История про космос


Космические полеты невероятно опасны и требуют храбрости на уровне безумия. И именно это делает космонавтов и астронавтов настолько крутыми. Всем нам известны случаи больших неудач космических запусков. Вспомнить хотя бы «Челленджер», «Колумбию» или «Аполлон-13». Космонавты и астронавты очень часто находятся в серьезной опасности для своей жизни, однако большинство подобных случаев, как правило, остается в тени истории. Сегодня поговорим о десяти малоизвестных страшных и трагичных историях, связанных с космосом, космическими запусками, космонавтами и астронавтами.

astroskull

Замкнутый в вакууме

18 марта 1965 года состоялся исторический запуск на орбиту Земли космического аппарата «Восход-2». Цель миссии: первый в истории выход в открытый космос. Управление космическим кораблем было поручено космонавтам Алексею Леонову и Павлу Беляеву. Полет сопровождался многочисленными проблемами, но самая опасная из них следовала не от корабля, а от космического скафандра Леонова.


Вскоре после выхода в открытый космос Леонов понял, что что-то не так. Как только космонавт оказался в космическом вакууме, он почувствовал, как его скафандр начал надуваться. Перчатки раздулись настолько, что сделали практически невозможным выполнение поставленных задач. Хуже оказалось то, что скафандр раздуло настолько, что он не проходил через воздушный шлюз, фактически заперев космонавта в безжизненном пространстве. В отчаянии Леонов решил выпустить некоторый запас кислорода для дыхания, чтобы снизить давление внутри скафандра. Космонавт понимал, что при неудаче он погибнет от удушения гораздо быстрее. К счастью, идея оказалась удачной и научила нас, как не следует делать космические скафандры.

Столкновение со станцией «Мир»

В июне 1997 году беспилотный космический грузовик «Прогресс» производил стыковку с космической станцией «Мир». Находящийся на борту станции Василий Циблиев производил удаленное управление «Прогрессом», сверяясь с установленными на борту камерами. К сожалению, экраны того времени передавали не самую лучшую картинку с не самым лучшим ощущением глубины восприятия. То, что аппарат приближается к станции слишком быстро, Циблиев, к несчастью, понял слишком поздно.


Грузовик «Прогресс» столкнулся с «Миром», повредив одну из солнечных панелей станции, оставив дыру в ее корпусе и придав «Миру» неконтролируемое вращение. К счастью, находившийся на станции астронавт NASA Майк Фоул смог вычислить оптимальную траекторию для стабилизации станции и сообщил об этом по радио в центр управления, который удаленно запустил двигатели «Мира» и стабилизировал ее положение. Модуль с поврежденным корпусом был изолирован, чтобы избежать потерю кислорода.

Смертельная камера депривации

Одним из самых распространенных видов тренировок для астронавтов является нахождение в камере сенсорной депривации (читай: барокамере). Человек погружается в помещение или камеру, изолированную от внешних воздействий (света, звука, запаха), что имитирует полную изоляцию в условиях открытого космоса. Как правило, тренировки занимают несколько дней. Этот вид тренировок не очень приятен, но тем не менее считается неопасным… за исключением случая, произошедшего в марте 1961 года.

Валентин Бондаренко, 24-летний советский космонавт завершал свое десятидневное нахождение в так называемой «камере тишины». Она представляла собой небольшую комнату с уровнем кислородного давления, соответствовавшего условиям советских космических аппаратов. Начался процесс декомпрессии, и космонавт стал готовиться покинуть камеру. Клей, который крепил к телу космонавта электроды аппарата, следящего за состоянием его организма, Бондаренко попытался растворить смоченной в алкоголе ваткой. После этого он неосторожно ее выбросил. Вата попала на раскаленную спираль электроплиты. Заполненная кислородом комната в мгновение ока превратилась в настоящий ад. Когда камеру открыли, человек оставался еще жив. Но оставленные раны оказались несовместимыми с жизнью. Спустя 8 часов Бондаренко скончался.

Кто сказал, что молния не бьет дважды?


14 ноября 1969 года над Центром космических запусков имени Кеннеди нависли тяжелые тучи. В то утро готовился к запуску космический корабль «Аполлон-12». Несмотря на предупреждение синоптиков, официальные лица, отвечавшие за запуск, решили, что низкая облачность и возможность грозы не повлияют на его успешность. Спустя 36 секунд с момента старта люди поняли, как же сильно они ошибались.

В набирающий высоту космический корабль снайперским выстрелом ударила молния, встряхнув не только астронавтов, но и отключив большую часть электроники корабля. Люди попытались в спешке запустить системы заново, но спустя секунды в корабль ударила вторая молния, вырубив теперь уже и оставшиеся системы. Астронавты поняли, что находятся на высоте нескольких километров над Землей в полностью парализованном корабле.

Они обратились в центр управления полетами за советом, и один молодой инженер смог решить проблему фактически одним нажатием выключателя. Питание было моментально восстановлено, и миссия продолжилась без эксцессов. Этим инженером был Джон Аарон, который позже внес серьезный вклад в спасение команды миссии «Аполлон-13» и впоследствии стал руководителем Космического центра имени Джонсона.

Скафандр смерти


С начала 60-х годов США старались ускорить проведения испытаний различных новых космических технологий, чтобы догнать и обогнать СССР в космической гонке. В одном из таких испытаний принимали участие два летчика-испытателя, Мальком Росс и Виктор Пратер. Они испытывали новые прототипы скафандров. Для проверки скафандров людей на воздушном шаре поднимали в верхние слои атмосферы.

Если не брать в расчет несколько неурядиц, сами испытания прошли гладко. Все проблемы, приведшие в конечном итоге к настоящей трагедии, начались при возвращении на Землю. После того как воздушный шар приводнился в Мексиканском заливе, пара испытателей стала ожидать вертолета, который должен был их подобрать и увезти домой. Когда вертолет прилетел и сбросил тросы для прицепки корзины воздушного шара, Пратер поскользнулся. Он упал в Мексиканский залив, вода начала заливать его скафандр. Испытатель утонул в собственном скафандре еще до того момента, как спасатели смогли до него добраться.

Катастрофа истребителя Gemini

Программа полетов Gemini помогла США усовершенствовать различные технологии, которые впоследствии помогли миссиям «Аполлон» добраться до Луны. Однако мало кто знает, что эту программу могли вовсе закрыть из-за инцидента, произошедшего одним февральским днем 1966 года.

В тот день члены команды Gemini Эллиот Си и Чарли Бассетт управляли учебным самолетом T-38 Talon. Сопровождала их дублирующая команда из Тома Стэффорда и Джина Сернена. Пилоты направлялись на завод компании Макдоннелл в Сент-Луисе, где производилось создание космических кораблей Gemini IX и Gemini X и где они должны были проходить тренировку в симуляторе. Погода в этот день выдалась отвратительная. Видимость была крайней низкой, что очень сильно затрудняло посадку.


Стэффорд и Сернан решили облететь посадочную полосу и выбрать более безопасный угол для снижения, однако Си и Бассетт решили не терять время и приступили к посадке. Это решение оказалось роковым. Дело в том, что посадочная полоса находилась очень близко к самой фабрике. Из-за опустившегося тумана Си неправильно рассчитал скорость и направил самолет прямиком в здание, где производилась сборка двух космических аппаратов. К несчастью, оба астронавта погибли, но по жестокой иронии один из строившихся аппаратов уцелел, а саму программу Gemini было решено не закрывать.

Газовая камера «Союз-Аполлон»

17 июля 1975 года произошла стыковка космических аппаратов «Аполлон» и «Союз». Обе стороны обменялись любезностями и провели совместный тур по демонстрации кораблей. Все шло идеально по плану… до тех пор, пока «Аполлон» не стал возвращаться обратно на Землю.

В момент снижения произошли неполадки с двигателями и вентиляционной системой корабля, что вызывало заполнение модуля токсичным азотным тетроксидом. Команде ничего не оставалось делать, как молиться и ждать скорейшего приводнения, поэтому они постарались сделать все возможное, чтобы побыстрее и без дополнительных проблем посадить модуль, несмотря на возрастающую сложность для дыхания. По печальной иронии судьбы дела стали еще хуже, когда модуль после приводнения перевернулся и тем самым водой была полностью заблокирована система вентиляции.


Борясь с воздействием газа и стараясь сохранить сознание в этом токсичном тумане, астронавт Том Стэффорд раздобыл для членов своей команды, один из которых уже потерял сознание, маски для дыхания. Команда вскоре была спасена. Смертельные пары быстро улетучились, как только люк модуля был открыт. После этого случая команде «Аполлона» пришлось провести две недели в больнице.

Катастрофа самолета X-15

Американский летчик Майкл Адамс был выдающимся пилотом, обладавшим выдающимися навыками. Заслужив к тому моменту множество наград за невероятные достижения, он стал очевидным выбором в качестве будущего астронавта программы пилотируемой орбитальной лаборатории. Он начал тренировки в качестве астронавта, однако, когда дело запахло отменой программы, Адамс попросился работать в проекте X-15. North American X-15 был экспериментальным ракетопланом, оперировавшим на высотах, где пилоты, в том числе и Адамс, рассматривались официальными лицами уже как астронавты, а не просто пилотами.

Полет Адамса 15 ноября 1967 года начался вполне удачно, и все шло по плану. Но как только он поднял машину до высоты 80 километров, электроника ракетоплана вышла из строя. В результате в течение нескольких минут X-15 вращался при скорости 5500 километров в час. Благодаря тренировкам пилот смог стабилизировать сверхзвуковую машину, но, к сожалению, все кончилось тем, что ракетоплан попал в гиперзвуковой штопор, с которым пилот не смог совладать. Машина врезалась в песок калифорнийской пустыни со скоростью 6400 километров в час. Пилот погиб мгновенно.

Космос – место, где никто не услышит, как вы… тонете


В июле 2013 года астронавты Международной космической станции выполняли рутинный выход в открытый космос, когда один из них обнаружил, а точнее почувствовал то, что никогда бы не ожидал почувствовать в космосе. Итальянский астронавт Лука Пармитано почувствовал, как по его затылку течет вода.

Озадаченный, но тем не менее сосредоточенный на своей миссии, он продолжил работу до тех пор, пока вода не стала в буквальном смысле закрывать его обзор внутри скафандра. Он сообщил о произошедшем в центр управления, который потребовал немедленного прекращения работы в открытом космосе. К этому моменту вода практически полностью ослепила Пармитано и начала проникать в его нос и рот.

Удивительно, но человек сумел сохранить самообладание и без паники, фактически по памяти добрался до воздушного шлюза самостоятельно, где члены экипажа помогли ему снять скафандр и вдохнуть полной грудью. Тогда-то и выяснилось, что причиной «водной атаки» является вышедшая из строя система охлаждения, встроенная в заднюю часть шлема Пармитано.

Ужасная судьба Владимира Комарова


Без сомнений, Юрий Гагарин был первым человеком, побывавшим в космосе. Однако мало кто знает об истории его друга и коллеги Владимира Комарова, несмотря на то что этот случай был не менее запоминающимся.

Советский Союз в честь 50-й годовщины мировой коммунистической революции решил произвести стыковку двух космических аппаратов. К сожалению, все это привело к тому, что сроки реализации проектов и строительства аппаратов серьезно сократили, чтобы успеть к запланированной дате. В качестве командира первого корабля выбрали Комарова. Он знал, что если откажется, то вместо него отправят его друга, Гагарина, который был его дублером. Комаров согласился, хотя, вероятнее всего, понимал, что домой он уже не вернется.

Неполадки начались 23 апреля 1967, сразу после того, как «Союз-1» с Комаровым на борту был выведен на орбиту. Так как одна из солнечных панелей не раскрылась, корабль стал испытывать энергетическое голодание. Полет было решено немедленно прекратить. Во время снижения отказала система раскрытия парашюта. Запасной парашют, вышедший на высоте 1,5 километра над поверхностью, не смог наполнится, так как его стропы зацепились и обмотались вокруг строп неотстреленного отказавшего основного парашюта. В итоге модуль ударился о землю со скоростью 50 метров в секунду.

Согласно официальной версии, Комаров погиб от удара о поверхность, однако, согласно информации с прослушивающих американских станций, космонавт еще некоторое время оставался жив. При ударе была повреждена емкость с перекисью водорода, в результате чего в модуле возник пожар, который его практически полностью уничтожил, фактически испарив космонавта живьем.

Источник: Hi-News.ru


-1-728История освоения космоса — самый яркий пример торжества человеческого разума над непокорной материей в кратчайший срок.

того момента, как созданный руками человека объект впервые преодолел земное притяжение и развил достаточную скорость, чтобы выйти на орбиту Земли, прошло всего лишь чуть более пятидесяти лет — ничто по меркам истории! Большая часть населения планеты живо помнит времена, когда полёт на Луну считался чем-то из области фантастики, а мечтающих пронзить небесную высь признавали, в лучшем случае, неопасными для общества сумасшедшими. Сегодня же космические корабли не только «бороздят просторы», успешно маневрируя в условиях минимальной гравитации, но и доставляют на земную орбиту грузы, космонавтов и космических туристов. Более того — продолжительность полёта в космос ныне может составлять сколь угодно длительное время: вахта российских космонавтов на МКС, к примеру, длится по 6-7 месяцев. А ещё за прошедшие полвека человек успел походить по Луне и сфотографировать её тёмную сторону, осчастливил искусственными спутниками Марс, Юпитер, Сатурн и Меркурий, «узнал в лицо» отдалённые туманности с помощью телескопа «Хаббл» и всерьёз задумывается о колонизации Марса. И хотя вступить в контакт с инопланетянами и ангелами пока не удалось (во всяком случае, официально), не будем отчаиваться — ведь всё ещё только начинается!

Мечты о космосе и пробы пера

Впервые в реальность полёта к дальним мирам прогрессивное человечество поверило в конце 19 века. Именно тогда стало понятно, что если летательному аппарату придать нужную для преодоления гравитации скорость и сохранять её достаточное время, он сможет выйти за пределы земной атмосферы и закрепиться на орбите, подобно Луне, вращаясь вокруг Земли. Загвоздка была в двигателях. Существующие на тот момент экземпляры либо чрезвычайно мощно, но кратко «плевались» выбросами энергии, либо работали по принципу «ахнет, хряснет и пойдёт себе помаленьку». Первое больше подходило для бомб, второе — для телег. Вдобавок регулировать вектор тяги и тем самым влиять на траекторию движения аппарата было невозможно: вертикальный старт неизбежно вёл к её закруглению, и тело в результате валилось на землю, так и не достигнув космоса; горизонтальный же при таком выделении энергии грозил уничтожить вокруг всё живое (как если бы нынешнюю баллистическую ракету запустили плашмя). Наконец, в начале 20 века исследователи обратили внимание на ракетный двигатель, принцип действия которого был известен человечеству ещё с рубежа нашей эры: топливо сгорает в корпусе ракеты, одновременно облегчая её массу, а выделяемая энергия двигает ракету вперёд. Первую ракету, способную вывести объект за пределы земного притяжения, спроектировал Циолковский в 1903 году.

1304019078_1303818941_nasa_earth-1003

Вид на Землю с МКС

Первый искусственный спутник

28

Время шло, и хотя две мировые войны сильно замедлили процесс создания ракет для мирного использования, космический прогресс всё же не стоял на месте. Ключевой момент послевоенного времени — принятие так называемой пакетной схемы расположения ракет, применяемой в космонавтике и поныне. Её суть — в одновременном использовании нескольких ракет, размещённых симметрично по отношению к центру массы тела, которое требуется вывести на орбиту Земли. Таким образом обеспечивается мощная, устойчивая и равномерная тяга, достаточная, чтобы объект двигался с постоянной скоростью 7,9 км/с, необходимой для преодоления земного тяготения. И вот 4 октября 1957 года началась новая, а точнее первая, эра в освоении космоса — запуск первого искусственного спутника Земли, как всё гениальное названного просто «Спутник-1», с помощью ракеты Р-7, спроектированной под руководством Сергея Королёва. Силуэт Р-7, прародительницы всех последующих космических ракет, и сегодня узнаваем в суперсовременной ракете-носителе «Союз», успешно отправляющей на орбиту «грузовики» и «легковушки» с космонавтами и туристами на борту — те же четыре «ноги» пакетной схемы и красные сопла. Первый спутник был микроскопическим, чуть более полуметра в диаметре и весил всего 83 кг. Полный виток вокруг Земли он совершал за 96 минут. «Звёздная жизнь» железного пионера космонавтики продлилась три месяца, но за этот период он прошёл фантастический путь в 60 миллионов км!

Первые живые существа на орбите

belka-i-strelka

Успех первого запуска окрылял конструкторов, и перспектива отправить в космос живое существо и вернуть его целым и невредимым уже не казалась неосуществимой. Всего через месяц после запуска «Спутника-1» на борту второго искусственного спутника Земли на орбиту отправилось первое животное — собака Лайка. Цель у неё была почётная, но грустная — проверить выживаемость живых существ в условиях космического полёта. Более того, возвращение собаки не планировалось… Запуск и вывод спутника на орбиту прошли успешно, но после четырёх витков вокруг Земли из-за ошибки в расчётах температура внутри аппарата чрезмерно поднялась, и Лайка погибла. Сам же спутник вращался в космосе ещё 5 месяцев, а затем потерял скорость и сгорел в плотных слоях атмосферы. Первыми лохматыми космонавтами, по возвращении приветствовавшими своих «отправителей» радостным лаем, стали хрестоматийные Белка и Стрелка, отправившиеся покорять небесные просторы на пятом спутнике в августе 1960 г. Их полёт длился чуть более суток, и за это время собаки успели облететь планету 17 раз. Всё это время за ними наблюдали с экранов мониторов в Центре управления полётами — кстати, именно по причине контрастности были выбраны белые собаки — ведь изображение тогда было чёрно-белым. По итогам запуска также был доработан и окончательно утверждён сам космический корабль — всего через 8 месяцев в аналогичном аппарате в космос отправится первый человек.

Помимо собак и до, и после 1961 г в космосе побывали обезьяны (макаки, беличьи обезьяны и шимпанзе), кошки, черепахи, а также всякая мелочь – мухи, жуки и т. д.

В этот же период СССР запустил первый искусственный спутник Солнца, станция «Луна-2» сумела мягко прилуниться на поверхность планеты, а также были получены первые фотографии невидимой с Земли стороны Луны.

День 12 апреля 1961 г. разделил историю освоения космических далей на два периода — «когда человек мечтал о звёздах» и «с тех пор, как человек покорил космос».

Человек в космосе

День 12 апреля 1961 г. разделил историю освоения космических далей на два периода — «когда человек мечтал о звёздах» и «с тех пор, как человек покорил космос». В 9:07 по московскому времени со стартовой площадки № 1 космодрома Байконур был запущен космический корабль «Восток-1» с первым в мире космонавтом на борту — Юрием Гагариным. Совершив один виток вокруг Земли и проделав путь в 41 тыс. км, спустя 90 минут после старта, Гагарин приземлился под Саратовом, став на долгие годы самым знаменитым, почитаемым и любимым человеком планеты. Его «поехали!» и «всё видно очень ясно — космос чёрный — земля голубая» вошли в список наиболее известных фраз человечества, его открытая улыбка, непринуждённость и радушие растопили сердца людей по всему миру. Первый полёт человека в космос управлялся с Земли, сам Гагарин являлся скорее пассажиром, хотя и великолепно подготовленным. Нужно отметить, что условия полёта были далеки от тех, что предлагаются ныне космическим туристам: Гагарин испытывал восьми-десятикратные перегрузки, был период, когда корабль буквально кувыркался, а за иллюминаторами горела обшивка и плавился металл. В течение полёта произошло несколько сбоев в различных системах корабля, но к счастью, космонавт не пострадал.

ussr_6

С тех пор каждое 12 апреля мы отмечаем День космонавтики.

Вслед за полётом Гагарина знаменательные вехи в истории освоения космоса посыпались одна за другой: был совершён первый в мире групповой космический полёт, затем в космос отправилась первая женщина-космонавт Валентина Терешкова (1963 г), состоялся полёт первого многоместного космического корабля, Алексей Леонов стал первым человеком, совершившим выход в открытый космос (1965 г) — и все эти грандиозные события — целиком заслуга отечественной космонавтики. Наконец, 21 июля 1969 г состоялась первая высадка человека на Луну: американец Нил Армстронг сделал тот самый «маленький-большой шаг».

Лучший вид в Солнечной системе

Космонавтика — сегодня, завтра и всегда

Сегодня путешествия в космос воспринимаются как нечто само собой разумеющееся. Над нами летают сотни спутников и тысячи прочих нужных и бесполезных объектов, за секунды до восхода солнца из окна спальни можно увидеть вспыхнувшие в ещё невидимых с земли лучах плоскости солнечных батарей Международной космической станции, космические туристы с завидной регулярностью отправляются «бороздить просторы» (тем самым воплощая в реальность ерническую фразу «если очень захотеть, можно в космос полететь») и вот-вот начнётся эра коммерческих суборбитальных полётов с чуть ли не двумя отправлениями ежедневно. Освоение космоса управляемыми аппаратами и вовсе поражает всякое воображение: тут и снимки давно взорвавшихся звёзд, и HD-изображения дальних галактик, и веские доказательства возможности существования жизни на других планетах. Корпорации-миллиардеры уже согласовывают планы по строительству на орбите Земли космических отелей, да и проекты колонизации соседних нам планет давно не кажутся отрывком из романов Азимова или Кларка. Очевидно одно: однажды преодолев земное тяготение, человечество будет вновь и вновь стремиться ввысь, к бесконечным мирам звёзд, галактик и вселенных. Хочется пожелать только, чтобы нас никогда не покидала красота ночного неба и мириадов мерцающих звёзд, по-прежнему манящих, таинственных и прекрасных, как в первые дни творения.

Космос раскрывает свои тайны

Planet-x-planeta-x

Академик Благонравов остановился на некоторых новых достижениях советской науки: в области физики космоса.

Начиная со 2 января 1959 года, при каждом полете советских космических ракет проводилось исследование излучений на больших расстояниях от Земли. Детальному изучению подвергся открытый советскими учеными так называемый внешний радиационный пояс Земли. Изучение состава частиц радиационных поясов с помощью различных сцинтилляционных и газоразрядных счетчиков, находившихся на спутниках и космических ракетах, позволило установить, что во внешнем поясе присутствуют электроны значительных энергий до миллиона электронвольт и даже выше. При торможении в оболочках космических кораблей они создают интенсивное пронизывающее рентгеновское излучение. При полете автоматической межпланетной станции в сторону Венеры была определена средняя энергия этого рентгеновского излучения на расстояниях от 30 до 40 тысяч километров от центра Земли, составляющая около 130 килоэлектронвольт. Эта величина мало изменялась с изменением расстояния, что позволяет судить о постоянном энергетическом спектре электронов в этой области.

Уже первые исследования показали нестабильность внешнего пояса радиации, перемещения максимума интенсивности, связанные с магнитными бурями, вызываемыми солнечными корпускулярными потоками. Последние измерения с автоматической межпланетной станции, запущенной в сторону Венеры, показали, что хотя ближе к Земле происходят изменения интенсивности, но наружная граница внешнего пояса при спокойном состоянии магнитного поля практически на протяжении двух лет оставалась постоянной как по интенсивности, так и по пространственному расположению. Исследования последних лет позволили также построить модель ионизованной газовой оболочки Земли на основе экспериментальных данных для периода, близкого к максимуму солнечной деятельности. Наши исследования показали, что на высотах меньше тысячи километров основную роль играют ионы атомарного кислорода, а начиная с высот, лежащих между одной и двумя тысячами километров, в ионосфере превалируют ионы водорода. Протяженность самой внешней области ионизованной газовой оболочки Земли, так называемой водородной «короны», весьма велика.

Обработка результатов измерений, проведенных на первых советских космических ракетах, показала, что на высотах примерно от 50 до 75 тысяч километров за пределами внешнего радиационного пояса обнаружены потоки электронов с энергиями, превышающими 200 электронвольт. Это позволило предположить существование третьего самого внешнего пояса заряженных частиц с большой интенсивностью потоков, но меньшей энергией. После пуска в марте 1960 года американской космической ракеты «Пионер V» были получены данные, которые подтвердили наши предположения о существовании третьего пояса заряженных частиц. Этот пояс, по-видимому, образуется в результате проникновения солнечных корпускулярных потоков в периферийные области магнитного поля Земли.

Astr03

Были получены новые данные в отношении пространственного расположения радиационных поясов Земли, обнаружена область повышенной радиации в южной части Атлантического океана, что связано с соответствующей магнитной земной аномалией. В этом районе нижняя граница внутреннего радиационного пояса Земли опускается до 250 – 300 километров от поверхности Земли.

Полеты второго и третьего кораблей-спутников дали новые сведения, которые позволили составить карту распределения радиации по интенсивности ионов над поверхностью земного шара. (Докладчик демонстрирует эту карту перед слушателями).

Впервые токи, создаваемые положительными ионами, входящими в состав солнечного корпускулярного излучения, были зарегистрированы вне магнитного поля Земли на расстояниях порядка сотен тысяч километров от Земли, при помощи трехэлектродных ловушек заряженных частиц, установленных на советских космических ракетах. В частности, на автоматической межпланетной станции, запущенной по направлению к Венере, были установлены ловушки, ориентированные на Солнце, одна из которых предназначалась для регистрации солнечного корпускулярного излучения. 17 февраля, во время сеанса связи с автоматической межпланетной станцией, было зарегистрировано прохождение ее через значительный поток корпускул (с плотностью порядка 109 частиц на квадратный сантиметр в секунду). Это наблюдение совпало с наблюдением магнитной бури. Такие опыты открывают пути к установлению количественных соотношений между геомагнитными возмущениями и интенсивностью солнечных корпускулярных потоков. На втором и третьем кораблях-спутниках была изучена в количественном выражении радиационная опасность, вызываемая космическими излучениями за пределами земной атмосферы. Эти же спутники были использованы для исследования химического состава первичного космического излучения. Новая аппаратура, установленная на кораблях-спутниках, включала фотоэмульсионный прибор, предназначенный для экспонирования и проявления непосредственно на борту корабля стопки толстослойных эмульсий. Полученные результаты имеют большую научную ценность для выяснения биологического влияния космических излучений.

Технические проблемы полета

Далее докладчик остановился на ряде существенных проблем, обеспечивших организацию полета человека в космос. Прежде всего надо было решить вопрос о методах выведения на орбиту тяжелого корабля, для чего нужно было иметь мощную ракетную технику. Такая техника у нас создана. Однако недостаточно было сообщить кораблю скорость, превышающую первую космическую. Необходима была еще и высокая точность выведения корабля на заранее рассчитанную орбиту.

Следует иметь в виду, что требования к точности движения по орбите в дальнейшем будут повышаться. Это потребует проведения коррекции движения с помощью специальных двигательных установок. К проблеме коррекции траекторий примыкает проблема маневра направленного изменения траектории полета космического аппарата. Маневры могут осуществляться с помощью импульсов, сообщаемых реактивным двигателем на отдельных специально выбранных участках траекторий, либо с помощью тяги, действующей длительное время, для создания которой применены двигатели электрореактивного типа (ионные, плазменные).

В качестве примеров маневра можно указать переход на более высоко лежащую орбиту, переход на орбиту, входящую в плотные слои атмосферы для торможения и посадки в заданном районе. Маневр последнего типа применялся при посадке советских кораблей-спутников с собаками на борту и при посадке корабля-спутника «Восток».

Для осуществления маневра, выполнения ряда измерений и для других целей необходимо обеспечить стабилизацию корабля-спутника и его ориентацию в пространстве, сохраняемую в течение определенного промежутка времени или изменяемую по заданной программе.

Переходя к проблеме возвращения на Землю, докладчик остановился на следующих вопросах: торможение скорости, защита от нагрева при движении в плотных слоях атмосферы, обеспечение приземления в заданном районе.

Торможение космического аппарата, необходимое для гашения космической скорости, может быть осуществлено либо с помощью специальной мощной двигательной установки, либо посредством торможения аппарата в атмосфере. Первый из этих способов требует весьма больших запасов веса. Использование сопротивления атмосферы для торможения позволяет обойтись сравнительно небольшими дополнительными весами.

Комплекс проблем, связанных с разработкой защитных покрытий при торможении аппарата в атмосфере и организацией процесса входа с приемлемыми для организма человека перегрузками, представляет собой сложную научно-техническую задачу.

Бурное развитие космической медицины поставило на повестку дня вопрос о биологической телеметрии как об основном средстве врачебного контроля и научного медицинского исследования во время космического полета. Использование радиотелеметрии накладывает специфический отпечаток на методику и технику медико-биологических исследований, поскольку к аппаратуре, размещаемой на борту космических кораблей, предъявляется ряд специальных требований. Эта аппаратура должна иметь очень небольшой вес, малые габариты. Она должна быть рассчитана на минимальное энергопотребление. Кроме того, бортовая аппаратура должна устойчиво работать на активном участке и при спуске, когда действуют вибрации и перегрузки.

Датчики, предназначенные для преобразования физиологических параметров в электрические сигналы, должны быть миниатюрными, рассчитанными на длительную работу. Они не должны создавать неудобств космонавту.

Широкое применение радиотелеметрии в космической медицине заставляет исследователей обратить серьезное внимание на конструирование такой аппаратуры, а также на согласование объема необходимой для передачи информации с емкостью радиоканалов. Поскольку новые задачи, стоящие перед космической медициной, приведут к дальнейшему углублению исследований, к необходимости значительного увеличения количества регистрируемых параметров, потребуется внедрение систем, запоминающих информации, и методов кодирования.

В заключение докладчик остановился на вопросе о том, почему для первого космического путешествия был выбран именно вариант облета Земли по орбите. Этот вариант представлял собою решительный шаг к завоеванию космического пространства. Им обеспечивалось исследование вопроса о влиянии длительности полета на человека, решалась задача управляемого полета, задача управления спуском, вхождения в плотные слои атмосферы и благополучного возвращения на Землю. По сравнению с этим полет, осуществленный недавно в США, представляется малоценным. Он мог иметь значение как промежуточный вариант для проверки состояния человека при этапе набора скорости, при перегрузках во время спуска; но после полета Ю. Гагарина в такой проверке уже не было надобности. В этом варианте эксперимента безусловно преобладал элемент сенсации. Единственную ценность этого полета можно видеть в проверке действия разработанных систем, обеспечивающих вхождение в атмосферу и приземление, но, как мы видели, проверка подобных систем, разработанных у нас в Советском Союзе для более сложных условий, была надежно осуществлена еще ранее первого космического полета человека. Таким образом, ни в какое сравнение не могут быть поставлены достижения, полученные у нас 12 апреля 1961 г., с тем, что до настоящего времени оказалось достигнуто в США.

И как бы ни старались, говорит академик, враждебно настроенные по отношению к Советскому Союзу люди за рубежом своими измышлениями умалить успехи нашей науки и техники, весь мир оценивает эти успехи должным образом и видит, насколько вырвалась наша страна вперед по пути технического прогресса. Я лично был свидетелем того восторга и восхищения, которые были вызваны известием об историческом полете нашего первого космонавта среди широких масс итальянского народа.

Полет прошел исключительно успешно

51594012

Доклад о биологических проблемах космических полетов сделал академик Н. М. Сисакян. Он охарактеризовал основные этапы развития космической биологии и подвел некоторые итоги научных биологических исследований, связанных с космическими полетами.

Докладчик привел медико-биологические характеристики полета Ю. А. Гагарина. В кабине поддерживалось барометрическое давление в пределах 750 – 770 миллиметров ртутного столба, температура воздуха – 19 – 22 градуса Цельсия, относительная влажность – 62 – 71 процент.

В предстартовом периоде, примерно за 30 минут до старта космического корабля, частота сердечных сокращений составила 66 в минуту, частота дыхания – 24. За три минуты до старта некоторое эмоциональное напряжение проявилось в увеличении частоты пульса до 109 ударов в минуту, дыхание продолжало оставаться ровным и спокойным.

В момент старта корабля и постепенного набора скорости частота сердцебиения возросла до 140 – 158 в минуту, частота дыхания составляла 20 – 26. Изменения физиологических показателей на активном участке полета, по данным телеметрической записи электрокардиограмм и пнеймограмм, были в допустимых пределах. К концу активного участка частота сердечных сокращений составила уже 109, а дыхания – 18 в минуту. Иными словами, эти показатели достигли значений, характерных для ближайшего к старту момента.

При переходе к невесомости и полете в этом состоянии показатели сердечно-сосудистой и дыхательной систем последовательно приближались к исходным значениям. Так, уже на десятой минуте невесомости частота пульса достигла 97 ударов в минуту, дыхания – 22. Работоспособность не нарушилась, движения сохранили координацию и необходимую точность.

На участке спуска, при торможении аппарата, когда вновь возникали перегрузки, были отмечены кратковременные, быстро преходящие периоды учащения дыхания. Однако уже при подходе к Земле дыхание стало ровным, спокойным, с частотой около 16 в минуту.

Через три часа после приземления частота сердечных сокращений составляла 68, дыхание – 20 в минуту, т. е. величины, характерные для спокойного, нормального состояния Ю. А. Гагарина.

Все это свидетельствует о том, что полет прошел исключительно успешно, самочувствие и общее состояние космонавта на всех участках полета было удовлетворительным. Системы жизнеобеспечения работали нормально.

В заключение докладчик остановился на важнейших очередных проблемах космической биологии.

Источник: kosmik2016.wordpress.com

3. «Поехали!»

Именем Юрия Гагарина названы улицы во всех городах России и во многих других странах мира. 1961 год, первый человек в космосе, полёт длился 108 минут, за это время корабль «Восток» успел совершить полный оборот вокруг Земли. В ходе полёта было проведено множество базовых тестов: человек впервые пил, ел, делал записи и выполнял простые математические расчёты в космосе. До этого никто не знал, как же на самом деле будет чувствовать себя человек на орбите.

5. Маленький шаг для человека

24 июля 1969 года два члена экипажа «Аполлон-11» ступили на поверхность Луны: Нил Армстронг и Базз Олдрин совершили один выход и пробыли на спутнике Земли два с половиной часа. Всего с 1969 по 1972 год по программе «Аполлон» было выполнено 6 полётов с посадкой на Луне. За эти годы на спутнике побывало 12 человек.

7. «Викинг»

В 1975 году два одинаковых аппарата «Викинг-1» и «Викинг-2» были отправлены к Марсу с целью найти следы жизни в грунте. Жизнь найти не удалось, но была совершена мягкая посадка, были получены первые образцы грунта и первые панорамные цветные фото с поверхности. Аппараты должны были проработать 90 суток, но значительно превысили этот срок. «Викинг-1», например, оставался функциональным 5 лет.

8. «Вояджер»

История про космос

«Вояджер» (или «Путешественник») — проект NASA по исследованию дальних планет Солнечной системы — Юпитера, Сатурна, Нептуна, Урана и Плутона (который тогда ещё считался планетой), а также их спутников. «Вояджер-1» и «Вояджер-2» были запущены в 1977 году. Они впервые передали детальные цветные снимки дальних планет и в первый раз сфотографировали крупнейшие спутники. Кроме этого, «Вояджер-1» стал первым искусственным объектом, покинувшим пределы Солнечной системы. На борту он несёт послание внеземным цивилизациям.

9. «Спейс шаттл»

Программа NASA «Космическая транспортная система» стала новым и смелым шагом к пилотируемой космонавтике. Всего было создано 5 космических челноков: «Индевор», «Атлантис», «Дискавери», «Челленджер» и «Колумбия». Два последних погибли вместе с экипажем, а всего с 1981 по 2011 «Спейс шаттлы» совершили 135 полётов.

12. «Соджорнер»

Первый марсоход, успешно доставленный на Красную планету. «Соджорнер» дословно означает «временный житель» или «проезжий». Планировалось, что марсоход проработает на поверхности 7 сол (сол — марсианские сутки — 24 часа и 40 минут), но он работал в течение 83 сол до того момента, как спускаемая станция, действовавшая в качестве ретранслятора, не вышла из строя. После этого контакт с «Соджорнером» был потерям, его местонахождение сейчас неизвестно.

13. МКС (1998)

История про космос

Международная космическая станция пришла на замену «Миру» в 1998 году. МКС почти в 5 раз больше предшественника и служит космической «дачей» для человечества по сей день. Всего в проекте МКС участвует 14 стран, хотя наибольшую нагрузку несут, конечно, США и Россия.

14. «Новые рубежи»

Автоматическая межпланетная станция «Новые горизонты» в рамках программы NASA «Новые рубежи» была запущена в 2006 году. Её цель — изучение Плутона и других объектов пояса Койпера. Пояс Койпера — это область Солнечной системы, похожая на пояс астероидов между Марсом и Юпитером, только этот пояс находится на дальних границах Солнечной системы и состоит из карликовых планет вроде Плутона. Кроме этого, аппарат «Новые горизонты» стал самым быстрым в истории.

Источник: BroDude.ru

Хронология событий

Для начала дадим краткое описание хронологии событий, так или иначе связанных с началом космической эры.

  • До 1600 года – период легенд, мифов и мечтателей.
  • 1684-1986 гг. – написана книга Исаака Ньютона о математических началах философии.
  • В 1810-1813 гг. математик из Британии Уильям Мур написал «Трактат о движении ракет».
  • Вторая мировая война дала миру прототип ракетоносителей – ФАУ-2, а США и СССР вступили в гонку вооружений, приоритетное направление которой – освоение космоса.
  • 1961-1970 – золотые годы в освоении космического пространства. Это пилотируемые космические аппараты, первый человек в космосе, развитие космических программ, высадка человека на Луну.
  • 1971-1980 – первая космическая станция и космические зонды.
  • 1981-1990 – десятилетие удивительных открытий в солнечной системе и триумфы и трагедии программы Space Shuttle.
  • 1991-2000 – начало коммерциализации в освоении космоса.
  • 2001-2010 – глубокие космические программы и развитие коммерческих космических компаний.
  • 2011 – по настоящее время – предложения путешествий по околоземной орбите, мечты о жизни на Марсе и межгалактических путешествиях.

Фантазеры из далекого прошлого

Сколько существует человечество, столько его манили звезды. Поищем истоки зарождения космонавтики и начала космической эры в древних фолиантах и приведем лишь несколько примеров удивительных фактов и прозорливых предсказаний. В древнеиндийском эпосе «Бхагавадгите» (около XV веков до н. э.) целая глава посвящена наставлениям для полетов на Луну. На глиняных дощечках библиотеки ассирийского правителя Ассурбанипала (3200 лет до н. э.) повествуется о царе Этане, взлетевшему на высоту, с которой Земля выглядела как «хлеб в корзине». Жители Атлантиды покинули Землю, улетев на другие планеты. А Библия рассказывает о полете на огненной колеснице пророка Илии. А вот в 1500 году уже нашей эры изобретатель Ван Гу из Древнего Китая мог бы стать первым космонавтом, если бы не погиб. Он сделал летательный аппарат из воздушных змеев. Который должен был взлететь при поджоге 4 пороховых ракет. С XVII века Европа бредит полетами на Луну: сначала Иоганн Кеплер и Сирано де Бержерак, а позже Жюль Верн с его идеей пушечного полета.

Кибальчич, Гансвинд и Циолковский

В 1881 году, в одиночке петропавловской крепости, ожидая казни за покушение на царя Александра II Н. И. Кибальчич (1853-1881) рисует реактивную космическую платформу. Идея его проекта – создание реактивной тяги сгорающими веществами. Его проект обнаружится в архивах царской охранки лишь в 1917 году. В то же время свой космический аппарат, где тяга обеспечивается вылетающими пулями, создает немецкий ученый Г. Гансвид. А в 1883 году российский физик К. Э. Циолковский (1857-1935) описал корабль с реактивным двигателем, который воплотился в 1903 году в схему жидкостной ракеты. Именно Циолковского принято считать отцом русской космонавтики, труды которого уже в 20-х годах прошлого столетия получили широкое признание мировой общественности.

Просто спутник

Искусственный спутник, положивший начало космической эре, запустил Советский Союз с космодрома Байконур 4 октября 1957 года. Алюминиевая сфера массой 83.5 килограмма и диаметром 58 сантиметров, с четырьмя штыковыми антеннами и аппаратурой внутри взлетел на высоту перигея в 228 километров и апогея – 947 километров. Назвали его просто «Спутник-1». Столь простое устройство было данью в «холодной войне» с США, которые разрабатывали аналогичные программы. Америка с их спутником «Эксплорер-1» (стартовал 01.02.1958 года) отстала от нас почти на полгода. Советы, запустившие искусственный спутник первыми, одержали победу в этой гонке. Победу, которую уже не уступили, ведь пришло время первых космонавтов.

Собаки, кошки и обезьяны

Начало космической эры в СССР началось с первых орбитальных полетов безродных хвостатых космонавтов. Советы выбрали в качестве астронавтов собак. Америка – обезьян, а Франция – кошек. Сразу за «Спутником-1» в космос полетел «Спутник-2» с самой несчастной собакой на борту – беспородной Лайкой. Это было 3 ноября 1957 года, и возвращение любимицы Сергея Королева Лайки не предусматривалось. Всем известные Белка и Стрелка с их триумфальным полетом и возвращением на Землю 19 августа 1960 года были совсем не первыми и далеко не последними. Франция запустила в космос кошку Фелисетту (18 октября 1963 год), а США после макаки-резус (сентябрь 1961) отправили осваивать космос шимпанзе Хэма (31 января 1961 год), ставшего национальным героем.

Покорение космоса человеком

И тут Советский Союз был первым. 12 апреля 1961 года вблизи поселка Тюратам (космодром Байконур) в небо взлетел ракетоноситель Р-7 с космическим аппаратом «Восток-1». В нем в первый космический полет отправился майор военно-воздушных сил Юрий Алексеевич Гагарин. На высоте перигея в 181 км и апогея 327 км он облетел вокруг Земли и на 108 минуте полета приземлился в округе деревни Смеловка (Саратовская обл.). Мир был взорван этим событием – аграрная и лапотная Россия обогнала высокотехнологичные Штаты, а гагаринское «Поехали!» стало гимном для фанатов космоса. Это было событие общепланетарного масштаба и невероятного значения для всего человечества. Тут Америка отстала от Союза на месяц – 5 мая 1961 года ракетоноситель «Редстоун» с космическим кораблем «Меркурий-3» с мыса Канаверал на орбиту вывел американского космонавта капитана 3 ранга ВВС Алана Шепарда.

И в открытом космосе впереди Советы оказались первыми

Во время космического полета 18 марта 1965 года второй пилот подполковник Алексей Леонов (первым пилотом был полковник Павел Беляев) вышел в открытый космос и пробыл там 20 минут, удалившись от корабля на расстояние до пяти метров. Он подтвердил, что человек может находиться и работать в космическом пространстве. В июне американский космонавт Эдвард Уайт пробыл в открытом космосе всего на минуту больше и доказал возможность совершения маневров в открытом космосе при помощи ручного пистолета, работающего на сжатом газе по принципу реактивного. Начало космической эры человека в открытом космосе свершилось.

Первые человеческие жертвы

Космос подарил нам немало открытий и героев. Однако начало космической эры было ознаменовано и жертвами. Первыми погибли американцы Вирджил Гриссом, Эдвард Уайт и Роджер Чаффи 27 января 1967 года. Космический корабль «Аполлон-1» сгорел за 15 секунд из-за возгорания внутри. Первым погибшим советским космонавтом был Владимир Комаров. 23 октября 1967 года он на космическом корабле «Союз-1» после орбитального полета успешно сошел с орбиты. Но основной парашют спускаемой капсулы не раскрылся, и она на скорости 200 км/ч врезалась в землю и полностью сгорела.

Лунная программа «Аполлон»

20 июля 1969 года американские астронавты Нил Армстронг и Эдвин Олдрин ощутили под ногами поверхность Луны. Так закончился полет космического корабля «Аполлон-11» с лунным модулем «Орел» на борту. Америка таки перехватило лидерство в освоении космоса у Советского Союза. И хотя позже было множество публикаций о фальсификации факта высадки американцев на Луну, сегодня все знают Нила Армстронга как первого человека, ступившего на ее поверхность.

Орбитальные станции «Салют»

Советы оказались первыми и в запуске орбитальных станций – космических аппаратов для длительного пребывания космонавтов. «Салют» — это серия пилотируемых станций, первая из которых выведена на орбиту 19 апреля 1971 года. Всего в этом проекте на орбиту выведено 14 космических объектов по военной программе «Алмаз» и гражданской – «Долговременная орбитальная станция». В том числе станция «Мир» («Салют-8»), которая находилась на орбите с 1986 по 2001 год (затоплена на кладбище космических кораблей в Тихом океане 23.03.2001).

Первая международная космическая станция

МКС имеет сложную историю создания. Начинавшаяся как американский проект Freedom (1984), в 1992 году ставшая совместным проектом «Мир-Шаттл» и сегодня представляющая собой международный проект с 14 странами-участницами. Первый модуль МКС на орбиту вывел ракетоноситель «Протон-К» 20 ноября 1998 года. В последующем страны-участницы вывели другие соединительные блоки, и сегодня станция весит около 400 тонн. Эксплуатировать станцию планировалось до 2014 года, но проект продлен. А управляют ей совместно четыре агентства – Центр управления космическими полетами (Королев, Россия), Центр управления полетами им. Л.Джонсона (Хьюстон, США), Центр управления Европейского космического агентства (Оберпфаффенхофен, Германия) и Агентство аэрокосмических исследований (Цукуба, Япония). На станции находится экипаж из 6 космонавтов. Программа станции предусматривает постоянное присутствие людей. По данному показателю она уже побила рекорд станции «Мир» (3664 дня непрерывного пребывания). Питание абсолютно автономное – солнечные батареи весят почти 276 килограммов, мощность до 90 киловатт. На станции находятся лаборатории, теплицы и жилые помещения (пять спален), гимнастический зал и ванные комнаты.

Несколько фактов о МКС

Международная космическая станция на сегодня является самым дорогим проектом в мире. На нее уже потрачено более 157 миллиардов долларов. Скорость движения станции по орбите составляет 27,7 тысячи км/час, при весе более 41 тонн. Рассвет и закат на станции космонавты наблюдают каждые 45 минут. На борт станции в 2008 году доставили «Диск бессмертия» — устройство, содержащее оцифрованные ДНК выдающихся представителей человечества. Цель данной коллекции – сохранить человеческую ДНК на случай глобальной катастрофы. В лабораториях космической станции рождаются перепела и цветут цветы. А на ее обшивке были обнаружены жизнеспособные споры бактерий, что заставляет задуматься о возможной экспансии космоса.

Коммерциализация космоса

Без космоса человечество уже себя не представляет. Кроме всех плюсов практического освоения космического пространства, развивается и коммерческая составляющая. С 2005 года ведется строительство частных космодромов в США (Мохава), ОАЭ (Рас Альм Хаймах) и в Сингапуре. Корпорация Virgin Galactic (США) планирует космические круизы для семи тысяч туристов по доступной цене в 200 тысяч долларов. А известный космический коммерсант Роберт Бигелоу, владелец сети отелей Budget Suites of America, заявил о проекте первого орбитального отеля Skywalker. За 35 миллиардов долларов компания Space Adventures (партнер корпорации «Роскосмос») уже завтра отправит вас в космическое путешествие на срок до 10 суток. Доплатив еще 3 миллиарда, вы сможете выйти в открытый космос. Компания уже организовала туры для семи туристов, один из них – руководитель цирка du Soleil Ги Лалиберте. Эта же компания к 2018 году готовит новый туристический продукт – путешествие на Луну.

Мечты и фантазии стали былью. Один раз преодолев тяготение, человечество уже не в состоянии остановиться в своем стремлении к звездам, галактикам и вселенным. Хочется верить, что мы не заиграемся, и нас по-прежнему будут удивлять и радовать мириады звезд в ночном небе. Все таких же загадочных, манящих и фантастичных, как и в первые дни творения.

Источник: www.syl.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.