Что находится в черной дыре в космосе



Чёрная дыра
Куда ведёт чёрная дыра? Авторы и права: All About Space magazine.

Представьте, что вы вот-вот нырнёте в чёрную дыру. Что будет ожидать там, если вы, вопреки всему, выживете? Куда попадёте и какие удивительные истории сможете поведать, если найдёте дорогу назад?

Самый простой ответ на все эти вопросы даёт профессор Ричард Мэсси: “Это никому неизвестно”. Являясь научным сотрудником Королевского Исследовательского Общества при Институте космологических вычислений Даремского университета, Мэсси ясно осознаёт тот факт, что тайны чёрных дыр имеют очень глубокий характер. По его словам, “пройти через горизонт событий – это всё равно, что скрыться за вуалью; никто и никогда не сможет отправить какое-либо сообщение наружу. Попавший внутрь объект был бы раздавлен гравитацией чудовищной силы, так что я сильно сомневаюсь в том, что таким способом можно куда-либо попасть”.


Если такой ответ вас разочаровывает, то это не удивительно. Когда Альберт Эйнштейн разрабатывал свою общую теорию относительности, он предсказал особую связь пространства-времени с действием гравитационных сил чёрных дыр, а теперь известно и то, что эти космические аномалии появляются в результате смерти массивных звёзд, от которых остаётся лишь маленькое ядро высокой плотности.

Масса этого ядра по самым грубым расчётам превышает массу Солнца минимум в три раза, а сила гравитации достигает настолько высоких значений, что такое тело будет сжиматься в одну точку пространства (сингулярность), пока не станет ядром чёрной дыры бесконечной плотности. Таким образом, внутри чёрной дыры невозможна никакая жизнь, и даже свет не способен сопротивляться притяжению гравитационного поля. Так что, случись вам оказаться у горизонта событий (этот термин предложил немецкий астроном Карл Шварцшильд для обозначения границы чёрной дыры, после которой свет и материя могут двигаться только внутрь, но не наружу) – выхода больше нет. По словам Мэсси, приливные силы гравитационного поля превратят ваше тело в нити из атомов (этот эффект называется “спагеттификацией”), пока сингулярность не расщепит его полностью. Сама идея о том, что после такого можно куда-нибудь выскочить – включая “другую сторону” – кажется чрезвычайно фантастичной.

А как же червоточины?

Или не кажется? Многие годы учёные рассматривают вероятность того, что чёрные дыры могут являться червоточинами в другие галактики. Они могут быть даже – как некоторые предполагают – дверью в другую Вселенную.


Эта идея некоторое время витает в научных кругах: ещё в 1935 году Эйнштейн объединился с Натаном Розеном для того, чтобы вывести теорию о “мостах” между двумя разными точками пространства-времени. Новый виток обсуждений пришёлся на 1980 год, когда физик Кип Торн – один из главных мировых экспертов по общей теории относительности – поднял дискуссию о возможности физического перемещения объектов по таким “мостам”.

Мэсси признаётся: “будучи ребёнком, я вдохновился на изучение физики именно после прочтения научно-популярной книги Торна о червоточинах. Но сейчас мне не кажется, что они существуют”.

Сам Торн (который, кстати, консультировал режиссёрскую команду фильма “Интерстеллар”), пишет в своей новой книге: “сейчас мы не наблюдаем во Вселенной объекты, которые могли бы являться червоточинами”. В своём интервью для SpaceCom он заявил, что путешествия через такие гипотетические туннели скорее всего останутся научной фантастикой. Твёрдых доказательств того, что чёрные дыры могут для этого сгодиться, на данный момент нет.

Проблема в том, что мы не можем подобраться поближе и выяснить всё наверняка. Мы даже не можем сфотографировать то, что происходит внутри такого тела: так как весь свет вокруг поглощается центром дыры, то камера запечатлеет только черноту. На данный момент считается, что любой объект, пересёкший горизонт событий, просто становится частью чёрной дыры. А поскольку время искажается при приближении к этой границе, все события здесь будут происходить крайне медленно, из-за чего ответы мы получим ну очень нескоро.


“Я думаю, что попавшие в чёрную дыру объекты будут двигаться к концу времён”, – заявляет Дуглас Финкбейнер, профессор астрономии и физики Гарвардского Университета. “Наблюдающий издалека астронавт не увидит, как его коллега провалится внутрь, тот лишь будет становиться всё более красным и тусклым из-за так называемого гравитационного красного смещения. Но с позиции провалившегося, он будет падать прямо к центру, в место за гранью “вечности”. Что бы это ни значило”.

Чёрная дыра может вести к белой дыре

Определенно, если чёрная дыра ведёт в другую часть галактики или другую Вселенную, то там, на другой стороне, должен быть противоположный объект. Может быть, это белая дыра? Такую теорию выдвинул в 1964 году русский космолог Игорь Новиков. Он предположил, что чёрная дыра связана с белой, которая существует в прошлом. В отличие от чёрной, белая испускает свет и материю, но не позволяет им попасть внутрь.

Вместо уничтожения поглощённой информации, схлопнувшаяся чёрная дыра начнёт колебаться, произойдёт мощный квантовый скачок. В этом случае становится обоснованным предположение физика-теоретика Стивена Хокинга, сделанное им в 1970 году. Он говорил о вероятности того, что причиной термального излучения чёрной дыры (т.е. излучения частиц и радиации) является квантовая нестабильность.


Червоточина
Художественная концепция червоточины. Если червоточины существуют, то они могут привести нас в другую Вселенную. Но нет никаких доказательств того, что червоточины реальны. Авторы и права: Shutterstock.

Хокинг заявил, что чёрные дыры не могу существовать вечно. По его расчётам получается, что излучение радиации приводит к потере энергии, а затем к сжатию и смерти космического тела, а вся информация, которая к этому времени окажется поглощена исчезнет.

Это заявление вступает в противоречие с квантовой теорией, которая гласит, что информация не может быть уничтожена.

Идея Хокинга привела к “информационному парадоксу чёрной дыры” и долгое время ломала головы учёных. Некоторые считали, что Хокинг попросту не прав – Стивен и сам в 2004 году заявил о допущенной ошибке.

И что же, нам стоит вернуться к концепции чёрной дыры, которая выпускает поглощённую информацию через белую? Возможно. В 2013 году в журнале Physical Review Letters были опубликованы результаты исследования Джорджа Пуллина и Рудольфа Гамбини. Они применили петлевую квантовую гравитацию к чёрной дыре и обнаружили, что сила гравитации увеличивается до определённого момента приближения к ядру, но затем становится слабее и вышвыривает объект в другой регион Вселенной. Это исследование подтверждает идею о том, что чёрные дыры служат порталами, сингулярности внутри нет и затянутые объекты не уничтожаются. Информация не исчезает.


Может, чёрные дыры ведут в никуда?

Однако, физики Ахмед Альмхейри, Дональд Марольф, Джозеф Полчински и Джеймс Салли уверены, что Хокинг в чём-то был прав. Они разработали гипотезу огненной стены внутри чёрной дыры. По их расчётам, квантовые механизмы, вероятно, могут преобразовывать горизонт событий в гигантскую стену огня, из-за чего любой попавший туда объект мгновенно сгорит. С этой точки зрения, чёрные дыры ведут в никуда, ведь ничего не может проникнуть внутрь.

Эта теория, однако, противоречит общей теории относительности Эйнштейна, ведь, согласно ей, попавший в чёрную дыру объект не должен сталкиваться с препятствиями какого угодно рода – он лишь будет подвержен свободному падению к центру космического тела. К тому же, идея огненной стены противоречит и теории квантового поля, ведь допускает вероятность полного уничтожения информации.

Событие приливного разрушения
Событие приливного разрушения происходит, когда звезда приближается достаточно близко к горизонту событий сверхмассивной чёрной дыры. Авторы и права: All About Space.

Чёрная дыра неопределенности

Вернёмся к Стивену Хокингу. В 2014 году он опубликовал исследование, в котором предложил отказаться от термина “горизонт событий”. По его мнению, гравитационный коллапс приводит к образованию другого явления, которое он назвал “видимым горизонтом”.


Этот горизонт на “определённый временной период” задерживает лучи света и материю внутри, расщепляет и смешивает их, а затем выпускает обратно. Такое объяснение хорошо ложится на квантовую теорию, ведь информация сохраняется, а не уничтожается. Таким образом, любой попавший внутрь объект со временем может выбраться из чёрной дыры. Хокинг пошёл дальше и поставил под сомнение сам факт существования чёрных дыр, написав: “чёрные дыры следует переименовать в объекты метастабильной связи гравитационного поля. Вероятно, что сингулярности нет, а видимый горизонт, который будет сжиматься внутрь под действием гравитационных сил, никогда не достигнет центра объекта и будет консолидирован в плотную массу”.

В этом случае, выпущенные объекты будут иметь совершенно иную форму от той, в которой находились при поглощении. Вряд ли удастся, глядя на выпущенный объект, точно определить, чем он являлся ранее. Что, разумеется, будет не очень приятной новостью для, скажем, попавших внутрь астронавтов.

Одно известно наверняка: эта загадка будет занимать умы учёных ещё очень долгое время.


велли и Франческа Видотто недавно предположили, что компоненты тёмной материи могут быть сформированы из останков испарившихся чёрных дыр, а в опубликованных в 2018 году записях Хокинга “О чёрных дырах и мягких волосах” он объясняет, как частицы нулевой энергии сохраняются около точки невозврата, горизонта событий, вместо того, чтобы исчезнуть. Многие физики сейчас изучают чёрные дыры с позиции физики элементарных частиц и в этой области уже появились смелые теории. Учёные активно обсуждают эти идеи, но потребуется ещё немало времени для того, чтобы точно заявить, куда же ведут чёрные дыры. Если бы только мы могли запрыгнуть хотя бы в одну их них…

Перевод: Дмитрий Гришин (специально для ресурса UniverseTodayRu).

Источник: universetoday.ru

Черная дыра Правообладатель иллюстрации Thinkstock

Возможно, вы думаете, что человека, попавшего в черную дыру, ждет мгновенная смерть. В действительности же его судьба может оказаться намного более удивительной, рассказывает корреспондент BBC Earth.

Что произойдет с вами, если вы попадете внутрь черной дыры? Может быть, вы думаете, что вас раздавит — или, наоборот, разорвет на клочки? Но в действительности все гораздо страннее.


В тот момент, когда вы попадете в черную дыру, реальность разделится надвое. В одной реальности вас мгновенно испепелит, в другой же — вы нырнете вглубь черной дыры живым и невредимым.

Внутри черной дыры не действуют привычные нам законы физики. Согласно Альберту Эйнштейну, гравитация искривляет пространство. Таким образом, при наличии объекта достаточной плотности пространственно-временной континуум вокруг него может деформироваться настолько, что в самой реальности образуется прореха.

Массивная звезда, израсходовавшая все топливо, может превратиться именно в тот тип сверхплотной материи, который необходим для возникновения подобного искривленного участка Вселенной. Звезда, схлопывающаяся под собственной тяжестью, увлекает за собой пространственно-временной континуум вокруг нее. Гравитационное поле становится настолько сильным, что даже свет больше не может из него вырваться. В результате область, в которой ранее находилась звезда, становится абсолютно черной — это и есть черная дыра.

Правообладатель иллюстрации Thinkstock
Image caption Никто точно не знает, что происходит внутри черной дыры

Внешняя поверхность черной дыры называется горизонтом событий. Это сферическая граница, на которой достигается баланс между силой гравитационного поля и усилиями света, пытающегося покинуть черную дыру. Если пересечь горизонт событий, вырваться будет уже невозможно.


Горизонт событий лучится энергией. Благодаря квантовым эффектам, на нем возникают потоки горячих частиц, излучаемых во Вселенную. Это явление называется излучением Хокинга — в честь описавшего его британского физика-теоретика Стивена Хокинга. Несмотря на то, что материя не может вырваться за пределы горизонта событий, черная дыра, тем не менее, «испаряется» — со временем она окончательно потеряет свою массу и исчезнет.

По мере продвижения вглубь черной дыры пространство-время продолжает искривляться и в центре становится бесконечно искривленным. Эта точка известна как гравитационная сингулярность. Пространство и время в ней перестают иметь какое-либо значение, а все известные нам законы физики, для описания которых необходимы эти два понятия, больше не действуют.

Никто не знает, что именно ждет человека, попавшего в центр черной дыры. Иная вселенная? Забвение? Задняя стенка книжного шкафа, как в американском научно-фантастическом фильме «Интерстеллар»? Это загадка.

Давайте порассуждаем — на вашем примере — о том, что произойдет, если случайно попасть в черную дыру. Компанию в этом эксперименте вам составит внешний наблюдатель — назовем его Анной. Итак, Анна, находящаяся на безопасном расстоянии, в ужасе наблюдает за тем, как вы приближаетесь к границе черной дыры. С ее точки зрения события будут развиваться весьма странным образом.


По мере вашего приближения к горизонту событий Анна будет видеть, как вы вытягиваетесь в длину и сужаетесь в ширину, будто она рассматривает вас в гигантскую лупу. Кроме того, чем ближе вы будете подлетать к горизонту событий, тем больше Анне будет казаться, что ваша скорость падает.

Правообладатель иллюстрации Thinkstock
Image caption В центре черной дыры пространство бесконечно искривлено

Вы не сможете докричаться до Анны (поскольку в безвоздушном пространстве звук не передается), но можете попытаться подать ей знак азбукой Морзе при помощи фонарика в вашем iPhone. Однако ваши сигналы будут достигать ее со все возрастающими интервалами, а частота света, испускаемого фонариком, будет смещаться в сторону красного (длинноволнового) участка спектра. Вот как это будет выглядеть: «Порядок, п о р я д о к, п о р я…».

Когда вы достигнете горизонта событий, то, с точки зрения Анны, замрете на месте, как если бы кто-то поставил воспроизведение на паузу. Вы останетесь в неподвижности, растянутым по поверхности горизонта событий, и вас начнет охватывать все возрастающий жар.

С точки зрения Анны, вас будут медленно убивать растяжение пространства, остановка времени и жар излучения Хокинга. Прежде чем вы пересечете горизонт событий и углубитесь в недра черной дыры, от вас останется один пепел.

Но не спешите заказывать панихиду — давайте на время забудем об Анне и посмотрим на эту ужасную сцену с вашей точки зрения. А с вашей точки зрения будет происходить нечто еще более странное, то есть ровным счетом ничего особенного.

Вы летите прямиком в одну из самых зловещих точек Вселенной, не испытывая при этом ни малейшей тряски — не говоря уже о растяжении пространства, замедлении времени или жаре излучения. Все потому, что вы находитесь в состоянии свободного падения и поэтому не чувствуете своего веса — именно это Эйнштейн назвал «самой удачной идеей» своей жизни.

Действительно, горизонт событий — это не кирпичная стена в космосе, а явление, обусловленное точкой зрения наблюдающего. Наблюдатель, остающийся снаружи черной дыры, не может заглянуть внутрь сквозь горизонт событий, но это его проблема, а не ваша. С вашей точки зрения никакого горизонта не существует.

Если бы размеры нашей черной дыры были меньше, вы и правда столкнулись бы с проблемой — гравитация действовала бы на ваше тело неравномерно, и вас вытянуло бы в макаронину. Но, по счастью для вас, данная черная дыра велика — она в миллионы раз массивнее Солнца, так что гравитационная сила достаточно слаба, чтобы можно было ею пренебречь.

Правообладатель иллюстрации Thinkstock
Image caption Вы не можете вернуться и выбраться из черной дыры — точно так же, как никто из нас не способен на путешествие в прошлое

Внутри достаточно крупной черной дыры вы даже сможете вполне нормально прожить остаток жизни, пока не умрете в гравитационной сингулярности.

Вы можете спросить, насколько нормальной может быть жизнь человека, помимо воли увлекаемого к дыре в пространственно-временном континууме без шанса на то, чтобы когда-нибудь выбраться наружу?

Но если вдуматься, нам всем знакомо это ощущение — только применительно ко времени, а не к пространству. Время идет только вперед и никогда вспять, и оно действительно влечет нас за собою помимо нашей воли, не оставляя нам шанса на возвращение в прошлое.

Это не просто аналогия. Черные дыры искривляют пространственно-временной континуум до такой степени, что внутри горизонта событий время и пространство меняются местами. В каком-то смысле вас влечет к сингулярности не пространство, а время. Вы не можете вернуться назад и выбраться из черной дыры — точно так же, как никто из нас не способен на путешествие в прошлое.

Возможно, теперь вы задаетесь вопросом, что же не так с Анной. Вы летите себе в пустом пространстве черной дыры и с вами все в порядке, а она оплакивает вашу гибель, утверждая, что вас испепелило излучение Хокинга с внешней стороны горизонта событий. Уж не галлюцинирует ли она?

В действительности утверждение Анны совершенно справедливо. С ее точки зрения, вас действительно поджарило на горизонте событий. И это не иллюзия. Анна может даже собрать ваш пепел и отослать его вашим родным.

Правообладатель иллюстрации Thinkstock
Image caption Горизонт событий — не кирпичная стена, он проницаем

Дело в том, что, в соответствии с законами квантовой физики, с точки зрения Анны вы не можете пересечь горизонт событий и должны остаться с внешней стороны черной дыры, поскольку информация никогда не теряется безвозвратно. Каждый бит информации, отвечающий за ваше существование, обязан оставаться на внешней поверхности горизонта событий — иначе с точки зрения Анны, будут нарушены законы физики.

С другой стороны, законы физики также требуют, чтобы вы пролетели сквозь горизонт событий живыми и невредимыми, не повстречав на своем пути ни горячих частиц, ни каких-либо иных необычных явлений. В противном случае будет нарушена общая теория относительности.

Итак, законы физики хотят, чтобы вы одновременно находились снаружи черной дыры (в виде горстки пепла) и внутри нее (в целости и сохранности). И еще один немаловажный момент: согласно общим принципам квантовой механики, информацию нельзя клонировать. Вам нужно находиться в двух местах одновременно, но при этом лишь в одном экземпляре.

Такое парадоксальное явление физики называют термином «исчезновение информации в черной дыре». По счастью, в 1990-х гг. ученым удалось этот парадокс разрешить.

Американский физик Леонард Зюсскинд понял, что никакого парадокса на самом деле нет, поскольку никто не увидит вашего клонирования. Анна будет наблюдать за одним вашим экземпляром, а вы — за другим. Вы с Анной никогда больше не встретитесь и не сможете сравнить наблюдения. А третьего наблюдателя, который мог бы наблюдать за вами как снаружи, так и изнутри черной дыры одновременно, не существует. Таким образом, законы физики не нарушаются.

Разве что вы захотите узнать, какой из ваших экземпляров реален, а какой нет. Живы вы в действительности или умерли?

Правообладатель иллюстрации Thinkstock
Image caption Пролетит ли человек сквозь горизонт событий целым и невредимым или врежется в огненную стену?

Дело в том, что никакого «в действительности» нет. Реальность зависит от наблюдателя. Существует «в действительности» с точки зрения Анны и «в действительности» с вашей точки зрения. Вот и всё.

Почти всё. Летом 2012 г. физики Ахмед Альмхеири, Дональд Маролф, Джо Полчински и Джеймс Салли, коллективно известные под английской аббревиатурой из первых букв своих фамилий как AMPS, предложили мысленный эксперимент, который грозил перевернуть наше представление о черных дырах.

По словам ученых, разрешение противоречия, предложенное Зюсскиндом, основывается на том, что разногласие в оценке происходящего между вами и Анной опосредовано горизонтом событий. Неважно, действительно ли Анна видела, как один из двух ваших экземпляров погиб в огне излучения Хокинга, поскольку горизонт событий не давал ей увидеть ваш второй экземпляр, улетающей вглубь черной дыры.

Но что, если бы у Анны имелся способ узнать, что происходит по ту сторону горизонта событий, не пересекая его?

Общая теория относительности говорит нам, что это невозможно, но квантовая механика слегка размывает жесткие правила. Анна могла бы одним глазком заглянуть за горизонт событий при помощи того, что Эйнштейн называл «жутким дальнодействием».

Речь идет о квантовой запутанности — явлении, при котором квантовые состояния двух или более частиц, разделенных пространством, загадочным образом оказываются взаимозависимыми. Эти частицы теперь формируют единое и неделимое целое, а информация, необходимая для описания этого целого, заключена не в той или иной частице, а во взаимосвязи между ними.

Идея, выдвинутая AMPS, звучит следующим образом. Предположим, Анна берет частицу поблизости от горизонта событий — назовем ее частицей A.

Если ее версия произошедшего с вами соответствует действительности, то есть вас убило излучение Хокинга с внешней стороны черной дыры, значит, частица A должна быть взаимосвязана с другой частицей — B, которая также должна находиться с внешней стороны горизонта событий.

Правообладатель иллюстрации Thinkstock
Image caption Черные дыры могут притягивать к себе материю близлежащих звезд

Если действительности соответствует ваше видение событий, и вы живы-здоровы с внутренней стороны, тогда частица A должна быть взаимосвязана с частицей C, находящейся где-то внутри черной дыры.

Прелесть этой теории заключается в том, что каждая из частиц может быть взаимосвязана только с одной другой частицей. Это значит, что частица A связана или с частицей B, или с частицей C, но не с обеими одновременно.

Итак, Анна берет свою частицу A и пропускает ее через имеющуюся у нее машинку для расшифровки запутанности, которая дает ответ — связана ли эта частица с частицей B или с частицей C.

Если ответ — C, ваша точка зрения восторжествовала в нарушение законов квантовой механики. Если частица A связана с частицей C, находящейся в недрах черной дыры, то информация, описывающая их взаимозависимость, оказывается навсегда утерянной для Анны, что противоречит квантовому закону, согласно которому информация никогда не теряется.

Если же ответ — B, то, вопреки принципам общей теории относительности, права Анна. Если частица A связана с частицей B, вас действительно испепелило излучение Хокинга. Вместо того, чтобы пролететь сквозь горизонт событий, как того требует теория относительности, вы врезались в стену огня.

Итак, мы вернулись к вопросу, с которого начинали — что произойдет с человеком, попавшим внутрь черной дыры? Пролетит ли он сквозь горизонт событий целым и невредимым благодаря реальности, которая удивительным образом зависит от наблюдателя, или врежется в огненную стену (black holes firewall, не путать с компьютерным термином firewall, «брандмауэр», программным обеспечением, защищающим ваш компьютер в сети от несанкционированного вторжения – Ред.)?

Никто не знает ответа на этот вопрос, один из самых спорных вопросов теоретической физики.

Уже свыше 100 лет ученые пытаются примирить принципы общей теории относительности и квантовой физики в надежде на то, что в конце концов та или другая возобладает. Разрешение парадокса «огненной стены» должно ответить на вопрос, какие из принципов взяли верх, и помочь физикам создать всеобъемлющую теорию.

Правообладатель иллюстрации Thinkstock
Image caption А может, в следующий раз отправить в черную дыру Анну?

Решение парадокса исчезновения информации может крыться в дешифровальной машинке Анны. Определить, с какой именно другой частицей взаимосвязана частица A, чрезвычайно трудно. Физики Дэниэл Харлоу из Принстонского университета в Нью-Джерси и Патрик Хайден, который сейчас работает в калифорнийском Стэнфордском университете в Калифорнии, задались вопросом, сколько на это потребуется времени.

В 2013 г. они подсчитали, что даже при помощи наибыстрейшего компьютера, который возможно создать в соответствии с физическими законами, Анне потребовалось бы чрезвычайно много времени на то, чтобы расшифровать взаимосвязь между частицами — настолько много, что к тому моменту, как она получит ответ, черная дыра давным-давно испарится.

Если это так, вероятно, Анне просто не суждено когда-либо узнать, чья точка зрения соответствует действительности. В этом случае обе истории останутся одновременно правдивыми, реальность — зависящей от наблюдателя, и ни один из законов физики не будет нарушен.

Кроме того, связь между сверхсложными вычислениями (на которые наш наблюдатель, по всей видимости, не способен) и пространственно-временным континуумом может натолкнуть физиков на какие-то новые теоретические размышления.

Таким образом, черные дыры — не просто опасные объекты на пути межзвездных экспедиций, но и теоретические лаборатории, в которых малейшие вариации в физических законах вырастают до таких размеров, что ими уже невозможно пренебречь.

Если где-то и таится истинная природа реальности, искать ее лучше всего в черных дырах. Но пока у нас нет четкого понимания того, насколько безопасен для человека горизонт событий, наблюдать за поисками безопаснее все же снаружи. В крайнем случае можно в следующий раз отправить в черную дыру Анну — теперь ее очередь.

Прочитать оригинал этой статьи на английском языке можно на сайте BBC Earth.

Источник: www.bbc.com

Что такое чёрная дыра?

Приблизительно так выглядят чёрные дыры (Взято из Яндекса)

Чёрные дыры — массивные космические объекты. Увидеть их почти невозможно, поскольку они не отражают свет, даже наоборот, поглощают его в прямом смысле слова. Их сила притяжения настолько велика, что даже лучи света не могут устоять, и они попадают под влияние дыры. Поэтому, вокруг неё "изображение" космоса нам кажется расплывчатым и искажённым. Это видно на картинке выше.

Чёрные дыры не чёрные шары, какими мы привыкли видеть их. Они прозрачные, но оставляют чёрную тень. Это даже не дыра, а шарообразный поглотитель всего, что попадает под влияние его гравитации.

Как возникают чёрные дыры?

Жизненный цикл массивной звёзды (Взято из Яндекса)

Звёзды, превышающие размеры нашего Солнца во много раз, в конце своей жизни взрываются и образуют либо нейтронную звезду, либо начинают сильно сжиматься, словно "падая" внутрь себя, стремительно уменьшая свои размеры при неизменной массе. Плотность материи в сжимаемой точке становится очень высокой, соответственно гравитация сильно увеличивается. Когда размер звёзды становится настолько мал и плотность настолько высока в одном месте, звезда "проваливается" внутрь себя, в результате чего появляется чёрная дыра.

Чёрная дыра, скажем, массой с одно наше Солнце будет по размеру меньше, чем наше светило.

Однако, такие маленькие звёзды как наше Солнышко (а по вселенским размером оно очень маленькое) не превратятся в конце жизненного цикла в чёрную дыру — их масса недостаточна даже для взрыва и образования сверхновой. Взрыв, конечно, будет, однако на финальном этапе маленькие звёзды превращаются в белых карликов — в очень маленькие и горячие звёздочки, которые тоже вскоре затухнут…

Где находятся чёрные дыры?

В центре галактик есть сверхмассивные чёрные дыры (Взято из Яндекса)

Чаще всего чёрные дыры расположены в центре галактик. Они имеют ОЧЕНЬ большую силу притяжения, благодаря чему им удаётся удерживать звёздные системы на очень большом расстоянии, образуя галактики, известные нам сейчас.

В центре нашего Млечного Пути тоже есть сверхмассивная чёрная дыра под названием Стрелец А*. Она тяжелее Солнца в 4.02 млн раза, а радиус её ≈ 45 астрономическим единицам (одна астрономическая единица = одному расстоянию от Земли до Солнца).

Помимо сверхмассивных чёрных дыр в центрах галактики, есть и "локальные", образующиеся после кончины массивных звёзд, про которых я уже писал ранее.

Есть теория, что на краю нашей собственной Солнечной системы тоже есть небольшая чёрная дыра… но об этом как-нибудь в другой раз.

Строение чёрной дыры.

Строение чёрной дыры (Взято из Яндекса)

Что будет, если попасть в чёрную дыру?

Я не буду описывать то, каким будет казаться тело при попадании в чёрную дыру со стороны, я расскажу, что станет непосредственно с самим телом.

На картинке выше показано строение чёрной дыры. Её внешней границей является горизонт событий (на излучение Хоккинга не обращаем внимание) — точка невозврата, после которой чёрную дыру покинуть невозможно.

Если тело проникло внутрь горизонта событий, оно больше не вернётся обратно. Никогда.

Давайте представим, что будет чувствовать и видеть человек, если попадёт в чёрную дыру.

Вот решил человек познать, что находится внутри чёрной дыры. Полетел он прямиком к, скажем… Стрельцу А*. Вот летит он летит, а до чёрной дыры — рукой подать. В прямом смысле. Вышел он из своего космолёта и полетел в чёрную бездну.

При пересечении горизонта событий наш человек не почувствует ничего странного: ни покалывания, ни боли, не услышит какой-нибудь свист или не унюхает новый для него горьковато-сладкий запах. Никаких признаков пересечения горизонта событий не будет… На первый взгляд.

Обернувшись назад, наш человек сможет увидеть всю историю нашей вселенной, от рождения, до её гибели. (Подробнее об этом вы можете почитать в интернете)

С каждым мгновением человек будет ускоряться, приближаясь к сингулярности. (Сингулярность — грубо говоря "ядро" чёрной дыры) Чем ближе он будет подлетать к сингулярности, тем хуже будут обстоять дела космонавта: приливные силы начнут становиться неоднородными, из-за чего любое тело начнёт сжиматься и вытягиваться. Такое явление в науке называется спагеттификация. Грубо говоря, человека расплющат в длинную тонкую макаронину. Далее — веселее — тело начнёт делить на субатомные частицы, оно фактически исчезнет, распавшись на ничто.

Это всё! Это была пробная и эксперементальная статья. Я надеюсь, вам она понравилась! Пишите комментарии, ставьте лайки, делиться статьёй. Спасибо!

Источник: zen.yandex.ru

Размеры чёрных дыр

Учёные считают, что самые маленькие чёрные дыры, размером всего в один атом, могли возникнуть в первые мгновения существования Вселенной. Подобные условия создают на большом адронном коллайдере, и у общественности возникают опасения, что это может привести к возникновению чёрной дыры.

Другой вид чёрных дыр называется «звёздным». Их масса может быть в 20 раз больше массы Солнца. В нашей галактике возможно существование множества чёрных дыр звёздной массы.

Самые большие чёрные дыры называются «сверхмассивными». Они имеют массы, которые составляют более 1 миллиона Солнц. Ученые нашли доказательства того, что каждая большая галактика содержит сверхмассивную черную дыру в своем центре. Такой объект в центре галактики Млечный Путь называется Стрелец А. Она имеет массу, равную примерно 4 миллионам Солнц.

Рекомендуем: Что такое магнитная буря

Как образуются чёрные дыры

Такие большие объекты, как звёзды, обладают большой гравитацией. Вся материя звезды всегда притягивается к центру, но термоядерные реакции не позволяют ей схлопнуться. То есть с одной стороны работает притяжение, а с другой давление, которое удерживает форму звезды.

Самой популярной считается теория, что чёрная дыра — это конечная стадия жизни звезды с очень большой массой, превышающей как минимум массу 20 Солнц. Когда внутри такой звезды прекращаются термоядерные реакции (заканчивается топливо), то под действием своей огромной гравитации она ускоренно сжимается в нейтронную звезду. В зависимости от своей начальной массы, она может остаться сверхплотной нейтронной звездой либо продолжить сжиматься с такой силой, что даже свет не сможет покинуть её пределы — это и будет чёрная дыра.

Существует и другой сценарий, когда все те же процессы происходят с межзвёздным газом, находящимся на стадии превращения в галактику или какое-то скопление. Если внутреннее давление не может компенсировать гравитацию, то вся материя начинает сжиматься, что приводит к образованию чёрной дыры.

Как учёные узнают о чёрных дырах

Чёрная дыра не излучает и не отражает свет подобно большинству других объектов во Вселенной. Но ученые могут фиксировать, как сильная гравитация влияет на звёзды и газ вокруг чёрной дыры. По поведению объектов, рядом с которыми есть чёрная дыра, собственно можно доказать её наличие.

  1. Звёзды вращаются вокруг центра гравитации. Если в этом месте ничего нет, значит есть вероятность, что это чёрная дыра.
  2. Из окружающего пространства чёрная дыра постоянно притягивает материю. Космическая пыль, газ, вещество ближайших звезд — всё это падает на неё по спирали, образуя аккреционный диск. Испытывая ускорение, частицы порождают излучение в характерном спектре. В области, откуда это излучение пришло, наверняка есть чёрная дыра.

Может ли чёрная дыра уничтожить Землю

Чёрные дыры не передвигаются по космосу, поглощая звёзды, луны и планеты. Земля не упадет в чёрную дыру, потому что ни одна из них не находится достаточно близко к Солнечной системе.

Вас может заинтересовать: Что будет, если Земля перестанет вращаться

Даже если бы в центре нашей системы образовалась чёрная дыра той же массы, что Солнце, Землю всё равно бы не затянуло туда. Чёрная дыра будет иметь ту же гравитацию, что и Солнце. Земля и другие планеты будут вращаться вокруг неё, как они вращаются вокруг Солнца.

В любом случае Солнце не такая большая звезда, чтобы когда-то превратиться в чёрную дыру. 

Источник: topor.info

Алексей Понятов,
кандидат физико-математических наук
«Наука и жизнь» №5, 2019

Астрономы добились огромного успеха — впервые получили изображение сверхмассивной чёрной дыры в центре галактики. Но что мы видим на полученном изображении, как оно получено и почему выбрана именно галактика М87?

Чёрные дыры — необычные космические объекты, предсказанные общей теорией относительности Эйнштейна. Они имеют гигантские массы и исключительно компактные размеры. Их гравитация настолько велика, что не позволяет «убежать» от них даже свету. Граница области, которую не может покинуть свет, называется горизонтом событий, а её радиус — гравитационным радиусом. Гравитационный радиус считают размером чёрной дыры.

Если чёрная дыра сферически симметрична и не вращается, её гравитационный радиус можно вычислить по формуле, полученной в 1916 году немецким физиком Карлом Шварцшильдом из общей теории относительности Эйнштейна. Эту расчётную величину называют радиусом Шварцшильда (RS). Чтобы возникла чёрная дыра, массивное тело должно быть сжато до размера, меньшего RS. Для Солнца RS около 3 км, а для сверхмассивной чёрной дыры в центре Млечного Пути (Sgr A*) он составляет примерно 12,7 миллиона километров. Это всего лишь в 20 раз больше Солнца. Сверхмассивная чёрная дыра в центре галактики М87 — одна из самых больших среди известных. Для неё радиус Шварцшильда около 20 миллиардов километров, что примерно в четыре раза больше орбиты Нептуна.

Смысл названия «горизонт событий» в том, что информация о событиях, произошедших внутри этого горизонта, никогда не достигнет наблюдателя, находящегося за его пределами, ведь свет от точек внутри горизонта не сможет уйти от чёрной дыры. Эти события находятся для нас как бы за горизонтом.

По происхождению выделяют два вида чёрных дыр. Первый — чёрные дыры звёздной массы, они представляют собой остатки массивных звёзд (массой более 20 масс Солнца), которые взорвались как сверхновые. Это последний этап эволюции звёзд. Второй вид — сверхмассивные чёрные дыры с массами более 100 тысяч масс Солнца. Как они образовались, пока не ясно. По одной из гипотез, они сформировались из огромных облаков материи одновременно с галактиками. Другая гипотеза предполагает, что они возникли в результате слияния сталкивающихся чёрных дыр звёздной массы.

«Голую» чёрную дыру увидеть нельзя. Сама она практически не излучает, а падающий свет полностью поглощает, так что даже отражённым светом, подобно Луне, не светит.

Чёрные дыры ранее обнаруживали по мощному излучению из их окрестностей. Благодаря своей чудовищной гравитации они стягивают к себе вещество из окружающего пространства. Падающее на чёрную дыру вещество разгоняется до околосветовых скоростей и закручивается вокруг неё, образуя аккреционный диск. Температура плазмы в нём из-за трения достигает миллионов градусов. Поэтому аккреционный диск испускает тепловое излучение. Движение же релятивистских электронов в искривлённом магнитном поле порождает так называемое синхротронное излучение. Часто у таких чёрных дыр возникают выбрасываемые струи плазмы — джеты, тоже движущиеся с огромной скоростью. Диск и джеты — сильнейшие источники излучения во всех диапазонах электромагнитных волн. Аккреционные диски, возникшие около сверхмассивных чёрных дыр в центрах некоторых галактик, — невероятно яркие и могут затмить все остальные миллиарды звёзд этой галактики, вместе взятые.

Доказательством существования чёрных дыр служат и обнаруженные в 2015 году гравитационные волны от их слияния (см. «Наука и жизнь» № 3, 2016 г., статья «Они существуют! Гравитационные волны зарегистрированы»).

Что такое Телескоп горизонта событий и как он работает?

Даже сверхмассивные чёрные дыры, обнаруженные в центрах многих галактик, в том числе и нашего Млечного Пути, представляют собой сравнительно малые объекты, что до сих пор делало невозможным их прямое наблюдение. Ни один земной телескоп не обладает достаточным разрешением, чтобы разглядеть области такого размера. Напомним, что разрешающая способность зависит от отношения λ/D, где λ — длина волны принимаемого излучения, а D — размер телескопа. Чем меньше длина волны и больше размер телескопа, тем лучше угловое разрешение, тем более мелкие детали он может рассмотреть.

Телескоп горизонта событий (Event Horizon Telescope, EHT) предназначен именно для получения изображений чёрных дыр. Он представляет собой систему из нескольких наземных радиотелескопов, расположенных в разных местах Земли. Использование метода интерферометрии со сверхдлинной базой и вращения нашей планеты позволяет объединить их в единый гигантский телескоп размером с земной шар. Благодаря современным алгоритмам обработки данных EHT достиг углового разрешения порядка 20 микросекунд, что соответствует способности читать заголовки газет на Луне. Для сравнения: разрешение телескопа Хаббла диаметром 2,4 метра составляет около 0,05 угловой секунды, что в 2500 раз хуже.

Создание EHT было технической задачей величайшей сложности, решение которой потребовало организации и отладки всемирной сети телескопов. Хотя телескопы не связаны друг с другом физически, получаемые ими наблюдательные данные необходимо было очень точно синхронизировать при помощи атомных часов. На подготовительную работу потребовалось 10 лет и 290 миллионов долларов.

Проект EHT — это не только телескопы, но и международный коллектив, в который входят более 200 астрономов из 60 исследовательских организаций Европы, Азии, Африки, Северной и Южной Америки. Чтобы на основе наблюдений получить изображение чёрной дыры, требовались теоретические и имитационные исследования, разработка алгоритмов обработки данных.

В период с 5 по 11 апреля 2017 года EHT наблюдал M87 в течение четырёх дней. В работе участвовали восемь радиотелескопов: ALMA, APEX (Чили), 30-метровый телескоп IRAM (Испания), телескоп Джеймса Клерка Максвелла JCMT и Субмиллиметровая решётка SMA (Гавайи), Большой миллиметровый телескоп Альфонсо Серрано (LMT, Мексика), Субмиллиметровый телескоп (SMT, США) и телескоп на Южном полюсе (SPT, Антарктида).

Наблюдения велись на длине волны 1,3 мм. Это практически минимальная длина волны, на которой можно на Земле наблюдать космические объекты в радиодиапазоне. Дело в том, что атмосфера Земли прозрачна не для всех длин волн электромагнитного излучения. Радиоастрономия работает в окне прозрачности атмосферы от 1 мм до примерно 30 м. Меньшие длины волн практически полностью поглощаются молекулами газов атмосферы, в первую очередь водяного пара, а большие — отражаются обратно в космос ионосферой. Напомним, что малая длина волны нужна для получения высокого разрешения.

Работа на таких коротких волнах связана со множеством проблем: повышенный шум в электронике, поглощение излучения в атмосфере, повышенные фазовые флуктуации, вызванные атмосферной турбулентностью.

Каждый телескоп EHT в ходе кампании получил громадное количество данных: 350 терабайт в день. Их записывали на высокопроизводительные жёсткие диски, которые отсылали для обработки на специализированных суперкомпьютерах — корреляторах, установленных в Институте радиоастрономии Общества Макса Планка (Германия) и обсерватории Хэйстек (MIT, США). После сложнейших процедур с использованием новейших вычислительных методов, разработанных участниками проекта, эти данные преобразовывались в изображения. На обработку нескольких петабайтов данных, полученных всеми телескопами, потребовалось два с половиной года. Кстати, такое количество музыки, записанное в формате mp3, пришлось бы слушать не одну тысячу лет.

Для объективности в 2018 году команда разделилась на четыре группы, каждая из которых обрабатывала данные независимо от других, разными методами. Чтобы защититься от предвзятости, группы не имели контакта друг с другом. Все группы получили похожие результаты, что говорит об их надёжности.

Заметим, что в радиодиапазоне, где длина волны достаточно велика, невозможно получить фотографию объекта в привычном смысле. Информация об отдельных фрагментах изображения сложным образом зашифрована в данных интерферометра. С помощью сложных вычислений эту информацию извлекают и из фрагментов получают изображение. Однако неправы те, кто говорят, что это не реальные изображения. Вспомним, что в магнитно-резонансной томографии (МРТ) изображения тоже формируются с помощью компьютерной обработки данных, однако они объективно отображают реальное состояние организма и успешно используются в медицине для диагностики.

Почему М87?

Предполагается, что в любой галактике существует множество чёрных дыр с массой, близкой к массе звёзд, однако их размеры слишком малы для наблюдений. Сверхмассивные чёрные дыры в центрах галактик значительно крупнее, но и расположены они значительно дальше. В настоящее время для наблюдений доступны две сверхмассивные чёрные дыры: одна — в центре нашей Галактики (Sgr A*), другая — в гигантской эллиптической галактике M87 из скопления галактик в созвездии Девы.

Чёрная дыра в центре галактики М87 находится на расстоянии 55 миллионов световых лет от Земли — в две тысячи раз дальше, чем Sgr A*, однако по астрономическим меркам это совсем рядом. Размеры горизонта событий чёрной дыры пропорциональны её массе. Чёрная дыра в М87 имеет массу 6,5 миллиарда солнечных масс, в 1500 раз больше, чем Sgr A*. Благодаря огромной массе и относительной близости к Земле чёрная дыра в центре галактики M87 для земного наблюдателя — одна из крупнейших по своим угловым размерам, что и сделало её идеальной мишенью для исследования. Размер её горизонта событий — 22 микросекунды, лишь немного меньше, чем у Sgr A*, — 53 микросекунды. Он сопоставим с угловым размером спичечного коробка, помещённого на Луну.

Другая причина выбора М87 в том, что она видна и из Северного, и из Южного полушария Земли. Поэтому её могут наблюдать большое число наземных телескопов, что, в свою очередь, позволяет увеличить разрешение получаемых изображений.

Стоит отметить, что из-за большой массы чёрная дыра в М87 менее изменчива, чем Sgr A* (характерное время изменчивости — дни против минут). Изменчивость мешает наблюдениям, поскольку ограничивает время приёма стабильного сигнала. Кроме того, Sgr A* лежит для нас в галактической плоскости и скрывается газопылевыми облаками. Эти проблемы исследователям ещё придётся решать для получения изображения Sgr A*.

Что мы видим на изображении чёрной дыры?

Как уже отмечалось, саму чёрную дыру увидеть нельзя, она практически не излучает. Но если её окружает светящееся вещество, то должна наблюдаться картина в виде светящегося кольца с тёмной областью в центре, которую называют тенью чёрной дыры. Название неудачное, поскольку тёмная область — не тень. Скорее, надо говорить о силуэте чёрной дыры. Правда, размер этого силуэта примерно в 2,6 раза больше размера горизонта событий. Вид силуэта определяется сильной гравитацией чёрной дыры. Разберёмся с этим подробнее.

Гравитация чёрной дыры не отпускает от неё свет. Однако на расстоянии 1,5RS существуют орбиты, по которым свет может двигаться вокруг чёрной дыры по окружности. Все пойманные в своеобразную ловушку фотоны образуют так называемую фотонную сферу. Эти орбиты неустойчивы. Фотоны, приблизившиеся к чёрной дыре, поглощаются ею, а удалившиеся от неё — убегают в космос. Благодаря последним наблюдатель со стороны может увидеть в области тени узкое светящееся кольцо, соответствующее фотонной сфере. Правда, пока изображение получено с недостаточным разрешением, и рассмотреть на нём это кольцо невозможно.

У чёрной дыры в центре галактики M87 излучающий аккреционный диск располагается под небольшим углом к плоскости, перпендикулярной направлению на Землю. В этом случае на полученном изображении как раз и будет видно светящееся кольцо с тёмной тенью в центре, но каким будет её радиус?

Чтобы разобраться, проще рассмотреть обратный процесс: будем обстреливать чёрную дыру фотонами. Прохождение фотона мимо чёрной дыры можно охарактеризовать прицельным параметром b — минимальным расстоянием, на которое он бы приблизился к центру чёрной дыры, если бы двигался по прямой без учёта её гравитации. Геометрически это длина перпендикуляра из центра чёрной дыры на эту прямую. Вдали от чёрной дыры фотон и движется по этой прямой. Гравитация искривляет его траекторию, причём тем сильнее, чем меньше b. Если прицельный параметр станет меньше

27 R S 2 2,6 R S ,

то на своём пути вокруг чёрной дыры фотон пересечёт фотонную сферу и будет поглощён горизонтом событий. Если теперь развернуть движение фотонов в обратную сторону, то станет ясно, что из области вокруг чёрной дыры с радиусом 2,6RS излучение к наблюдателю не попадает, поскольку начала лучей для неё лежат на горизонте событий. Можно сказать, что здесь наблюдатель видит его «лицо» и «затылок». Это и будет «тень» чёрной дыры с радиусом 2,6RS. Вращение чёрной дыры немного изменит значение, но не более чем на 4%.

Интересно посмотреть, что будет в случае, когда аккреционный диск повёрнут к наблюдателю ребром? Будем ли мы наблюдать что-то помимо полоски диска, аналогичной той, которую увидим, повернув к себе ребром монету? На первый взгляд кажется, что мы ничего другого не увидим, но это — ошибочное мнение. Здесь опять вмешивается эффект искривления лучей в сильном гравитационном поле. Излучение от задней, невидимой нам половины аккреционного диска благодаря гравитации обогнёт чёрную дыру со всех сторон, и мы снова увидим вокруг тёмного силуэта светящееся кольцо с тем же радиусом «тени». Подобную чёрную дыру можно увидеть в фильме «Интерстеллар».

Отчётливо видно, что полученное ЕНТ изображение несимметрично — снизу оно значительно ярче. Это результат так называемого доплеровского усиления, из-за которого излучение вещества, движущегося на нас, будет ярче, чем удаляющегося от нас.

Почему изображение нечёткое?

В первую очередь это связано с тем, что разрешение всё же недостаточно высоко, оно сопоставимо с размером самой чёрной дыры. Представьте себе небольшую картину, нарисованную толстой кистью. Впрочем, высокое разрешение в данном случае не означает высокого качества изображения.

Дело в том, что EHT собирал информацию от чёрной дыры с помощью небольшого количества телескопов, работавших достаточно короткое время. Эти телескопы заняты ещё множеством других исследований. При каждом измерении была получена информация лишь о небольшом участке исследуемой области. К тому же при интерферометрии изображение с высоким разрешением получается только в направлении прямой, соединяющей два используемых телескопа. Поскольку измерений было недостаточно, чтобы исследовать всю область, между полученными фрагментами осталось много неисследованных мест. Так что затем исследователи должны были восстановить полное изображение, заполнив пробелы. Это похоже на частично осыпавшуюся мозаичную картину на стене, от которой осталось лишь некоторое количество отдельных фрагментов, и теперь реставраторам по ним надо восстановить исходное изображение. Разработанные алгоритмы визуализации заполняют эти пробелы, формируя изображение чёрной дыры. Разумеется, невозможно получить реальные детали изображения, попавшие в заполняемую область, ведь, по сути, она просто определённым образом закрашивается. Естественно, изображение получается размытым, лишённым мелких деталей.

Кстати, с подобными алгоритмами можно встретиться в компьютерных программах, работающих с фотографиями. При увеличении фотографии программа раздвигает её пиксели, заполняя промежутки между ними по определённому алгоритму. Легко увидеть, что фотография при этом теряет чёткость, становится размытой.

Но тогда возникает вопрос, а насколько восстановленное изображение соответствует реальности, ведь по фрагментам мозаики можно создать множество возможных картин? Здесь на помощь учёным приходит моделирование, которое позволяет из всех возможных изображений отобрать те, которые выглядят наиболее разумными.

Ещё одна проблема — неоптимальное расположение уже существующих телескопов для использования их для исследования данного объекта методом интерферометрии.

Но успешное решение этой задачи даёт надежду на то, что к исследованиям присоединятся другие телескопы и на измерения будет выделено достаточно времени, чтобы получить чёткое и детальное изображение чёрной дыры.

Почему это событие важно?

Астрофизики уже давно не сомневаются в существовании чёрных дыр, но до сих пор это была лишь модель, которая очень хорошо описывала целый ряд астрофизических явлений: излучение ядер галактик, двойные рентгеновские системы и т. д. Да, без неё трудно объяснить наблюдаемые явления, но это была всё же модель. А вот теперь мы увидели чёрную дыру воочию, это наблюдаемый факт. Кроме того, впервые получено экспериментальное подтверждение вращения чёрных дыр.

Новых результатов работа EHT в целом не принесла. Многие свойства полученного изображения даже неожиданно хорошо соответствуют теоретическим представлениям. Но, с другой стороны, это даёт уверенность в правильности методов измерения и интерпретации результатов, в том числе и оценок массы чёрной дыры.

Зато в дальнейшем доработанный метод и более масштабные наблюдения, возможно, с участием космического телескопа позволят детально наблюдать процессы около чёрной дыры, которые тоже до сих пор были только моделью. Благодаря этому астрофизики смогут «разобраться» с вопросами по сильным гравитационным эффектам, ожидаемым вблизи чёрной дыры, по поведению вещества вблизи чёрной дыры, в том числе и с механизмом возникновения джетов.

Результаты наблюдений можно использовать для тестирования общей теории относительности и различных альтернативных теорий гравитации, которые предсказывают, например, разную форму «тени». Так, общая теория относительности предсказывает, что «тень» чёрной дыры будет круглой, а другие теории предполагают, что она сжата вдоль различных осей и имеет сложную форму. Но для того чтобы увидеть различия, надо получить более чёткое её изображение.

Одна из дальнейших целей EHT — понять, почему, в отличие от других галактик, сверхмассивная чёрная дыра в центре Млечного Пути сравнительно тусклый объект — её яркость всего в несколько сотен раз больше яркости Солнца.

Примет ли Россия участие в проекте?

Россия не принимала участие в проекте в первую очередь потому, что не имеет современных радиотелескопов, работающих в миллиметровом диапазоне длин волн. Например, крупнейший в мире космический радиотелескоп «Радиоастрон» (запущен в 2011 году) с диаметром антенны 10 метров, позволивший достигнуть рекордных значений разрешения, работает в сантиметровом диапазоне.

Но ситуация может измениться. В 2018 году Россия и Узбекистан приняли решение достроить на юге Узбекистана уникальный радиотелескоп «Суффа» на одноимённом плато, который должен работать именно в миллиметровом диапазоне. Строительство этого 70-метрового радиотелескопа началось в 1985 году, но в 1991 году было законсервировано. Если всё пойдёт по плану, то телескоп сможет войти в строй к 2024 году. Стоимость работ порядка 4 миллиардов рублей.

Кроме того, в планах российских астрономов запуск космической обсерватории «Миллиметрон» (Спектр-М) с 10-метровым зеркалом, предназначенной для исследований в миллиметровом и инфракрасном диапазонах. Космический телескоп благодаря значительному удалению от Земли существенно увеличивает разрешающую способность интерферометра. Однако, скорее всего, «Миллиметрон» запустят лишь после 2030 года.

В случае ввода в строй этих телескопов Россия, возможно, сможет принять участие в проекте EHT.

Источник: elementy.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.