Ближний космос


КОСМИ́ЧЕСКОЕ ПРОСТРА́НСТВО, кос­мос (от греч. ϰόσμος – упо­ря­до­чен­ность, кра­со­та; ми­ро­зда­ние, вклю­чая Зем­лю; ред­ко – не­бес­ный свод; в сов. тер­ми­но­ло­гии си­но­ним англ. outer space – вне­пла­нет­ное про­стран­ст­во), про­стран­ст­во, про­сти­раю­щее­ся в ос­нов­ном за пре­де­ла­ми ат­мо­сфе­ры Зем­ли. Вклю­ча­ет око­ло­зем­ное, меж­пла­нет­ное, меж­звёзд­ное и меж­га­лак­ти­че­ское К. п. Наи­бо­лее ис­сле­до­ван­ным и ос­во­ен­ным яв­ля­ет­ся око­ло­зем­ное кос­мич. про­стран­ст­во.

Око­ло­зем­ное К. п. ог­ра­ни­чи­ва­ет­ся сфе­рой зем­но­го при­тя­же­ния, в пре­де­лах ко­то­рой воз­дей­ст­вие гра­ви­тац. по­ля Зем­ли на по­лёт КА яв­ля­ет­ся оп­ре­де­ляю­щим по срав­не­нию с воз­дей­ст­ви­ем гра­ви­тац. по­лей Солн­ца и пла­нет. Ус­ло­вия по­лё­та в око­ло­зем­ном К. п. оп­ре­де­ля­ют­ся гл. обр. ха­рак­те­ри­сти­ка­ми верх­них сло­ёв зем­ной ат­мо­сфе­ры и разл.


­да по­лей (гра­ви­тац., маг­нит­ных и элек­трич.), ра­ди­ац. об­ста­нов­кой и воз­мож­но­стью встре­чи с ме­тео­рит­ны­ми те­ла­ми. Око­ло­зем­ное К. п. по сво­им фи­зич. ус­ло­ви­ям раз­де­ля­ет­ся на при­зем­ный кос­мос (75–150 км), ближ­ний (150–2000 км), сред­ний (2–50 тыс. км) и даль­ний (св. 50 тыс. км) кос­мос. При­зем­ный кос­мос рас­по­ло­жен ни­же ес­теств. ра­ди­ац. поя­сов Зем­ли и ха­рак­те­ри­зу­ет­ся срав­ни­тель­но вы­со­кой плот­но­стью ат­мо­сфе­ры, что де­ла­ет прак­ти­че­ски не­воз­мож­ным дли­тель­ный ор­би­таль­ный по­лёт толь­ко за счёт сил инер­ции, а так­же тре­бу­ет зна­чит. те­п­ло­вой за­щи­ты КА. В то же вре­мя здесь мож­но ис­поль­зо­вать аэ­ро­ди­на­мич. подъ­ём­ную си­лу (напр., для ма­нев­ри­ро­ва­ния). Ближ­ний кос­мос име­ет ма­лую плот­ность ат­мо­сфе­ры, что по­зво­ля­ет КА су­ще­ст­во­вать от не­сколь­ких ча­сов до не­сколь­ких лет. Здесь рас­по­ло­же­ны ниж­ние об­лас­ти внутр. ра­ди­ац. поя­са Зем­ли. На вы­со­тах 500–1000 км по­лёт КА в наи­мень­шей сте­пе­ни под­вер­жен внеш­ним воз­му­ще­ни­ям. Сред­ний кос­мос ха­рак­те­ри­зу­ет­ся очень ма­лой плот­но­стью сре­ды, что оп­ре­де­ля­ет про­дол­жи­тель­ность инер­ци­он­но­го по­лё­та КА от од­но­го го­да до со­тен лет. В нём рас­по­ла­га­ют­ся прак­ти­че­ски все об­лас­ти ра­ди­ац. поя­сов Зем­ли. В сред­нем кос­мо­се воз­мож­но соз­да­ние груп­пи­ро­вок КА, не­под­виж­ных от­но­си­тель­но зем­ной по­верх­но­сти. Даль­ний кос­мос ны­не прак­ти­че­ски не ос­во­ен. Здесь рас­по­ло­же­ны ор­би­та Лу­ны, точ­ки либ­ра­ции в сис­те­ме Зем­ля – Лу­на, в ко­то­рых от­сут­ст­ву­ют гра­ви­тац. воз­му­ще­ния Солн­ца, пла­нет и Лу­ны, что по­зво­ля­ет ис­поль­зо­вать их для соз­да­ния кос­мич. сис­тем дли­тель­но­го су­ще­ст­во­ва­ния и на­уч. ис­сле­до­ва­ний.


К. п. ак­тив­но ис­поль­зу­ет­ся в разл. це­лях обес­пе­че­ния жиз­не­дея­тель­но­сти че­ло­ве­ка. Здесь соз­да­ны и функ­цио­ни­ру­ют сис­те­мы кос­мич. свя­зи и ретранс­ля­ции, сред­ст­ва на­ви­гац., ме­тео­ро­ло­гич. и то­по­ге­о­де­зич. обес­пе­че­ния, раз­вед­ки при­род­ных ре­сур­сов Зем­ли и не­пре­рыв­но­го на­блю­де­ния за их со­стоя­ни­ем, ис­сле­до­ва­ния Зем­ли и её ат­мо­сфе­ры. В пер­спек­ти­ве пре­ду­смат­ри­ва­ет­ся раз­вёр­ты­ва­ние в К. п. про­из-ва энер­го­ре­сур­сов, сы­рья и но­вых (сверх­чис­тых) ма­те­риа­лов. К. п. с на­ча­ла ос­вое­ния рас­смат­ри­ва­лось ве­ду­щи­ми дер­жа­ва­ми ми­ра как по­тен­ци­аль­ный ТВД, что обу­слов­ле­но воз­мож­но­стью реа­ли­за­ции гло­баль­ных на­ви­гац. сис­тем и сис­тем свя­зи, опе­ра­тив­но­го по­лу­че­ния гло­баль­ной раз­ве­ды­ват., то­по­ге­о­де­зич., ме­тео­ро­ло­гич. и др. ин­фор­ма­ции; гос. экс­тер­ри­то­ри­аль­но­стью, по­зво­ляю­щей по­лу­чать раз­ве­ды­ват. ин­фор­ма­цию в мир­ное вре­мя по все­му зем­но­му ша­ру, не на­ру­шая су­ве­ре­ни­те­та го­су­дарств; воз­мож­но­стью мак­си­маль­но при­бли­зить кос­мич. на­сту­пат. и обо­ро­нит. сис­те­мы к про­тив­ни­ку и воз­дей­ст­во­вать на его объ­ек­ты на лю­бых ТВД, а так­же при­ме­нять ору­жие на новых фи­зи­че­ских прин­ци­пах.


сер. 1980-х гг. на­ча­лись ис­сле­до­ва­тель­ские и др. под­го­то­вит. ра­бо­ты по ре­а­ли­за­ции Стра­те­ги­че­ской обо­рон­ной ини­циа­ти­вы США (пре­ду­смат­ри­вав­шей соз­да­ние кос­мич. про­ти­во­ра­кет­но­го ору­жия, в т. ч. ор­би­таль­но­го ба­зи­ро­ва­ния), по ре­зуль­та­там ко­то­рых в кон. 2001 бы­ло при­ня­то ре­ше­ние о соз­да­нии нац. сис­те­мы ПРО, а в 2002 о вы­хо­де США из До­го­во­ра об ог­ра­ни­че­нии сис­тем ПРО 1972. РФ, со­глас­но при­ня­той во­ен. док­три­не, вы­сту­па­ет про­тив ми­ли­та­ри­за­ции К. п., но вме­сте с тем, ис­хо­дя из прин­ци­па со­от­вет­ст­вия уров­ня тех­нич. ос­на­щён­но­сти Воо­руж. Сил по­треб­но­стям обес­пе­че­ния во­ен. безо­пас­но­сти, в Рос­сии соз­да­ны Кос­ми­че­ские вой­ска (2001).

Ме­ж­ду­на­род­но-пра­во­вой ре­жим К. п. оп­ре­де­ля­ет­ся кос­ми­че­ским пра­вом ме­ж­ду­на­род­ным. Нац. про­грам­ма кос­мич. ис­сле­до­ва­ний вхо­дит в сфе­ру внутр. ком­пе­тен­ции ка­ж­до­го го­су­дар­ст­ва, ре­гу­ли­руе­мой нор­ма­ми его нац. пра­ва. Ис­сле­до­ва­ние и ис­поль­зо­ва­ние К. п. в Рос­сии осу­ще­ст­в­ля­ют­ся в со­от­вет­ст­вии с За­ко­ном РФ «О кос­ми­че­ской дея­тель­но­сти» (1993), ко­то­рый ус­та­нав­ли­ва­ет пра­во­вые и ор­га­ни­зац. ос­но­вы кос­мич. дея­тель­но­сти при ре­ше­нии со­ци­аль­но-эко­но­мич., на­уч.-тех­нич. и обо­рон­ных за­дач.

Источник: bigenc.ru

Что нужно вкладывать в это понятие


Космическое пространство – это совокупность областей Вселенной, лежащих за пределами атмосфер или твердых оболочек небесных тел. С точки зрения обывателя, космос – это огромная пустота, Великое Ничто, в котором «плавают» планеты, звезды и галактики, перемещаются межпланетные зонды и другие объекты. Такое изображение космического пространства неверно: хотя его плотность за пределами нашей атмосферы и невелика, оно не является пустым. Его заполняет межзвездный газ, пыль, различные виды излучений. Есть еще и загадочная темная энергия и материя…

На самом деле, все еще сложнее. Изначально греческое слово «космос» имело в основном философское значение, обозначая пространство вокруг нашей планеты. В западноевропейских языках, в основе которых лежит латынь, под ним подразумевают невообразимую бесконечность Вселенной. Русское словосочетание «космическое пространство» – это скорее тавтология, ставшая для нас привычной.

Кроме того, данное определение имеет множество аспектов. У астронома оно ассоциируется с движением небесных тел и взаимодействием между ними. Физик расскажет об удивительных свойствах вакуума, теории относительности и флуктуациях, которые порождают новые элементарные частицы. Инженер поведает о проблемах освоения космоса. Юриста в основном интересует правовой режим использования космического пространства.

Космическое пространство разделяют на:

  • околоземное;
  • межпланетное;
  • межзвездное;
  • межгалактическое.

Четкой границы космоса не существует – плотность воздуха и атмосферное давление уменьшается постепенно. В ВВС США утверждают, что она начинается на высоте в 50 миль (80,5 км). Согласно другому мнению, данная черта проходит на отметке 122 км, где прекращается влияние ветров и начинается воздействие космических частиц.

Международная авиационная федерация (ФАИ) в качестве границы между атмосферой и космосом установила высоту в 100 км – ее называют линией Кармана. Данную точку зрения разделяют и ученые НАСА. На этой высоте для создания подъемной аэродинамической силы аппарат должен развивать первую космическую скорость, что делает авиационные полеты бессмысленными.

Атмосфера и околоземное пространство

На уровне моря атмосферное давление равняется 101,325 кПа, что составляет одну атмосферу. Подавляющая часть населения планеты – 99% – живет на высоте ниже 2 км. Выше этой отметки могут находиться только акклиматизировавшиеся люди типа гималайских шерпов, у остальных начинается «горная болезнь», вызванная недостатком кислорода. Большая часть (около 80%) массы атмосферы приходится на ее нижний, более плотный слой, находящийся до высоты в 7 км.

На высоте 5 км атмосферное давление уменьшается вдвое, а на отметке 12 – проходит граница тропосферы и стратосферы, выше которой не поднимаются облака. Двенадцать километров — потолок полета пассажирских авиалайнеров, также здесь находится предел кратковременного дыхания чистым кислородом.


На 18,9-19,35 км проходит линия Армстронга – начало космического пространства для человеческого организма. Здесь начинают кипеть слюна и слёзы, набухают глаза. 20 км считается пределом биосферы – выше не могут жить даже бактерии. 25-26 км – предельная высота полета для большинства реактивных самолетов. На 20-25 км в средних широтах расположен озоновый слой, оберегающий планету от действия ультрафиолета.

На высоте 35 км находится так называемая тройная точка воды – из-за низкого атмосферного давления она кипит при температуре 0 °C. 37,8 км – рекордная высота полета для самолета с турбореактивным двигателем. Рекорд был поставлен советским истребителем МиГ-25М. А максимальная отметка, на которую поднимался человек в воздухоплавательном аппарате, составляет 41,42 км. Это достижение занесено в Книгу рекордов Гиннесса. На высоте 50 км находится граница стратосферы и начинается мезосфера.

100 км – линия Кармана, после которой начинается космос. Примерно на этой же высоте находится отражающий радиоволны слой Кеннелли — Хевисайда. Выше этой границы начинается околоземное пространство, отличия которого от других областей Вселенной обусловлены влиянием нашей планеты. Оно выражается в наличии и концентрации заряженных частиц, их энергии, воздействии магнитного поля Земли и др. Считается, что данная область пространства имеет протяженность в 10-12 земных радиусов. Однако некоторые астрономы полагают, что оно простирается до орбиты Луны.


Большие метеоры и болиды начинают сгорать на высоте в 135 км от поверхности Земли. Выше 160 км начинается область стабильных низких околоземных орбит. Высота первого космического полета – Фау-2 в 1944 году – составляла 188 км, Гагарин поднимался на 302 км. На расстоянии в 350 км от земной поверхности начинаются самые низкие орбиты с долгосрочной стабильностью. МКС летает примерно на высоте 400 км. Баллистические ракеты (МБР) в наивысшей точке траектории поднимаются приблизительно на 1300 км.

На высоте 2 тыс. км находится граница между низкими и средними околоземными орбитами. На данном уровне нет влияния атмосферы, поэтому спутники могут существовать годами. На расстоянии 100 тыс. км от поверхности проходит верхняя граница экзосферы.

От границ атмосферы до пределов Солнечной системы

Межпланетное пространство – область Вселенной, ограниченная орбитой самой дальней планеты, вращающейся вокруг звезды. Понятно, что из многочисленных звездных систем, известных ученым сегодня, наиболее хорошо изучена наша собственная. В центре нашей системы расположено Солнце. Именно его влияние обуславливает свойства межпланетного пространства. Вокруг него вращаются восемь планет: четыре имеют твердую каменистую поверхность, а четыре – являются газовыми гигантами. На наибольшем расстоянии от Солнца находится Нептун, ближе всего к нему Меркурий.


Межпланетное пространство простирается до края системы, где переходит в межзвездное. Граница между ними называется гелиопаузой — находится на расстоянии 120-160 а. е. от нашего светила. Плотность среды Солнечной системы очень мала, но не следует считать ее вакуумом – здесь есть пыль, частицы, излучения и плазма. Количество вещества уменьшается при удалении от центра системы.

Важнейшей составляющей межпланетного пространства является солнечный ветер – поток ионизированных частиц, испускаемых Солнцем. Его скорость варьируется от 300 до 800 км/с, температура составляет около 105 °К.

Радиус сферы, где земное притяжение превосходит гравитацию Солнца, распространяется на 260 тыс. км. Точки Лагранжа находятся на удалении в 1,5 млн км, а на расстоянии 21 млн км гравитационное воздействие Земли на пролетающие объекты полностью исчезает.

От Солнца нашу планету отделяет примерно 150 млн км, что составляет одну астрономическую единицу. Расстояние от Солнца до Нептуна – 450 млрд км, что равняется 30 а. е. За ним находятся скопления комет, астероидов и малых планет, которые образуют пояс Койпера и облако Оорта.

До границ гелиосферы будущим космонавтам придется преодолеть 11-14 млрд км. Автоматический аппарат «Вояджер-1» на июнь 2020 года пролетел 35 млрд км или 230 а. е. К концу нынешнего века он удалится на 65 млрд км.

За пределами Солнечной системы


Межзвездное пространство представляет собой области внутри галактик. Говоря другими словами, это космическое пространство без небесных тел, заполненное облаками межзвёздного газа, пылью, излучением и электромагнитными полями. Кроме того, здесь присутствует таинственная темная материя.

Его состав – это результат первичного нуклеосинтеза, который происходил после Большого взрыва, а также ядерных реакций, протекающих в звездах. Распределение вещества в межзвездном пространстве весьма неоднородно: здесь есть облака разной температуры, скопления горячего газа. Его особенностью является низкая плотность – на кубический сантиметр приходится не более 1 тыс. атомов.

Эволюция межзвездного вещества связана с процессами, проходящими в галактиках на протяжении миллиардов лет.

На этом уровне основной единицей измерения является световой год, который равняется примерно 9,5 трлн км. До внешней границы гипотетического облака Оорта, например, 2 св. года, а до Проксимы Центавра – ближайшей к нам звезды – 4,2. Размер Местного межзвездного облака, через которое сейчас движется наша система, составляет 30 св. лет или 30 трлн км. Диаметр Млечного Пути равняется 100 тыс. св. лет.

Межгалактическое пространство представляет собой области Вселенной, находящиеся вне галактик. Оно лучше всего подходит под определение вакуума, потому что здесь практически отсутствует известная нам материя. На один кубический дециметр приходится всего один атом водорода. Температура этого газа составляет около десяти миллионов градусов.


На данном уровне организации Вселенной расстояния измеряются миллиардами световых лет или миллионами парсеков. Например, размер Местного сверхскопления Девы, куда входит наш Млечный Путь, составляет 200 млн св. лет. А длина Комплекса сверхскоплений Рыб-Кит превышает 1 млрд св. лет. Предел видимости вещества в известной нам Вселенной – 26 млрд св. лет. В этой области находится примерно 500 млрд галактик.

Немного о темной материи

Все звезды, многочисленные галактики и другие видимые астрономические объекты составляют лишь небольшую часть от общего количества вещества нашей Вселенной. Ее львиную долю занимает так называемая темная материя, которая не испускает электромагнитного излучения и не поглощает его. Следует понимать, что данное название не подразумевает ничего ужасного и зловещего, просто оно говорит о невозможности наблюдения данного феномена. Физики, астрономы и космологи не знают, что это такое, но ее существование является почти неоспоримым фактом.

Данная субстанция практически не взаимодействует с обычным веществом, поэтому ее так сложно обнаружить. Единственным способом узнать о существовании – отследить гравитационное воздействие, которое темная материя оказывает на астрономические объекты.

Согласно некоторым моделям, темная материя и энергия занимает в составе Вселенной более 95%, при этом на звезды и другие небесные тела приходится менее 1%, а еще 3,6% занимает межгалактический газ.

Впервые предположение о существовании во Вселенной темной материи было выдвинуто астрономом Фрицем Цвики в 1933 году. Он изучал скорости галактики и обнаружил, что для их устойчивости необходима масса в несколько раз больше, чем весят звезды, входящие в их состав. На эту работу поначалу не обратили особого внимания, но вскоре аналогичные результаты стали получать и другие астрономы.

Сегодня нет сомнений, что без существования дополнительной или скрытой массы («темной материи») вещество не смогло бы собраться и образовать звезды и галактики после Большого взрыва. Несмотря на это, мы до сих пор не знаем, из каких частиц состоит темная материя, и что она собой представляет.

Существует множество теорий относительно этой загадочной субстанции, но все они остаются недоказанными. Над исследованиями в данной области бьются десятки научных коллективов в разных странах, но пока, к сожалению, безрезультатно. Видимо, темная материя взаимодействует с нашим миром только посредством гравитации, зафиксировать которую наши детекторы сегодня не в состоянии.

Воздействие космического пространства на человеческий организм

Человечество уже более полувека активно исследует околоземное пространство, поэтому мы неплохо представляем, как оно воздействует на наше тело. Вопреки распространенному мнению, человека, оказавшегося в космическом вакууме без скафандра, не разорвет на части и кровь не закипит у него в сосудах, ему даже не угрожает моментальная потеря сознания. Он просто умрет от недостатка кислорода, другими словами, задохнется.

Прочими очевидными опасностями, которые поджидают незадачливого космонавта, является декомпрессия, солнечные ожоги незащищенных частей тела, переохлаждение. Эти процессы начинаются через 10-15 секунд после контакта нашего тела с космическим пространством. Необратимые повреждения, несовместимые с жизнью, они наносят не сразу: считается, что смерть наступает через одну-две минуты. Все вышесказанное – это скорее теоретические выкладки, на практике их по понятным причинам не проверяли.

В истории НАСА описан случай, когда человек из-за повреждения скафандра оказался в условиях, близких к космическому вакууму (давление ниже 1 Па). Он потерял сознание только через 14 секунд – примерно такое время потребовалось для начала кислородного голодания мозга. Он пришел в себя только после повышения давления до уровня высоты 4,6 км. Позже астронавт рассказывал, что чувствовал потерю воздуха и слюну, закипающую на языке.

В середине 90-х годов появилась информация о еще одном похожем инциденте, произошедшем в 1960 году. Во время подъема в открытом аэростате на высоту 19,5 мили, у пилота произошла разгерметизация рукава скафандра. Это создало ему серьезный дискомфорт, но после возвращения в более низкие слои атмосферы они исчезли без особых негативных последствий.

Полеты в космическое пространство

Чтобы преодолеть притяжение нашей планеты и выйти на ее орбиту, физическое тело должно достигнуть первой космической скорости –7,9 км/с. Преодолеть этот рубеж сумел советский «Спутник-1» в 1957 году.

Для победы над гравитацией Земли и выхода в межпланетное пространство, аппарат должен двигаться быстрее 11 км/с. Это вторая космическая скорость. Впервые она была достигнута в январе 1959 года советским автоматическим зондом «Луна-1».

Для выхода в межзвездное пространство и преодоления притяжения Солнца, необходимо развить третью космическую скорость, которая составляет 16,67 км в секунду. Пока наибольшей скоростью покидания Земли обладал аппарат «Новые горизонты» – 16,26 км/с. По пути он смог прибавить еще 4 км/с за счет гравитационного маневра около Юпитера. В будущем это позволит ему покинуть пределы нашей системы и отправиться в межзвездное пространство.

Для преодоления притяжения Млечного Пути и выхода за его пределы необходима четвертая космическая скорость — 550 км/с. Солнце относительно центра галактики двигается медленнее – со скоростью 220 км/с.

Правовые основы освоения Вселенной

Космическое пространство – это новое и уникальное поле для человеческой деятельности, которое мы только начинаем осваивать. Из-за ряда особенностей, исследования в основном носят международный характер. Поэтому начало космической эры привело к появлению новой отрасли права, предназначенной для регулирования отношений между государствами и организациями в этой специфической сфере деятельности. Сегодня правовой режим регламентируют несколько международных договоров о космическом пространстве, принятых в разное время.

Работы в этом направлении начались еще до запусков на орбиту, в конце 50-х годов. Их инициатором стала Организация Объединенных Наций. Первыми были рассмотрены предложения о мирном использовании космического пространства и запрете на испытания ядерного оружия на орбите.

Буквально через несколько дней после запуска «Спутника-1» Генассамблея ООН призвала создать инспекцию для обеспечения исключительно мирного использования космического пространства. По данному вопросу была принята специальная резолюция. В 1958 году при ООН появился Комитет (КОПУОС), в задачи которого входило изучение правовых проблем исследований околоземного пространства. Он работает и сегодня, имеет два подкомитета: юридический и научно-технический.

Можно сказать, что в те годы были заложены основы международного космического права, регулирующие деятельность в данной сфере. С трибуны ООН был четко сформулирован главный принцип: космическое пространство и небесные тела свободны для исследования и освоения, и не подлежат присвоению тем или иным государством. Космос должен служить общим интересам человечества.

В 1967 году был подписан Договор о международном режиме использования космического пространства и небесных тел, включая Луну. В 1968 году появилось Соглашение о спасении космонавтов, а в 1972 – Конвенция об ответственности за ущерб, причиненный КА. В 1979 году было подписано Соглашение о деятельности на Луне и других небесных объектах.

В 1982 году была принята конвенция по радиосвязи, которая регулировала вопросы использования радиочастот, а также геостационарной орбиты.

В 80-е годы Комитетом были разработаны несколько международных соглашений, направленных против размещения в космосе противоспутникового оружия. В 2006 году аналогичный документ на рассмотрение ООН внесли Россия и Китай. В 2011 году Генассамблея приняла резолюцию, в которой содержались рекомендации по укреплению доверия между государствами в космической деятельности.

Существующая сегодня договорная база определяет для космического пространства режим, абсолютно отличный от того, что действует в отношении воздушного пространства. Последний находится под суверенитетом государства, над территорией которого он расположен. С космосом другая проблема: нет четкого юридического определения, на какой высоте он начинается. Сегодня существует более тридцати гипотез, определяющих границу между околоземным пространством и атмосферой, но ни одна из них не получила общего или хотя бы подавляющего признания.

В 1979 году СССР предложил в качестве официальной границы космоса считать отметку в сто километров над уровнем моря. Великобритания и США выступили против этой инициативы, заявив, что любая демаркация будет только мешать космическим исследованиям.

Позже несколько экваториальных стран заявили, что геостационарная орбита из-за ее специфического расположения находится под их суверенитетом. Понятно, что подобный месседж не был поддержан международным сообществом.

Появление новых космических государств, увеличение количества запусков и разработка новых космических аппаратов только запутывает ситуацию и делает решение вопроса практически недостижимым.

Загрязнение и милитаризация орбиты Земли

За довольно короткий период люди успели серьезно намусорить в космосе, загрязнив орбиту обломками спутников и других аппаратов. Сегодня в каталоге Стратегического командования США находится 16 тыс. околоземных объектов, 17 тыс. – занесено в его российский аналог. В действительности, сколько их сегодня летает на орбите, не знает никто, и это большая проблема.

Разгонные блоки, отработавшее свое спутники, вторые ступени ракет и даже инструменты, потерянные космонавтами, – все это кружится на орбите, угрожая действующим аппаратам и населению планеты. Загрязнение космического пространства – серьезнейшая проблема, и если этот процесс не замедлится, то через несколько десятилетий мы просто не сможем выводить спутники. Происшествия с участием космического мусора на орбите уже случались, к счастью, пока без человеческих жертв.

Не меньшую тревогу вызывают риски, связанные с использованием радиоактивных материалов в космосе: многие космические аппараты оснащены ядерными энергетическими установками. В 1978 году на территории северной Канады упал советский военный спутник «Космос-954» с тридцатью килограммами урана на борту. К счастью, катастрофа произошла в малообитаемой местности, поэтому ущерб был минимален, но скандал получился весьма громким.

По разным оценкам, сейчас на орбите может находиться от нескольких десятков до сотни аппаратов с радиоактивными материалами на борту.

К сожалению, пока не существует эффективного способа «уборки» околоземной орбиты. Сегодня мы можем только отслеживать опасные объекты, не допуская их столкновения с действующими аппаратами.

Еще одной угрозой, стоящей сегодня перед человечеством, является милитаризация космического пространства. Существующие международные договоры, подписанные еще во времена холодной войны, не предусматривают полного запрета военного использования космоса. Появление новых технологий, таких как противоспутниковое оружие или орбитальные системы противоракетной обороны, могут превратить космос в еще одну арену гонки вооружений. Данная проблема требует не только уточнения действующих правовых норм, но и создания новых юридических инструментов, ограничивающих подобную деятельность.

Источник: MilitaryArms.ru

Расстояние до Солнца

Аристарх СамосскийАриста́рх Само́сскийАстроном, математик и философ, жил в III веке до н. э. Первым догадался что земля вращается вокруг Солнца и предложил научный метод определения расстояний до нее. ещё за двести лет до нашей эры попытался определить расстояние до Солнца. Но вычисления его были не очень верны – он ошибся в 20 раз. Более точные значения получил космический аппарат Кассини в 1672 году. Были измерены положения Марса во время его противостояния из двух различных точек Земли. Высчитанное расстояние до Солнца получилось 140 млн. км. В середине ХХ в, при помощи радиолокации Венеры, выяснились истинные параметры расстояний до планет и Солнца.Многолетние наблюдения также показали, что Земля отдаляется от Солнца примерно на 15 метров в 100 лет.

Расстояния до ближайших объектов

Мы мало задумываемся о расстояниях, когда смотрим прямые трансляции из дальних уголков земного шара. Телевизионный сигнал приходит к нам практически мгновенно. Даже с нашего спутника, Луны, радиоволны долетают до Земли за секунду с хвостиком. Но стоит заговорить об объектах более дальних, и тотчас приходит удивление. Неужели до такого близкого Солнца свет летит 8,3 минуты, а до ледяного Плутона – 5,5 часов? И это, пролетая за секунду почти 300 000 км! А для того, чтобы добраться к той же Альфе в созвездии Центавра, лучу света потребуется 4,25 года.

Даже для ближнего космоса не совсем годятся наши, привычные, единицы измерения. Конечно, можно проводить измерения в километрах, но тогда цифры будут вызывать не уважение, а некоторый испуг своими размерами. Для нашей Солнечной системы принято проводить измерения в астрономических единицах.

Теперь космические расстояния до планет и других объектов ближнего космоса будут выглядеть не так страшно. От нашего светила до Меркурия всего 0,387 а.е., а до Юпитера – 5,203 а.е. Даже до самой удалённой планеты – Плутона – всего 39,518 а.е.

До Луны расстояние определено с точностью до километра. Это удалось сделать, поместив на его поверхность уголковые отражатели, и применив метод лазерной локации. Среднее значение расстояния до Луны получилось 384 403 км. Но Солнечная система простирается гораздо дальше орбиты последней планеты. До границы системы целых 150 000 а. е. Даже эти единицы начинают выражаться в грандиозных величинах. Тут уместны другие эталоны измерений, потому что расстояния в космосе и размеры нашей Вселенной – за границами разумных представлений.

Средний космос

Быстрее света в природе ничего не бывает (пока не известны такие источники), поэтому именно его скорость была взята за основу. Для объектов, ближайших к нашей планетной системе, и для удалённых от неё, принят за единицу путь, пробегаемый светом за один год. До границы Солнечной системы свет летит около двух лет, а до ближайшей звезды в Центавре 4,25 св. года. Всем известная Полярная звезда расположилась от нас на удалении в 460 св. лет.

Каждому из нас мечталось отправиться в прошлое или будущее. Путешествие в прошлое вполне возможно. Нужно лишь взглянуть в ночное звёздное небо – это и есть прошлое, далёкое и бесконечно далёкое.Ярчайшая звезда нашего небосвода – Сириус – погаснет для нас только через 9 лет после своей смерти, а красный гигант Бетельгейзе – только через 650 лет.

Наша галактика имеет размер в поперечнике 100 000 св. лет, а толщину около 1 000 св. лет. Представить такие расстояния невероятно трудно, а оценить их практически невозможно. Наша Земля, вместе со своим светилом и другими объектами Солнечной системы, обращается вокруг центра галактики, за 225 млн. лет, и делает один оборот за 150 000 св. лет.

Дальний космос

Расстояния в космосе до далёких объектов измеряют, используя метод параллакса (смещения). Из него вытекла ещё одна единица измерения – парсек Парсек (пк) — от параллактической секундыЭто та дистанция, с которой радиус земной орбиты наблюдается под углом в 1″.. Величина одного парсека составила 3,26 св. года или 206 265 а. е.  Соответственно, есть и тысячи парсек (Кпк), и миллионы (Мпк). А самые дальние объекты во Вселенной будут выражаться в расстояниях миллиард парсек (Гпк). Параллактическим способом можно пользоваться для определения расстояний до объектов, удалённых не далее 100 пк, большие расстояния будут иметь очень значительные погрешности измерений. Для исследования далёких космических тел применяется фотометрический метод . В основе этого метода находятся свойства цефеид – переменных звёзд.

Также для определения расстояний по яркости используют сверхновые звёзды, туманности или очень большие звёзды классов сверхгигантов и гигантов. Посредством этого способа реально вычислять космические расстояния до объектов, расположенных не далее 1000 Мпк. Например, до ближайших к Млечному Пути галактик – Большого и Малого Магеллановых Облаков, получается соответственно 46 и 55 Кпк. А ближайшая галактика Туманность Андромеды окажется на удалении 660 Кпк. Группа галактик в созвездии Большая Медведица отстоит от нас на 2,64 Мпк. А размер видимой вселенной 46 миллиардов световых лет, или 14 Гпк!

Измерения из космоса

Для повышения точности измерений в 1989 году стартовал спутник «Гиппарх». Задачей спутника было определение параллаксов более 100 тысяч звёзд с миллисекундной точностью. В результате наблюдений, были вычислены расстояния для 118 218 звёзд. В их число вошли больше 200 цефеид. Для некоторых объектов изменились ранее известные параметры. Например, рассеянное звёздное скопление Плеяды приблизилось – вместо 135 пк прежнего расстояния получилось всего 118 пк.

Источник: light-science.ru

 

 

Третья ракета «Энергия» была готова к полету в начале 1989 года, однако этот полет с тяжелой нагрузкой был перенесен сначала на 1990 год, а потом на 1993-1995 годы.

 

Четвертая ракета с «Бураном» готовилась на Байконуре к пуску, при этом «Буран» должен был совершить в автоматическом режиме полет по более сложной программе, со стыковкой с орбитальной станцией «Мир». Пилотируемый полет намечался на 1992 год.

 

Источник: www.arms-expo.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.