с черными дырами, оно создало еще одну, известную как парадокс огненной стены. Когда квантовые частицы появляются парами, они спутаны, то есть, они связаны в квантовом смысле. Если одна частица захватывается черной дырой, а другая вырывается, тогда спутанность пары нарушается. В квантовой механике можно было бы сказать, что пара частиц появляется в чистом, первоначальном, виде, и горизонт событий, казалось бы, сломал это состояние.

В прошлом году было показано, что если излучение Хокинга в чистом виде, тогда либо оно не может излучать в направлении, требуемом термодинамикой, или это создаст огненную стену частиц высокой энергии вблизи поверхности горизонта событий. Это часто называют парадокс огненной стены, потому что согласно общей теории относительности, если оказаться вблизи горизонта событий черной дыры, ничего необычного не удастся заметить. Основная идея общей теории относительности (принцип эквивалентности) требует, чтобы, если вы свободно падаете к горизонту событий, не должно быть сильной огненной стены частиц высокой энергии. В своей работе Хокинг предложил решение этого парадокса, предположив, что черные дыры не имеют горизонты событий. Вместо этого они имеют кажущиеся горизонты, которые не требуют соответствия огненной стены и термодинамики. Поэтому заявление «черных дыр нет» популярно в прессе.

Но парадокс огненной стены возникает только при излучении Хокинга в чистом виде, и исследование  Сабины Хоссенфельдер (Sabine Hossenfelder) показывает, что излучение Хокинга не в чистом виде. В своей статье, Хоссенфельдер показывает, что вместо пары спутанных частиц, излучение Хокинга связано с двумя такими парами. Одна спутанная пара попадает в ловушку черной дыры, в то время как другая убегает. Процесс похож на первоначальное предложение Хокинга, но частицы Хокинга не в чистом виде.

Таким образом, нет никакого парадокса. Черные дыры могут излучать свет таким образом, который согласуется с термодинамикой, и область вблизи горизонта событий не имеет огненной стены, как требует общая теория относительности. В итоге, предложение Хокинга является решением проблемы, которой не существует.

Что излучает черная дыра? 

Как образуются черные дыры в космосе

Черная дыра рождает не только фотоны, но и дру­гие частицы. Сравнительно большие черные дыры мас­сой в несколько солнечных обладают столь низкой тем­пературой, что могут производить только «безмассо­вые» частицы — частицы, всегда летящие со скоростью света и не имеющие собственной массы покоя. К ним относятся фотоны, электронные и мюонные нейтрино, их античастицы и, наконец, еще гравитоны — кванты гра­витационных волн. Черная дыра массой, типичной, для звезд, рождает особенно много нейтрино (81% все­го потока) всех сортов, затем фотонов (17%) и грави­тонов (2%) (рис. 8). Тот факт, что разные частицы из­лучаются в разных количествах, объясняется различием их свойств. Нейтрино испускается больше всего, пото­му что их внутренний угловой момент (спин) минима­лен (V2), а гравитонов меньше всего, так как их спин максимален (2). 

Черные дыры малой массы имеют большую темпе­ратуру. Так, температура черных дыр массой, меньшей 1017—1016 г, выше 109—1010 К. Эти черные дыры порож­дают, помимо перечисленных частиц, электронно-позитронные пары. Заметим, что размеры таких черных дыр составляют всего 10-10 см (в 1000 раз меньше размера атома).

Еще меньшие черные дыры массой < 5 • 1014 г спо­собны излучать мюоны и более тяжелые элементарные частицы. Черная дыра массой 1014 г излучает 12% тяже­лых частиц и античастиц, 28% электронов и позитронов, 48% нейтрино всех сортов, 11% фотонов и 1% гравито­нов (размер этих черных дыр меньше атомного ядра).

Как мы уже отмечали, такие карликовые черные ды­ры могли возникать только в далеком прошлом Вселен­ной. Особую важность квантовые процессы приобрета­ют именно для первичных черных дыр. Если в начале расширения Вселенной, когда вещество было плот­ным, образовались черные дыры массой, меньшей 1015г, то все они должны к нашему времени испариться. По этой причине процесс, открытый Хоукингом, имеет очень важное значение для космологии. Процесс испарения первичных черных дыр ведет к излучению высокочастот­ных фотонов — гамма-излучения. Так, черные дыры массой около 1015 г должны излучать кванты с энерги­ей около 100 МэВ.

Наблюдение таких квантов, приходящих из космоса, в принципе могло бы помочь обнаружению первичных черных дыр. Пока же они не обнаружены, и можно только сказать, что количество черных дыр массой око­ло 1015 г во Вселенной должно быть в среднем не боль­ше, чем десять тысяч на каждый кубический парсек. Если бы их было больше, то общее количество гамма-квантов с энергией около 100 МэВ было бы больше наб­людаемого сейчас потока гамма-квантов из космоса. Количество «десять тысяч» кажется большим, но вспом­ним, что масса первичных черных дыр ничтожна по сравнению, скажем, с массой звезды.

Скорее в плане «мечтаний» (хотя и строго научных) можно представить себе в. отдаленном будущем искус­ственное изготовление в космосе малых черных дыр. Они могли бы аккумулировать энергию, затраченную на их изготовление, и затем излучать ее в заданном тем­пе и с заданной энергией частиц, которые определяются массой черных дыр. Так, черная дыра массой 1015 г бу­дет испускать 1017 эрг/с на протяжении 10 млрд. лет.

Много еще неясного в новом явлении. Например, не­известно, испаряется ли черная дыра совсем без остат­ка или на ее месте остается частичка с так называемой лланковской массой, 10-5 г. Неясно, можно ли наблю­дать процесс испарения черных дыр во Вселенной. И, конечно, пока только фантастическими представляются какие-либо эксперименты с черными дырами в лабора­ториях физиков. Однако уже то, что известно, заставляет по-новому осмыслить многие аспекты эволюции материи во Вселенной. 

Информационный парадокс черных дыр

Как образуются черные дыры в космосе

Вы наверняка слышали, что черные дыры уничтожают информацию, которая в них попадает. Почему это является такой огромной проблемой для физики, что ученые всеми силами пытаются избавиться от этой нелепой и нелогичной формулировки? Что ж, мир стал довольно сложным. В моем детстве все было проще. Трава была зеленее, газировка вкуснее, а черные дыры были черными. То есть черные дыры сжимали материю и энергию в бесконечно плотные сингулярности, не создавая непреодолимых парадоксов. Это были хорошие дни.

Но им пришел конец. Сегодня черные дыры вмещают все пятьдесят оттенков серого, изгибая законы физики один за другим. Что же такое информационный парадокс черной дыры?

Для начала давайте поговорим об информации. Когда физики говорят «Информация», они имеют в виду конкретное состояние каждой частицы во вселенной: масса, положение, спин, температура и т. д. отпечаток пальца, который уникальным образом идентифицирует каждого, и вероятность того, что эти частицы собираются делать во вселенной. Вы можете взять атомы, раздавить их или сжать вместе, но квантово — волновая функция, которая их описывает, всегда будет сохраняться.

Квантовая физика позволяет вам запускать всю вселенную вперед и назад до тех пор, пока вы обращаете все в своей математике: заряд, четность и время. Это важно. Светлые умы говорят нам, что информация должна жить, несмотря ни на что. Представьте ее в виде энергии. Вы не можете уничтожить энергию: только преобразовать.

Что такое черная дыра? Она образуется, когда крупнейшая звезда с массой в 20 раз превышающей солнечную жестоко коллапсирует и взрывается. Ее плотность материи чрезвычайно высока, скорость убегания превышает скорость света. Особо прикольные имеют перегретый диск аккреции с материей, которая кружится вокруг горизонта событий черной дыры, за пределы которого свет уже не может вырваться никак.

И тут у нас появляется один из самых странных побочных эффектов относительности: замедление времени. Представьте себе часы, падающие в направлении черной дыры, которые засасывает гравитационный колодец. Время будет идти медленнее по мере приближения к черной дыре, пока наконец не замерзнет на краю горизонта событий. Фотоны от часов вытянутся, и цвет часов пройдет через красное смещение. В конце концов, он исчезнет, поскольку фотоны вытянутся за пределы того, что могут обнаружить наши глаза.

Как образуются черные дыры в космосе

Лишь в том случае, если бы вы смотрели на черную дыру миллиарды лет, вы увидели бы все, что она собрала, что застряло внутри, как на липучке. Вы нашли бы и часы, и «Титаник», и теоретически смогли бы определить квантовое состояние каждой отдельной частицы и фотона, который попал в черную дыру. Поскольку потребуется практически бесконечное количество времени, чтобы все испарилось совершенно, все в порядке.

Информация навсегда на поверхности черной дыры сохраняется. Все, что туда попало, определенно погибло, но их информация, их драгоценная квантовая информация, в полном порядке.

Внимание! Только в том случае, если бы вы смогли распутать черную дыру, вы бы получили квантовую информацию, описывающую все, что употребила черная дыра. Во всяком случае так было в старые добрые дни.

В 1975 году Стивен хокинг сбросил на черные дыры бомбу. Он осознал, что у черных дыр есть температура, и с течением огромного периода времени они совершенно испарятся, выпустив массу и энергию обратно во вселенную. Этот процесс был обозначен как излучение хокинга.

Но эта же идея парадокс породила. Информация о том, что попало в черную дыру сохраняется замедлением времени, но сама масса черной дыры испаряется. В конце концов, она совершенно исчезнет, и тогда куда денется информация? Та информация, которая не может быть уничтожена?

Астрономы в шоке. Десятками лет они работают, пытаясь решить этот вопрос. Есть небольшой набор вариантов:

Черные дыры не испаряются вовсе, хокинг ошибся.
Информация в черной дыре каким-то образом утекает вместе с излучением хокинга.
Черная дыра удерживает ее до самого конца, и когда испаряются две последних частицы, вся информация внезапно высвобождается во вселенную.
Информация сжимается в микроскопическое пространство, которое остается после испарения черной дыры.
Черная дыра.

Возможно, физики никогда не смогут выяснить это. Недавно хокинг выдвинул новую идею, которая могла бы разрешить информационный парадокс черной дыры. Он предположил, что есть некий способ, которым излучение хокинга могло бы уносить в себе информацию о новой материи, падающей в черную дыру.

Таким образом, информация обо всем, что падает, сохраняется уходящим излучением, возвращается во вселенную и разрешает парадокс. Но это догадка, поскольку и само излучение хокинга никто не обнаружил. Возможно, мы через много десятков лет узнаем не только то, в правильном направлении мы движемся или нет, но и собственно решение парадокса.

В ситуациях вроде этой мы вспоминаем, как мало знаем о вселенной на самом деле.

Что предлагает Хокинг для решения информационного парадокса черной дыры?

Идея состоит в том, что у черных дыр должен быть способ хранить информацию, который до сих пор не приняли. Информация хранится на горизонте черной дыры и может вызывать крошечные смещения частиц в излучении Хокинга. В этих крошечных смещения может быть информация о попавшей внутрь материи. Точные детали этого процесса в настоящее время не определены. Ученые ждут более подробного технического документа от Стивена Хокинга, Малькома Перри и Эндрю Строминджера. Говорят, он появится в конце сентября.

На данный момент мы уверены, что черные дыры существуют, знаем, где они находятся, как образуются и чем станут в итоге. Но детали того, куда девается поступающая в них информация, до сих пор представляют одну из самых больших загадок Вселенной.

Видео



Источник: asteropa.ru

вселенная, космос, темная материя, темная энергия, поле Хиггса, гравитация, черная дыра Англичанин Стивен Хокинг внес существенный вклад в современную космологию, в теорию рождения Вселенной. Фото Reuters

С обнаружением давно предсказанной элементарной частицы – бозона Хиггса физики завершили создание так называемой Стандартной модели (12 элементарных строительных блоков материи: 6 кварков, 6 лептонов и 5 бозонов). Все силы, которые действует на Земле, известны. Но в глубоком космосе существуют темная материя и темная энергия, которые могут полностью перевернуть наши представления о физике. У физиков остается один выход: держаться за известное как можно дольше, а затем прыгнуть в неизведанное.

Оборванная цепь причинности

Вселенная состоит из физической материи – Земля, звезды, галактики, излучение, темная материя, темная энергия, гравитация, которая определяет структуру пространства и времени. Кроме того, Вселенная содержит биологическую жизнь и присущее ей сознание (по крайней мере в Млечном Пути, на планете Земля). Сводятся ли субъективные состояния сознания к объективным физическим процессам? Наука пока не определилась с ответом. Вселенная как целое может и не иметь объяснения…

Пытаясь ответить на вопрос, почему существует Вселенная и объемлющий ее Мультиверс, классическая наука сталкивается с логическим парадоксом: если космос заключает в себе все, что физически существует, тогда научное объяснение должно включать и физическую причину, однако любая физическая причина по определению является частью той Вселенной, которую требуется изучить. Таким образом, любое научное объяснение появления или существования Вселенной в целом замыкается в порочный круг.

В прежние времена акт возникновения Вселенной либо принимали за самоочевидный, либо объявляли неразрешимым парадоксом. Подходы и методы четвертой научной парадигмы (физика эмерджентности, от emergent – «возникающий, неожиданно появляющийся») преодолевают этот казавшийся веками неразрешимым парадокс оборванной цепи причинности. Какие же концептуальные вопросы будут входить в программу исследования новой научной парадигмы – за пределами Стандартной модели частиц?

В физике произошло несколько научных революций, не один раз менялась и господствующая парадигма – сквозная научная идеология. Механическая картина мира была сформирована Галилеем и Ньютоном. В начале XIX века Сади Карно дополнил ее термодинамическим аспектом, в конце XIX века Максвелл, Эрстед и Фарадей указали на волновую, или электромагнитную, природу происходящих взаимодействий.

Если в теории Ньютона время и пространство жестко зафиксированы, то Альберт Эйнштейн поставил такую картину мира под сомнение. В итоге научной революции первой половины XX века время и пространство стали пониматься как проявление единого гибкого четырехмерного пространственно-временного континуума. Конфигурация этого континуума влияет на характер гравитационных взаимодействий.

Тогда же случился еще один парадигмальный сдвиг, связанный с иным взглядом на природу вещества и четырех фундаментальных сил природы. Появилась квантовая механика, в которой частицы больше не считаются твердыми, катящимися по неподвижному пространству шариками, а представляются размытыми по ткани времени и пространства волнами, проявлениями силовых полей.

Сегодня мы на пороге новой физической парадигмы, которая будет развертываться в XXI веке. Эта четвертая по счету научная парадигма ставит вопрос о том, как Вселенная сумела появиться и развиться в целом, как материя вообще способна появиться из вакуума, как внутри реальности проявляются не существовавшие прежде частицы вещества, а отрицательная энергия гравитации создает огромные скопления масс и энергий.

Темная история с темной энергией

Если все прежние научные подходы были позитивистскими, то есть изучали «реально» существующую, «положительную» материю, то физика за пределами Стандартной модели сосредоточится на исследовании природы темной материи и энергии, поля Хиггса и космического вакуума, или, в терминах философии, Ничто (и даже еще меньше, чем Ничто). Существует несколько стратегий поиска более глубокой, всеобъемлющей теории, чем Стандартная модель.

Важное открытие, сделанное нобелевским лауреатом Солом Перлмутером совсем недавно, в 1998 году, свидетельствует о том, что расширение Вселенной происходит ускоренно. Окружающий космос не только не замедляет своего расширения, но и двигается (удаляется от нас) все быстрее и быстрее. В процессе расширения Вселенной появляется дополнительное пустое пространство.

Физики знают, что вакуум пуст лишь для обывателя. Квантовый вакуум (его еще называют «ложным» вакуумом) имеет структуру, подчиняющуюся сложным и глубоким физическим законам. Перлмутер предположил, что в каждом кубическом сантиметре пространства присутствует определенная энергия в дополнение к энергии частиц, бозонов. Это – минимальная порция энергии, присущая полотну самого пространства-времени: ее невозможно почувствовать, невозможно увидеть, ее нельзя использовать для совершения работы… И все же она существует.

К тому же энергия эта в отличие от гравитации не притягивает, а расталкивает объекты Вселенной, то есть является как бы энергией отрицательной величины. В этом и заключается необычность открытия Сола Перлмутера. Такую энергию физики назвали темной. Вопрос, из каких частиц она состоит и состоит ли вообще из чего-то более простого, в науке остается нерешенным.

Темная энергия появляется из первоначально пустого пространства, будто это вовсе не энергия, а наоборот, ее недостаток – энергия «отрицательной» величины. Используя это определение, американский физик Алекс Виленкин сумел произвести интересные вычисления. Он показал, что из начального состояния пустоты может спонтанно появиться крохотный кусочек наполненного энергией вакуума.

Под действием отрицательного давления любой кусочек «несуществующего» вакуума испытывает безудержное расширение, влияя тем самым на «реальную», «положительную» материю. Через пару микросекунд он достигнет космических размеров, испустив поток света и материи – Большой взрыв! Насколько крохотный кусочек? Возможно, размером всего лишь в одну стотриллионную сантиметра. Теория отрицательной энергии вакуума, или темной энергии, это первый шаг, который позволит создать физику четвертой, объединяющей парадигмы – парадигмы эмерджентной физики.

Еще одно парадоксальное, противоречащее логике и здравому смыслу открытие, сделанное учеными, – виртуальные частицы. Время их жизни ничтожно, тем не менее существование виртуальных частиц доказано в экспериментах, один из которых – эффект Казимира.

Две металлические пластины в вакууме в отсутствие электромагнитных полей и частиц притягиваются друг к другу силой, которую создают колебания самого вакуума. Пары частица–античастица считаются виртуальными, поскольку их нельзя измерить непосредственно детектором частиц. Их влияние можно наблюдать лишь косвенно. Пластины действуют как зеркала для виртуальных частиц и античастиц.

В результате количество виртуальных частиц между пластинами немного отличается от тех, которые находятся вне их, где флуктуации вакуума имеют большую длину волны. Это значит, что пустое пространство даже в отсутствие материи постоянно рождает энергетические всплески, которые к тому же создают энергию отрицательной плотности – темную энергию.

Эта энергия как бы берется взаймы. В пустом пространстве – вакууме – перманентно рождаются пары частица и античастица, при аннигиляции которых выделяется избыток отрицательной энергии. Пространство в вакуумном состоянии оказывается весьма оживленным местом.

15-15-1480.jpg
Пространство в вакуумном состоянии
оказывается весьма оживленным местом. 
Иллюстрация Pixabay

Отрицательная энергия вакуума (темная энергия) рождает квантовые флюктуации, которые разносятся на большие масштабы и застывают, превращаясь в вещество и излучение. Такая экзотическая материя с отрицательной плотностью может быть использована в будущем для стабилизации кротовых нор – микроскопических порталов в иные временные измерения.

Но как насчет перехода от мира материи обратно к пустоте? Скорее всего это физически невозможно. С точки зрения физики пространство максимально пусто тогда, когда оно лишено энергии. Допустим, что мы попытались удалить всю энергию из некоей области пространства. В какой-то момент в процессе «откачки» энергии произойдет событие, противоречащее здравому смыслу: спонтанно возникнет нечто, называемое физиками «скалярное поле Хиггса» (бозон Хиггса, та самая «частица Бога», которая наделяет всю остальную материю массой, – его проявление). И от этого поля Хиггса избавиться никак нельзя, потому что его вклад в полную энергию той области пространства, которую мы стараемся опустошить, отрицателен: поле Хиггса – это Нечто, содержащее меньше энергии, чем Ничто. Существование поля Хиггса сопровождается игрой «виртуальных частиц», которые непрестанно возникают и исчезают.

Откуда масса?

Хорошо изученная атомная материя, из которой состоят звезды, галактики и мы сами, составляет примерно 1/6 массы загадочной темной материи. Обычная материя, состоящая из частиц, предусмотренных Стандартной моделью, составляет всего 5% всей массы-энергии Вселенной.

В XXI веке теорию Большого взрыва дополнила теория инфляции. Согласно модели Большого взрыва, масса вещества в момент сингулярности, когда Вселенная родилась, должна была превосходить 1083 кг – практически бесконечная масса. Откуда взялось это количество вещества, если до момента возникновения Вселенной ничего не было? Мы натыкаемся на препятствие, непреодолимое в рамках прежней физики.

В рамках инфляционной теории можно объяснить, как можно эту колоссальную массу и энергию получить из менее чем одного миллиграмма вещества. Физик Андрей Линде утверждает, что достаточно всего стотысячной части грамма материи (стомиллионная доля килограмма), чтобы дать начало такой Вселенной, как наша. Этого хватит, чтобы создать маленький комок ложного вакуума, который взорвется в миллиарды миллиардов звезд, наблюдаемых сейчас. Вся материя в теории Линде возникает из отрицательной энергии гравитационного поля, или темной энергии самого пустого пространства. А это поле разбрасывает ее дальше по пустому пространству, будто краску из баллончика.

Нерешенной в современной физике остается и проблема гравитации – притяжения обладающих массой частиц. Чтобы понять механизм самопроизвольного зарождения космоса, нам нужна квантовая теория гравитации, которая объединит теорию относительности и квантовую механику. Создать ее можно будет только тогда, когда ученые поймут, что собой представляет тяготение. Поиск более эффективной теории, чем теория Эйнштейна, – квантовой теории гравитации – одно из величайших предприятий, за которые когда-либо бралась физика.

Возникают ли положительная энергия вещества и отрицательная энергия гравитации одновременно? Воспользуемся аналогией, которую приводит Стивен Хокинг в своей книге «Краткие ответы на большие вопросы». Представьте ровное непаханое поле. Если мы хотим на нем построить гору или хотя бы холм, придется черпать из той же земли, которая есть на поле. Чем выше гора, тем глубже котлован, вырытый рядом с рукотворным сооружением. Так происходит и во Вселенной: положительная энергия, запертая в материи, противостоит отрицательной энергии самого пространства-времени. Если Вселенная плоская или почти плоская, как это выглядит в самые точные телескопы наподобие COBE, в сумме оба вида энергии – положительная энергия вещества и отрицательная энергия гравитации – дают ноль, и законы сохранения не нарушаются.

В целом, так как Вселенная плоская, она имеет равное количество энергий – положительной и отрицательной. Максимально искривленное и сжатое гравитацией протосостояние Вселенной в момент инфляционного расширения увеличилось в диаметре с нескольких сантиметров до размера галактики Млечный Путь. Исходя из наблюдений за реликтовым излучением, в настоящий момент космической истории мы наблюдаем плоскую Вселенную, в которой если и есть кривизна, то совсем незначительная – она составляет не больше одного градуса. «Положительная» материя в такой Вселенной полностью уравновешивается собственной противоположностью – тяготением.

Сверим часы

Большинство физических теорий содержат информацию о собственной гибели. Электромагнетизм говорит об ультрафиолетовой катастрофе. Общая теория относительности – о существовании сингулярностей. Несмотря на то что квантовая теория точно предсказывает результаты экспериментов, она предполагает существование неких вселенских часов, отмеряющих время. Однако если вблизи сингулярностей и черных дыр время начинает идти по-другому, то и квантовая теория может оказаться несостоятельной.

Итогом крупномасштабной научной революции может стать понимание того, что для разных событий во Вселенной нет единого блока настоящего момента. Традиционная же теория времени, которая применяется и в квантовой механике, утверждает, что континуум представляет собой четырехмерный пространственно-временной блок, растущий во временном измерении.

В новой физической парадигме мы можем и не иметь дела с единым моментом настоящего: все, что у нас есть, – это мириады отдельных условных настоящих моментов в миниатюре. Единое плато настоящего – умозрительное творение человеческого ума. На нем и происходит весь тот обмен опытом, идеями и культурой, которыми богат человеческий род.

Раз для Вселенной в целом нет единого мига настоящего, значит, он сосуществует одновременно с прошлым и будущим (здесь мы наталкиваемся на речевой пробел, связанный с невозможностью выразить новое знание привычными языковыми средствами). Но в каком явлении реальности мы наблюдаем слияние всех трех временных пластов в единый феномен? Ответ кроется в одном из самых загадочных объектах мироздания – черных дырах.

Черная дыра отделена от остального пространства горизонтом событий – поверхностью, на которой вторая космическая скорость равна скорости света. Поскольку в природе ничто не может двигаться с большей скоростью, чем скорость света, никакой носитель информации не способен выйти из-под горизонта событий. Нобелевский лауреат из Индии Субраманьян Чандрасекар отмечал: «Черные дыры – это самые совершенные макроскопические объекты во Вселенной, ведь они состоят только из времени и пространства. В черных дырах Бог разрешает делить на ноль».

Так как черная дыра может только поглощать материю и никогда не отдавать ее обратно, она является местом во времени, где сходятся все события, которые ей предшествовали в космической истории. Новая научная парадигма постепенно вытеснит (или дополнит) общую теорию относительности Эйнштейна, которая не работает в сингулярности, то есть в сердце черных дыр и в самом начале времени, в момент Большого взрыва.

Что может сказать нам окончательная теория, или «теория всего», как ее иногда называют, о происхождении Вселенной? Скорее всего такая теория сможет заглянуть глубже, чем даже квантовая космология Хокинга, Линде, Виленкина и др. Например, теория струн позволяет представить себе реальность до Большого взрыва, когда сами понятия пространства и времени не имели смысла. Но сможет ли она дать убедительное объяснение самой себя? Если окончательная теория оставит без объяснений начальные, или граничные, условия, то, даже если она полностью объяснит процесс развития Вселенной, истоки возникновения реальности останутся покрытыми тайной. Кто или что установили эти начальные условия?

Окончательная теория, которая будет разработана в рамках четвертой научной парадигмы, обещает шагнуть гораздо дальше современной физики в прояснении вопроса о происхождении Вселенной. Например, она может показать, как пространство и время появились из более фундаментальных сущностей, о которых мы пока и понятия не имеем.

Алекс Виленкин говорит о «квантовом туннельном эффекте», с помощью которого, как он считает, Вселенная должна была возникнуть из полной пустоты. Процесс туннелирования в квантовой механике управляется теми же фундаментальными законами, которые описывают последующую эволюцию космоса. Следовательно, полагает Виленкин, законы должны существовать еще до того, как возникнет сама Вселенная.

Но если фундаментальные законы физики обладают собственной реальностью, то это приводит к новой загадке: что придает этим законам их силу, что оживляет их? Как они заставляют события подчиняться?

Возможно, законы, описывающие закономерности внутри мира, несовместимы с несуществованием этого мира. Например, если принцип неопределенности Гейзенберга гласит, что значение поля и скорости его изменения не могут быть одновременно равны нулю, то мир в целом не способен состоять только лишь из неизменной пустоты.

Мы можем свидетельствовать рождение четвертой крупной физической парадигмы – парадигмы эмерджентной физики. Это событие – объединяющий шаг, потому что новая теория закроет брешь между квантовым миром и физикой теории относительности. 

Ростов-на-Дону

Источник: www.ng.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.