Название комет и астероидов


Что такое кометы?

Кометы это большие космические объекты состоящие из замороженных газов, камней и пыли, которые вместе с остальными небесными телами Солнечной системы вращаются вокруг звезды. Они образовались после сложных процессов, во время которых зарождались планеты и Солнце. В своем изначальном состоянии кометы довольно крупны и могут быть размером с целые города. Но в процессе их жизненного цикла, когда они находятся на орбите Солнца, кометы постепенно нагреваются по мере приближения к источнику тепла, теряя тем самым свою массу.

Солнце мало того, что нагревает их, оно еще и притягивает частицы, из-за чего и появляются огромные хвосты, простирающиеся на многие миллионы километров, озаряя темноту космоса. То, что удерживает комету в движении и направляет ее путь, это гравитация со всех планет и звезд, вблизи которых она проходит. Когда комета приближается к Солнцу, она движется все быстрее и быстрее, потому что чем ближе объект к источнику гравитации, тем сильнее она на него действует. Хвост кометы не только будет быстрее двигаться, но еще становиться длиннее, так как большее количество веществ будет испаряться.

Почему кометы называются кометами?


Благодаря своему внешнему виду и хвосту, кометы и получили свое название, ведь “κομήτης, komḗtēs” с древнего греческого переводится “хвостатый”,“волосатый”,“косматый”.

Ученые считают, что в Солнечной системе циркулируют очень много комет. На сегодняшний день, согласно официальному сайту НАСА, астрономами зарегистрировано 3595 комет.

История изучения комет

В древности люди, привыкшие любым явлениями придавать мифологический и божественный характер не прошли стороной и странные светящиеся полосы в небе, иногда проскальзывающие в ночи. Некоторые называли их душами умерших.

Но время шло и ученая мысль развивалась. Первым, кто заявил, что кометы это светящийся газ, был Аристотель. За ним уже Сенека предположил, что эти загадочные небесные объекты имеют свои орбиты.

Кометы движутся по орбите, поэтому возвращаются вновь и вновь в поле зрения астрономов. Выдвигались теории о вытянутых эллиптических орбитах, но эти теории не находили всеобщего признания и подтверждения вплоть до 18 века. Первая же такая гипотеза была выдвинута немецким ученым Георгом Дерффелем в 1681 году. Исаак Ньютон же спустя всего 6 лет после публикации работы своего предшественника, попробовал объяснить ее, представив всему миру свои гениальные законы гравитации. Ньютон также заявил, что кометы представляют из себя каменистые объекты, содержащие лед, испаряющийся по мере приближения к Солнцу, создавая тем самым хвост.


Эдмунд Галлей
Эдмунд Галлей

В 1705 году Эдмунд Галлей изучил все задокументированные появления комет и попытался определить параметры их орбит, используя ньютоновскую физику. Это привело его к теории о том, что кометы 1531, 1607 и 1682 годов были фактически одним и тем же объектом, который появится через 75 лет после его последнего появления. Галлей стал первым человеком, который смог успешно предсказать возвращение кометы — она появилась, точно согласно его вычислениям, в 1759 году. Тогда же она и получила название — комета Галлея.

Комета Галлея - траектория
Комета Галлея – траектория

Связь же между метеоритными дождями и кометами была доказана в конце 19-го века, когда итальянский астроном Джованни Скиапарелли выдвинул свою гипотезу относительно метеоритного потока Персеид, заметного невооруженным глазом каждый август. Его систематическое появление вызвано тем, что Земля проходит через облако обломков, которые оставила после себя комета Свифта-Таттла. Эта теория позволила ученому миру заключить, что кометы имеют твердую поверхность, которая покрыта слоем льда.

В 1950-х американский астроном Фред Лоуренс Уиппл предположил, что кометы на самом деле состоят из большего количества льда, чем камня, и содержат замороженную воду, углекислый газ и аммиак. Теория Уиппла была подтверждена наблюдениями космических аппаратов, запущенных во второй половине века.

Строение и состав комет

Строение и состав комет
Строение и состав комет

Теперь мы знаем, что ядра комет в основном состоят из льда, который испаряется, когда комета близка к Солнцу. Это создает яркую атмосферу из пара, состоящую из заряженных частиц, называемых ионами и пылевыми частицами, которые могут состоять из силикатов, углеводородов и льда. Эта атмосфера получила название кома. Ядра наблюдаемых комет имеют длину от десятков метров до около 60 км. Кома создает оболочку вокруг ядра, которая может иметь ширину в миллионы километров, и окружена еще большей оболочкой, состоящей из водорода.

Направление хвоста комет


Направление хвоста комет
Направление хвоста комет

Пыль и пар создают два отдельных хвоста, но направлены они обычно примерно в одну сторону. Оба хвоста всегда направлены в сторону от Солнца, но заряженные частицы сильнее реагируют на магнитное поле и солнечный ветер, что делает его направленным точно в обратную сторону от звезды. Частицы пыли меньше подвержены подобному влиянию, поэтому направление пылевого хвоста искривляется в зависимости от орбиты кометы.

Чем отличаются кометы друг от друга?

Кометы отличаются друг от друга в первую очередь массой и размерами. Они могут сильно варьироваться в своих размерах, но кометы все равно остаются малыми небесными телами, учитывая размеры других космических объектов. Но если у вас был любительский телескоп и вы наблюдали за кометами в ночном небе, то могли заметить, что они также отличаются яркостью свечения и формой. Эти параметры в первую очередь зависят от химического состава кометы.

Происхождение комет


Происхождение комет можно определить по их орбитальным параметрам. Считается, что кометы, которые вращаются вокруг Солнца менее чем на 200 лет, происходят из пояса Койпера. Пояс Койпера находится за пределами орбиты Нептуна и был выдвинут гипотезой голландско-американского астронома Джерарда Койпера в 1951 году. В настоящее время считается, что пояс содержит около 1000 миллиардов комет.

Пояс Койпера и облако Оорта
Пояс Койпера и облако Оорта

Считается, что кометы с периодами более 200 лет происходят из Облака Оорта. Облако Оорта — это сферическое облако, которое вращается вокруг Солнца на расстоянии более 1,5 световых лет от края пояса Койпера. Это треть расстояния до ближайшей ближайшей звезды Проксима Центавра.

Эстонский астроном Эрнст Эпик впервые предположил, что кометы с длительными периодами вращения могут зарождаться из Облака Оорта в 1932 году, и эта идея продолжила свое развитие в трудах Яна Оорта в 1950 году. Считается, что Облако Оорта содержит сотни миллиардов комет, а некоторые из них могут иметь такое количество льда, которое превышает массу всей воды на Земле в несколько раз.

Чем кометы отличаются от астероидов и метеоритов?


Отличие кометы от метеорита и астероида
Отличие кометы от метеорита и астероида

Метеоры связаны с яркими вспышками в небе, которые часто называются “падающими звездами”. Метеороиды — это объекты в космосе, размеры которых варьируются от зерен пыли до мелких астероидов. По сути это просто камни, летающие по космосу. Когда метеороиды попадают в атмосферу Земли (или другой планеты, например, Марса) на высокой скорости и сгорают, огненные шары или “падающие звезды” называются метеорами. Когда метеороид переживает путешествие через атмосферу и падает на землю, его называют метеоритом. Все это зависит от размера космического тела.

Астероид, иногда называющиеся малыми планетами, являются каменными крупными осколками без атмосферы, которые остались после первых ступеней формирования нашей Солнечной системы около 4,6 миллиардов лет назад. Большая часть находится между Марсом и Юпитером. Размеры астероидов сильно варьируются — они могут достигать в диаметре 530 километров или же быть совсем маленькими и достигать всего 10 метров. Главным отличием астероида и кометы является их химический состав.

Как кометы получают свое название?


История наблюдения комет насчитывает более 2000 лет, в течение которых использовалась несколько схем присвоения имен каждой из комет. На сегодняшний день некоторые из комет могут иметь более одного имени.

Самая первая система характеризовалась тем, что кометы получали имя в честь года их обнаружения (например, Великая комета 1680 года). Позже появилось соглашение астрономов о том, что в названиях комет будут использоваться имена людей, связанных с открытием (например, комета Хейла-Боппа) или первого подробного исследования (например, комета Галлея).

Комета C/1995 O1 (Хейла — Боппа)
Комета C/1995 O1 (Хейла — Боппа)

С 20-го века технологии постоянно развивались и количество открытий росло с каждым годом, поэтому возникла необходимость создания более универсальной системы с использованием специальных чисел.


Изначально кометам присваивались коды в том порядке, в котором кометы проходили перигелий (например, комета 1970 II). Но и эта система не смогла просуществовать долго, потому что и она не могла справиться с числом ежегодных открытий. Так с 1994 года появилась новая система — присваивается код на основе типа орбиты и даты обнаружения (например, C / 2012 S1):

  • P / обозначает периодическую комету, определенную для этих целей как любая комета с орбитальным периодом менее 200 лет или подтвержденными наблюдениями при более чем одном проходе перигелия;
  • C / обозначает непериодическую комету, то есть любую комету, которая не является периодической в соответствии с предыдущим пунктом;
  • X / указывает на комету, для которой невозможно рассчитать орбиту (обычно кометы их исторических наблюдений);
  • D / указывает на периодическую комету, которая исчезла, разбилась или была потеряна. Примеры включают Комету Лекселла (D / 1770 L1) и Комету Шумейкер-Леви 9 (D / 1993 F2);
  • A / указывает на объект, который был ошибочно идентифицирован как комета, но на самом деле является малой планетой. Но в течение многих лет это название не использовалось, но в 2017 году ее применили для Оумуамуа (A / 2017 U1), а затем ко всем астероидам на орбитах похожих на кометы;
  • I / обозначает межзвездный объект. Это обозначение появились совсем недавно, в 2017 году, чтобы дать Оумуамуа (1I / 2017 U1) наиболее правильный и точный статус. По состоянию на 2019 год единственным другим объектом с этой классификацией является комета Борисова (2I / 2019 Q4).

1I/Оумуамуa — первый обнаруженный межзвёздный объект, пролетающий через Солнечную систему (в представлении художника)
1I/Оумуамуa — первый обнаруженный межзвёздный объект, пролетающий через Солнечную систему (в представлении художника)

Представляют ли кометы угрозу Земле?

С момента своего образования более 4,5 миллиардов лет назад Земля много раз подвергалась столкновением с астероидами и кометами, когда последних их орбита заносила во внутренние рубежи Солнечной системы и проходит в непосредственной близости от Земли. Такие объекты в своей совокупности получили название “околоземные объекты”.

В зависимости от размера воздействующего объекта, такое столкновение может нанести огромный ущерб в локальном и глобальном масштабах. И это неоспоримый факт, что в какой-то момент Земля вновь столкнется с другим небесным телом. Существуют убедительные научные доказательства того, что космические столкновения сыграли главную роль в массовом вымирании, зафиксированное в окаменелостях по всему свету.


Комета и Земля
Комета и Земля

Околоземные объекты имеют орбиты, которые совпадают по направлению с Землей, поэтому столкновение с ними не столь разрушительно, так как скорость удара сильно уменьшается. Но вот кометы путешествуют вокруг Солнца немного другими путями, которые крайне сложно предсказать, поэтому может произойти и столкновение в лоб, что может привести к катастрофическим результатам, говорят исследователи.

К сожалению, атмосфера Земли не является идеальной защитой от космических катастроф, потому что размеры комет могут достигать нескольких километров. Это настоящие горы из камня и льда. Когда комета выходит в атмосферу Земли, то меньшие ее частицы испаряются и не достигают поверхности, но вот большие все же долетают. Они создают взрыв при ударе, который образует кратер. Некоторые ученые считают, что самые крупные кратеры на Земле был образованы в результате столкновения именно кометами.

Самые известные кометы Солнечной системы

Комета Галлея

Комета Галлея
Комета Галлея

Комета Галлея — самая знаменитая из всех комет. Ведь британский ученый Эдмунд Галлей стал первым, кто смог доказать периодичность комет после своих наблюдений и анализа данных астрономов прошлого. Он смог с точностью предсказать возвращение кометы, которая впервые была замечена в 1066 году. Комета Галлея шириной 8 км и длиной 16 км совершает оборот вокруг Солнца каждые 75–76 лет по вытянутой орбите. Последний раз она проходил близко к Земле в феврале 1986 года.

Комета Шумейкеров-Леви 9

Комета Шумейкеров — Леви 9, представлявшая собой цепочку фрагментов
Комета Шумейкеров — Леви 9,
представлявшая собой цепочку фрагментов

Комета Шумейкеров-Леви 9 стала знаменита тем, что в 1992 году под воздействием гравитации Юпитера она разорвалась на 21 часть, а затем в 1994 году все части обрушилась на поверхность газового гиганта. Это зрелище наблюдали все астрономы-любители и профессионалы. Утверждается, что удар одного фрагмента — около 3 км в диаметре — привел к взрыву, эквивалентному 6 миллионам мегатонн тротила.

Комета Чурюмова-Герасименко

Комета Чурюмова-Герасименко
Комета Чурюмова-Герасименко

Запущенный в 2004 году космический зонд Розетта, принадлежащий Европейскому космическому агентству, который должен был приземлиться на комету Чурюмова-Герасименко в 2014 году. Считается, что комета имеет ширину около пяти километров и в настоящее время вращается вокруг Солнца примерно каждые 6,6 лет. Её орбита раньше была намного больше, но взаимодействие с гравитации Юпитера с 1840 года изменило ее на гораздо меньшую. Затем орбитальный аппарат провел почти два рядом с кометой, когда она направилась обратно к Солнцу. Зонд изучил состав кометы, чтобы помочь нам лучше понять историю формирования нашей Солнечной системы.

Комета Хейла-Боппа

В январе 1997 года комета Хейла-Боппа приблизилась к Земле на самое близкое расстояние за 4000 лет. Последний раз этот объект пролетал рядом с нашей планетой еще в бронзовый век, то есть 2000 лет до нашей эры. Комета Хейла-Боппа значительно больше и яре кометы Галлея. Ядро достигает 40 км в диаметре и видна невооруженным глазом. Хейл-Бопп настолько яркий, что его можно было увидеть с Земли в 1995 году, когда она еще находилась за пределами орбиты Юпитера.

Комета Борелли

Ядро кометы Борелли
Ядро кометы Борелли

Это вторая по счету комета после Галлея, которая была сфотографирована крупным планом с помощью космического корабля Deep Space 1, отправленным НАСА в 2001 году. Эта исследовательская миссия дала много данных для ученых, благодаря этому астрономы смогли многое понять о ядрах комет. Снимки показали, что каменистое ядро имеет форму гигантской кегли длиной 8 километров, и вся комета странно изогнута.

В отличие от кометы Галлея, которая сформировалась в Облаке Оорта на внешних границах Солнечной системы, Боррелли, как полагают, происходит из пояса Койпера.

Комета Хякутакэ

C/1996 B2 (Хякутакэ)
C/1996 B2 (Хякутакэ)

Эта комета произвела неизгладимое впечатление на ученых, когда в 1996 году она прошла рядом с нашей планетой, приблизилась к Земле на расстояние всего 15 миллионов километров, что оказалось самым близким расстоянием на которое приближались любые другие кометы. Комета озадачила астрономов, поскольку она излучала радиационные лучи в 100 раз интенсивнее, чем предполагалось.

Космический аппарат “Улисс” прошел через хвост этой кометы в мае 1996 года, показав, что его длина составляет не менее 570 миллионов километров — в два раза больше, чем у любой другой известной кометы.

Источник: kipmu.ru

Астероид, виды и названия астероидов, открытие, отличия от других объектов.

 

 

Астероид – одна из разновидностей тел, присутствующих в Солнечной системе. Размеры астероидов достаточно крупные – от 30 метров в диаметре. Тела меньших размеров причислены к метеороидам.

 

Понятие астероида. Формы и размеры астероидов

Классификация астероидов. Классы астероидов: класс С, класс S, класс М.

Какой астероид был открыт первым? Открытие астероидов

Известные крупные астероиды солнечной системы: Церера, Веста, Паллада, Гигея, Интерамния, Европа, Давида, Сильвия, Гектор, Евфросина

Астероиды, подлетающие к Земле

Отличие астероида от метеорита, кометы и карликовой планеты

Где находятся астероиды? Главный пояс астероидов, пояс Койпера, рассеянный диск, облако Оорта, орбита Сатурна

 

Понятие астероида:

Солнечная система состоит не только из восьми планет, но и множества других твердых тел, называемых малыми. Это кометы, карликовые планеты, кентавры, дамоклоиды и прочие, состоящие из самых разных химических элементов. Одни из них имеют собственные орбиты, по которым вращаются вокруг Солнца, другие находятся в космическом пространстве в «свободном полете».  Особое внимание ученые уделяют астероидам – телам, до недавнего времени приравненных к планетам, не имеющим собственной атмосферы, но часто владеющих спутниками. Чем же вызван подобный интерес и в чем принципиальное их отличие от других космических тел?

Астероид – одна из разновидностей тел, присутствующих в Солнечной системе. Его название происходит от объединения двух древнегреческих слов, означающих «звезда» и «вид, наружность» и в прямом переводе означает «похожий на звезду». В этом легко убедиться, если посмотреть на него в телескоп: тело яркое, светящееся, неровное, тогда как известные планеты представляют собой матовый диск.

Размеры астероидов различны, большая часть из них достаточно крупная, от 30 метров в диаметре (тела меньших размеров причислены к метеороидам), поэтому долгое время, вплоть до 2006 года, их считали малыми планетами. Сегодня же, согласно классификации Международного астрономического союза, астероиды – это малые небесные тела Солнечной системы, которые:

– имеют собственную орбиту;

– отличаются неправильной геометрической формой;

– не содержат атмосферы;

– могут обладать спутниками.

 

Формы и размеры астероидов:

В определении термина астероид указывается как небесное тело неправильной формы, и это стало одной из причин исключения их из ряда планет, но самые крупные объекты все же похожи на шар – чем же это объяснить?

Ученые полагают, что при формировании Солнечной системы астероиды имели значительные размеры и соответствующую форму, но в процессе своей «жизни» они сталкивались с другими космическими объектами, подвергались взрывам и распадам. Так, сохранить свое первоначальное состояние удалось лишь единицам. На небесных же телах малых размеров уменьшена и сила тяжести, что не позволяет сминать и утрамбовывать тяжелые вещества, придавая поверхности привычную форму шара. Поэтому астероиды существуют в виде агрегатов, в состав которых входит несколько блоков. Они удерживаются между собой силой тяготения, которая также не позволяет им прочно объединяться и сливаться между собой. Все эти параметры и формируют искомую форму, которую принято считать неправильной.

Еще одни важный критерий – размер. Так, ученые определили, что объектами данного типа считаются тела, превышающие 30 метров в диаметре, но как точно измерить размер с Земли? Для этого применяется несколько методов.

Впервые измерить диаметр небесного тела ученые решились еще в начала XIX века, применив нитяной микрометр. Это устройство, совмещаемое с телескопом, представляющее собой две тончайшие нити или проволоки, расстояние между которыми изменяется благодаря винтовому механизму высокой точности. Недостатком такой методики выступил тот факт, что при использовании различных телескопов получались разные результаты и иногда разница в показателях превышала разы.

Развитие науки и техники позволило изобрети другие способы определения размеров, самым популярными из которых стали транзитный метод и поляриметрия.

Суть первого заключается в том, что все небесные тела движутся, и когда астероид проходит на фоне отдаленной звезды, она его покрывает. Если известно расстояние до астероида, достаточно измерить длительность уменьшения сияния звезды, чтобы получить весьма точный размер искомого небесного тела. Недостаток методики – сравнительная точность расчетов присуща лишь крупным объектам.

В основе поляриметрии лежат параметры яркости самого астероида. Так, чем крупнее его размеры, тем больше солнечных лучей способна отразить его поверхность. Однако следует учитывать, что отражательные способности зависят от химических элементов, преобладающих в составе: наличие металлов сделает объект более ярким даже при небольших параметрах. Однако и отражательную способность (альбедо) ученые легко определяют при помощи инфракрасных излучателей, основываясь на принципе: чем меньше света отражает тело, тем сильнее он его поглощает и нагревается, а, следовательно, больше тепловой энергии выделяет.

Используется поляриметрия и для определения формы небесного тела. Метод позволяет зафиксировать различия в блеске, изменяющиеся во время вращения астероида вокруг своей орбиты. Эти же наблюдения дают возможность изучить период вращения и структуру поверхности, обнаружить на ней крупные выступы и впадины.

Дополнительно используются такие методы:

– радиолокационный. Основывается на сравнении данных зондов и эхолокаций, считается одной из самых точных методик. Позволяет изучить, скорость вращения и траекторию движения, особенности поверхности, расстояние до объекта и прочее;

– спекл-интерферометрия. Суть метода состоит в детальном изучении зернистой структуры изображения небесного тела.

 

Классификация астероидов. Классы астероидов:

Как и планеты, они имеют значительные отличия друг от друга. Объединение этих качеств позволило разделить их на соответствующие группы и классы. В первую очередь учитывались особенности орбит и видимый спектр солнечных лучей, который они отражали от поверхности.

Первая классификация разделила астероиды на 3 основных группы, но по мере изучения небесных тел этот перечень расширялся и продолжает увеличиваться. Первое разделение, взятое за основу, базируется на ключевом химическом элементе, из которого состоит малое тело. Это:

– класс С – углерод (более 75% всех зарегистрированных тел);

– класс S – силикат (около 17%);

– класс М – металлы (все остальные).

 

Класс С:

Класс С – основной класс тел, представляющих собой объекты темного спектра углеродистого характера. Согласно расчетам ученых, в него входит три четверти всех известных астероидов, но не исключено, что их количество намного больше. Связано это с тем, что из-за слабой способности отражать солнечные лучи их трудно обнаружить, поэтому подсчет объектов малых размеров этой группы вести пока нет возможности.

Спектр углеродистых объектов близок к каменным хондритным метеоритам. Последние содержат в своем составе химические элементы туманности, которые, в свое время, позволили образоваться Солнцу, но исключают наличие летучих веществ – гелия, водорода и прочих. В связи с этим вероятность наличия на них полезных ископаемых велика.

Обнаружить астероиды С класса очень сложно именно из-за их темноты. Так, один из самых известных представителей данного класса – Бамберга, фиксируется исключительно мощными телескопами благодаря своей значительно вытянутой орбите, но лишь на короткий период времени. Самым же крупным астероидом класса С считается Гигея.

 

Класс S:

Класс S – второй по количеству объектов класс, включающий объекты с преимущественным кремниевым составом, за что еще получил название каменных. Яркость спектра (альбедо) этих тел средняя, а основными их химическими веществами считаются силикаты магния и железа (каменистые минералы).

Самыми крупными астероидами считаются:

– Ирида,

– Юнона,

– Амфитрита,

– Геркулина.

Эти объекты легко наблюдать с Земли при помощи обычного бинокля благодаря их яркости.

Особую известность заслужили:

– Веста – самый яркий объект данной группы;

– Итокава – первое тело, чьи образцы поверхности были изучены учеными и второе, куда совершалась посадка космического корабля.

 

Класс М:

Класс М – третий класс, чье изучение проводится с большими сложностями. Среди всех небесных тел этого типа они самые яркие за счет содержания значительного количества металлов – никеля и железа, но такой состав присущ не каждому из них. По версии ученых, эти астероиды являются остатками ядер с высоким содержанием руд более крупных объектов своей группы, разрушение которых произошло на этапе образования Солнечной системы. Самым значительным по величине представителем класса М является Психея.

Разделение астероидов на классы продолжается, т.к. во многих группах присутствуют объекты, которые не полностью или лишь малой частью соответствуют установленным критериям, но изучение их затруднительно. Так, Каллиопа, причисленная к классу М, имеет весьма малую плотность, поэтому физически не может состоять из руды, но в то же время ее альбедо напрямую указывает на присутствие металлов. Похожая ситуация с астероидом этого же класса Лютецией, что позволяет ученым предположить наличие на нем гидратированных металлов или каменистых минералов.

 

Какой астероид был открыт первым?

Официальной датой открытия астероида считается 1 января 1801 года. Ученые и астрофизики того времени предполагали, что расстояние между орбитами Юпитера и Марса очень велико, а значит, в этом диапазоне вполне может располагаться еще одна, пока неизвестная, планета. Долгие наблюдения позволили обнаружить несколько крупных астероидов, но т.к. они имели неправильную форму, были сравнительно малы и не находились в поле зрения постоянно, их наличие было просто отмечено и зафиксировано. Итальянскому же ученому Джузеппе Пьяцци удалось зафиксировать некий космический объект, изначально принятый им за комету, но ее медленное и однородное вращение заставило ученого предположить, что это нечто другое. В течение всего года разные исследователи наблюдали за обнаруженным небесным телом и изучали его свойства, а к 31 декабря 1801 года его наличие и положение было точно подтверждено. Он получил название Церера, по имени древнеримской богини плодородия.

Около пятидесяти лет объект официально носил название планеты, но после обнаружения рядом с Церерой других подобных ей небесных тел, она приобрела статус астероида, объекта, чье название («похожий на звезду») и свойства были описаны Уильямом Гершелем еще в 1802 году. Так, именно Церера стала первым астероидом, открытым официально.

Споры ученых о параметрах и массе небесных тел, наличия или отсутствия у них орбиты, спутников и достаточного удаления от других космических объектов привели к тому, что Цереру снова стали считать планетой, хотя и малой. Однако полностью соответствовать всем критериям таких объектов она тоже не способна, что стало поводом для создания и применения еще одной классификации – карликовая планета. На сегодняшний день именно он считается официальным для данного небесного тела, но, как замечают некоторые ученые, от этого Церера не перестает быть или не быть астероидом. Все это приводит к своеобразной путанице в сообщениях и заявлениях различных организаций, занимающихся изучением и развитием космоса, а также в учебниках и методических изданиях.

 

 

Открытие астероидов:

Официально эпоха изучения астероидов ведет свое начала с 1801 года, с открытия Джузеппе Пиацци Цецеры. После этого открытия последовали и другие:

  • – Паллада – 28 марта 1802г., Генрих Вильгельм Ольберс;
  • – Юнона – 1 сентября 1804г., Карл Хардинг;
  • – Веста – 29 марта 1807г., Г.В. Ольберс;
  • – Астрея – 8 декабря 1845г., Карл Людвиг Хенке;
  • – Геба – 1 июля 1847г., К.Л. Хенке;
  • – Ирида – 13 августа 1847г., Джон Хинд;
  • – Флора – 18 октября 1847г, Д. Хинд;
  • – Метида – 25 апреля 1848г., Эндрю Грэхем;
  • – Гигея – 12 апреля 1849г., Аннибале де Гаспарис;
  • – Парфенопа – 11 мая 1850г, Аннибале де Гаспарис;
  • – Виктория – 13 сентября 1850г., Д. Хинд;
  • – Эгерия – 2 ноября 1850г., Аннибале де Гаспарис;
  • – Ирена – 19 мая 1851г., Д. Хинд;
  • – Эвномия – 29 июля 1851г., Аннибале де Гаспарис;
  • – Психея – 17 марта 1851г., Аннибале де Гаспарис;
  • – Фетида – 17 апреля 1852г., Роберт Лютер;
  • – Мельпомена – 24 июня 1852г., Д. Хинд;
  • – Фортуна – 22 августа 1852г, Д. Хинд;
  • – Массалия – 19 сентября 1852г., Аннибале де Гаспарис;
  • – Лютеция – 15 ноября 1852г., Герман Гольдшмидт;
  • – Каллиопа – 16 ноября 1852г., Д. Хинд;
  • – Талия – 15 декабря 1852г., Д. Хинд;
  • – Фемида – 5 апреля 1853г., Аннибале де Гаспарис;
  • – Фокея – 6 апреля 1853г., Жан Шакорнак;
  • – Прозерпина – 5 мая 1853г., Р. Лютер;
  • – Эвтерпа – 8 ноября 1853г., Д. Хинд;
  • – Беллона – 1 марта 1854г., Р. Лютер;
  • – Амфитрита – 1 марта 1854г., Альберт Март;
  • – Урания – 22 июля 1854г., Д. Хинд.

Открытие новых небесных объектов продолжается и в наши дни.

 

Известные крупные астероиды солнечной системы:

Сосчитать точное количество астероидов, расположенных на просторах Солнечной системы даже при современном оборудовании обсерваторий не представляется возможным, но самые значительные из них изучены достаточно хорошо и даже имеют собственные имена.

Церера:

Церера – это не только первый открытый, но и самый крупный представитель данной группы небесных тел. Диаметр карликовой планеты составляет 960 км, а форма объекта достаточно правильная, похожая на шар. Кора астероида включает толщу ледяных масс и различные минералы, основа ядра – камень.

Веста:

После предоставления Церере статуса карликовой планетой Веста стала лидером среди астероидов Главного пояса и по массе, и по диаметру – 525,4 +/- 0,2 км. Отличается повышенной яркостью, благодаря чему ее можно наблюдать с Земли невооруженным глазом. Веста богата различными минералами, основные из которых железо и никель.

Паллада:

Диаметр Паллады чуть меньше Весты – около 512 +/-6 км, входит в Главное кольцо астероидов. Установлено, что на объекте присутствуют гидратированные минералы, что делает его особо привлекательным для дальнейшего изучения.

Интересный факт: свое имя астероид получил по имени подруги древнегреческой богини Афины – Паллады, но уже в честь его был назван новый химический элемент палладий, открытый англичанином Уильямом Волластоном в 1803 году.

Гигея:

Диаметр Гигеи составляет чуть более 407,12 км, что делает ее четвертой. Несмотря на значительные размеры, была открыта довольно поздно, т.к. имеет малое альбедо и довольно далеко расположена от Солнца, из-за чего плохо просматривается даже в самые сильные телескопы. Минеральный состав объекта неоднороден, присутствуют различные химические элементы, среди которых встречаются и гидратированные.

Интерамния:

Интерамния завершает пятерку самых крупных небесных тел этой группы с диаметром 326 км. Относится к редчайшим астероидам подкласса F, являющихся углеродными, но не имеющими даже следов воды в составе, что прямо указывает на наличие гидратированных минералов.

Европа:

Диаметр Европы составляет 302,5 км, она является классическим представителем углеродистых астероидов. Отличительная черта – заметная вытянутая орбита и пористая поверхность.

Давида:

Точные размеры объекта – Давида не установлены, по разным данным они составляют от 270 до 326 км. Плотность достаточно велика, а исследования при помощи инфракрасного спутника позволили установить присутствие гидратированных минералов. Свое название получила в честь американского профессора астрономии Дэвида Тодда, но традиция присваивать данным объектам лишь женские имена привела к появлению столь необычного имени.

Сильвия:

Сильвия представляет собой тройной объект и входит в семейство Кибелы. Свое название получил в честь матери основателей Рима – Рэма и Ромула, по чьим именам названы спутники этого астероида.  Диаметр небесного тела составляет 232 км, относится к углеродистым, богат силикатами, включает органические вещества.  Отличительная особенность – вытянутая форма объекта и очень большая скорость его вращения на короткой оси.

Гектор:

Гектор – крупное и темное небесное тело, принадлежащее к троянским астероидам планеты Юпитер. Имеет вытянутую форму, похожую на земляной орех (арахис), с размерами 370*195*205 км, что, по мнению ученых, свидетельствует о том, что он состоит из двух объектов, стянутыми между собой силой гравитации. Является единственным троянским астероидом, имеющим спутник, а его поверхность состоит преимущественно из скальных пород и толщи льда.

Евфросина:

Евфросина – классический представитель астероидов класса С, но отличающийся очень высокой скоростью вращения. Диаметр – 255,9+/-5,8 км. Отличается низким альбедо, из-за чего практически никогда не виден с Земли, что свидетельствует о богатейших запасах углерода и высокой плотности объекта.

 

Астероиды, подлетающие к Земле:

Малые небесные тела периодически сближаются с орбитой Земли, а на заре образования Солнечной системы периодически падали на поверхность планеты. Об этом свидетельствует наличие одинаковых полезных ископаемых в земной коре и ядрах астероидов, т.е. можно предположить, что современная разработка месторождений – это освоение упавших в прошлом на Землю малых небесных тел. Однако такое падение способно стать катастрофическим для человечества и привести к гибели всей планеты, поэтому за потенциально опасными объектами (около десятка), способными значительно приблизится к ней, ведется наблюдение.

За всю историю изучения космоса учеными отмечено 3 подобных астероида:

– 2004 FU 162 – пролетел на расстоянии 6535 км 31 марта 2014 г.,

– 2008 TS 26 – приблизился на расстояние до 6150 км 9 октября 2008 г.,

– 2009 VA – оказался на расстоянии 14 тысяч км от Земли 6 ноября 2009 г.

Всего же учеными зарегистрировано 6200 астероидов, чья орбита находится близко от Земли, но наблюдение за большинством из них затруднено или попросту невозможно. Особого внимания заслуживают небесные тела, чей диаметр превышает 1 км, т.к. их падение может привести к мощным взрывам и разрушениям.

 

Чем отличается метеорит от астероида?

Небесные тела не отличаются большим разнообразием, но при изменении их положения в пространстве солнечной системы они меняют свои свойства, от чего получают другое название.

Так, астероидов, размеры которых достигают сотен километров в диаметре, не очень много, но сам пояс этих объектов (астероиды «стремятся объединяться») включает более 750 тысяч более мелких, средних и даже совсем маленьких небесных тел. Все они двигаются по определенной орбите, но в результате различных сил и процессов иногда «срываются» с нее и движутся в космическом пространстве. Если один из таких астероидов проникнет в атмосферу Земли, он станет метеором.

Чтобы достичь поверхности планеты метеору придется столкнуться с несколькими слоями атмосферы, где его тело будет подвергнуто различным химическим и физическим процессам, проще говоря – «сгорит». В случае, когда какая-то часть метеора все же останется целой и упадет на Землю, она станет метеоритом. Чаще всего это ядро бывшего астероида, состоящее преимущественно из железа (около 90%) или минералов – кремния, магния и прочих. Огненный шар, образующийся при взрыве и горении метеора в атмосфере, называют болидом.

 

Чем отличается комета от астероида?

Комета и астероид – принципиально разные небесные тела, хотя и имеют много общего:

– состав объекта. Основа астероидов – вещества, которые принято называть полезными ископаемыми. Чаще всего это металлы, но есть минералы, в том числе, гидратированные, углерод, скалистые материалы. Основа кометы – ледяные массы и пыль, дополненные небольшим количеством скалистых веществ;

– место формирования. Оба вида объектов сформировались в момент образования Солнечной системы, около 4,5 миллиардов лет назад. Однако астероиды расположились сравнительно недалеко от главной звезды и ее теплового излучения, из-за чего наличие льда и даже воды на них стало невозможным. Кометы же расположились удаленно, что отразилось на их составе, но при приближении к Солнцу их масса резко уменьшается, т.к. ледяные массы тают и испаряются. Как результат – появление характерного «хвоста», который у астероидов отсутствует;

– орбиты. Еще одно принципиальное отличие комет и астероидов: первые обладают широкими и довольно удлиненными траекториями движения, тогда как вторые – короткие, расположенные по кругу, хотя иногда и не совсем правильной формы. Последнее обуславливает тот факт, что астероиды «стремятся объединиться» и образуют пояса;

– не самой принципиальной, но все же разницей, считается и количество небесных тел. На сегодняшний день учеными открыто чуть более 3,5 тысяч комет, тогда как предположительное число астероидов превышает несколько миллионов. Сосчитать же все подобные тела невозможно, т.к. размеры многих их них не превышают параметры частиц пыли.

 

Чем астероиды отличаются от карликовых планет?

Основная разница между этими двумя видами небесных тел состоит в массе и, соответственно, в форме объекта.

Так, общим является:

  • – наличие собственной орбиты, по которой они вращаются вокруг Солнца;
  • – исключение из разряда спутников других планет;
  • – отсутствие возможности расчищать свою орбиту от других объектов Вселенной, встречающихся на пути.

Однако масса карликовых планет достаточна для обладания гравитационными силами. Под их действием выпуклости и выступы «вминаются», «шлифуются», в результате чего получается сферическая форма, присущая объектам, соответствующим термину «планета». Именно этот факт позволил причислить Цереру, долгое время считавшуюся астероидом, к карликовым планетам (хотя официально из перечня последних она также не исключена).

Астероиды же имеют слишком малую массу, при которой невозможно появление гравитации, поэтому формы их неправильны и весьма разнообразны.

 

Где находятся астероиды?

Особенность астероидов – объединение их в семейства и группы, возникающее на основе нюансов вращение их орбит. Семейства – это достаточно плотные скопления небесных тел, и, по мнению ученых, являющиеся частицами более крупных астероидов, столкнувшихся ранее в данной точке Вселенной. Группа же представляет меньшее по количеству объектов и более свободное скопление небесных тел. Все они, в свою очередь, образуют пояса, которых насчитывается пять.

 

Главный пояс астероидов:

Главный пояс астероидов размещен между орбитами Марса и Юпитера. Свое название получил благодаря размерам, т.е. самой большой численности небесных тел в своем составе. Его суммарная масса составляет около 4% от массы главного спутника Земли, а главным «достоинством» считается присутствие четырех главных гигантов: Цереры, Весты, Гигеи и Паллады.

Количество астероидов в поясе достигает нескольких миллионов, при этом больше половины из них малого размера, до 30-50 метров в диаметре, и они располагаются на значительном удалении друг от друга, что позволяет космическим аппаратам свободно двигаться между ними.

В рамках Главного пояса присутствует несколько крупных семейств:

– Флоры;

– Эвномии;

– Корониды;

– Эос;

– Фемиды;

– Венгрии;

– Фокеи;

– Кибелы;

– Хильды.

Также имеются молодые семейства – Карины, Веритас, Датуры, Ианнини и Троянские астероиды, представляющие собой две крупные группы небесных тел, расположенных на самой границы орбиты Юпитера.

 

Пояс Койпера:

Пояс Койпера – следующее по значимости скопление астероидов, находящееся в непосредственной близости от орбиты планеты Нептун. Хотя число самих небесных тел в нем меньше, площадь, им занимаемая, в два десятка раз больше, чем у Главного пояса, т.к. расстояние между объектами еще больше, чем в первом случае. Еще одно отличие – состав: в Главном поясе они преимущественно включают руду и скалистые породы, а в поясе Койпера – летучие вещества, представленные в виде ледяных масс. Наиболее распространенные – аммиак и метан.

Крупнейшими объектами сосредоточения небесных тел являются карликовые планеты:

– Плутон;

– Хаумеа;

– Макемаке;

– Эрида.

 

Рассеянный диск:

Рассеянный диск расположен в удаленной части Солнечной системы, где сосредоточено небольшое количество малых небесных тел, чья основа – лед. Относятся к подсемейству транснептуновых объектов, расположенных в границах пояса Койпера, т.к. внутренняя часть диска пересекается с ним. Однако выделяются в отдельное скопление, т.к. внешняя граница расположена на значительном удалении от Солнца.

Положение объектов весьма нестабильное: они способны удаляться от основного скопления на десятки километров, за что и получили свое название – рассеянные, т.к. постоянно оказываются в районе пояса Койпера или облака Оорта. Крупнейшими объектами считаются Эрида и Седна.

 

Облако Оорта:

Облако Оорта считается гипотетической сферой скопления малых небесных тел, большей частью – долгопериодических комет, но его точное существование подвергается сомнению некоторых ученых.  Расположен в самой отдаленной части Солнечной системы и считается его условной внешней границей, а его размеры, предположительно, в тысячу раз больше, чем его ближайших соседей. Разделяется облако Оорта на две области – внешнюю и внутреннюю. Небесные тела, входящие в их состав, включают преимущественно толщи льда, состоящие из воды, метана или аммиака. Главные объекты облака:

– Седна;

– 2000 CR 105;

– 2006 SQ 372;

– 2008 KV 42;

– 2012 VP 113.

Есть предположения, что включает оно и газового гиганта – планету Тюхе, а на за его внешними пределами располагается звезда Нимезида – спутник самого Солнца.

 

Источник: xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai

Драгоценная Психея

Астероид Психея был открыт итальянским астрономом Аннибале де Гаспарисом в 1852 году. Своё название он получил в честь героини древнегреческой мифологии. Диаметр астероида равен 240 километрам, что делает его одним из крупнейших представителей Главного пояса. В конце XX века при проведении радиолокационных исследований были замечены необычные свойства Психеи. Оказывается, астероид имеет очень высокое содержание железа и никеля. А уже в наше время с помощью спектральных исследований астрономы обнаружили, что на поверхности Психеи имеются залежи платины и золота. В связи с этим в некоторых СМИ малую планету стали называть драгоценным астероидом. Имеются там и залежи медной руды, что нехарактерно для астероидов. После обнаружения драгоценных металлов НАСА стало готовить космический корабль для изучения Психеи. Старт запланирован на 2022 год.
Откуда же могло появиться такое богатство, пока не обнаруженное на других, даже более изученных астероидах? Скорее всего Психея представляет собой металлическое ядро более крупного тела, образованного на самом раннем этапе формирования Солнечной системы. Впоследствии этот протоастероид был разрушен в результате столкновения с другим крупным объектом. Это объясняет и отсутствие подобных фрагментов рядом — они были рассеяны за миллиарды лет, прошедшие со времени этой катастрофы.
Ещё одним следом той катастрофы является угол наклона вращения астероида — он равен 95°. В Солнечной системе есть только один подобный объект, это планета Уран — его угол наклона равен 97,86°. Уран и Психея вращаются, словно лёжа на боку слегка вниз головой, и если другие планеты можно сравнить с вращающимися волчками, то эти два небесных тела больше похожи на катящиеся шары.

Зелёная Аспорина

Оливин — минерал, распространённый на многих небесных телах. Обычно его цвет светло-зелёный, хотя иногда встречаются и желтоватые камни. На Гавайских островах есть целые пляжи, состоящие из песчинок оливина. Но все пляжи меркнут перед 60-километровым астероидом Аспорина, который либо покрыт им полностью, либо является его огромным фрагментом. И если Психею называют драгоценным астероидом, то Аспорину величают зелёным. Располагайся он на расстоянии в 100000 километров от нашей планеты, мы бы наблюдали в небе яркую зелёную звезду, но, увы, астероид удалён от нас на 400000000 километров, и всё, что мы можем увидеть, это белая точка на фоне тёмного космоса.

Многообразие цветов

30 июля 1916 года российский астроном Григорий Неуймин открыл астероид, получивший порядковый номер 951. Дал ему название в честь курортного посёлка в Крыму, где много лет провёл Лев Толстой, и не догадывался, что почти через 90 лет это 18-километровое небесное тело привлечёт внимание даже далёких от астрономии людей. Астероид отличался очень слабым блеском, поэтому для его наблюдений нужен достаточно мощный телескоп. Но технологии не стоят на месте, и уже в 1957 году на орбиту Земли вышел первый искусственный спутник. А в 1991 году состоялся первый пролёт земного аппарата вблизи астероида, которым и стала Гаспра. К сожалению, Григорий Неуймин не дожил до этого момента, он скончался 17 декабря 1946 года.
Американская станция «Галилео», направляющаяся к Юпитеру, пролетела мимо Гаспры и передала 58 её изображений. Изучив снимки, учёные установили, что, в отличие от большинства астероидов, имеющих однотипные цветовые оттенки (коричневые, бежевые или серые), цвет Гаспры очень разнообразен, в нём присутствуют и зелёные области, подобно Аспорине состоящие из оливина, и красные, состав которых представляет собой смесь различных оксидов железа и, по-видимому, схож с поверхностью Марса. Имеются и области более светлые, возможно, содержащие алюминий.
Но самое интересное для учёных не цвет данного астероида и даже не залежи полезных ископаемых на нем, а то, что детали его рельефа сглаживает толстый слой реголита, или каменной крошки — материала, который образуется вследствие космической эрозии и столкновений с другими телами. Но откуда взялся реголит на столь маленьком и молодом астероиде — загадка, которая относится к особенностям Гаспры, и пока она не разгадана.

Голт — самый хвостатый

На окраине Солнечной системы есть много ледяных тел, которые по разным причинам выталкиваются со своей орбиты и устремляются к Солнцу, превращаясь в кометы. У них появляется красивый хвост: под воздействием температуры лёд начинает таять, освобождая тонны пыли, которая этот самый хвост и образует. Под влиянием Солнца или крупных планет орбита кометы меняется, и если её не выталкивает из Солнечной системы, то она начинает вращаться с разным периодом вокруг нашего светила, постепенно теряя лёд. После того как он полностью испарится, остаётся лишь твёрдое каменное ядро. Астрономы придумали специальное определения для таких «старых комет» — кентавры. Эти объекты — среднее между кометами и астероидами. Большую часть времени они не отличаются от остальных малых планет, только движутся очень быстро. Но иногда, под воздействием различных факторов, у астероидов появляется пылевая оболочка, правда не такая толстая, как у комет, которые иногда можно увидеть на небе и невооружённым глазом, в виде туманной хвостатой звезды. Для наблюдения пылевых хвостов у астероидов нужны мощные инструменты.
В 1988 году американские астрономы открыли самый обычный астероид, получивший порядковый номер 6478. Ему присвоили имя Голт — почтили память американского палеонтолога Дэвида Гол-та, скончавшегося в 1999 году. 31 год Голт был заурядной малой планетой, но в январе 2019 года случайно попал в поле зрения телескопа ATLAS, с помощью которого астрономы ищут опасные астероиды. У Голта был замечен длинный хвост, которому позавидовали бы кометы! Его длина — 800000 километров, что почти в два с половиной раза превышает расстояние между Землёй и Луной. Также был обнаружен и второй, более короткий хвост, что редко бывает даже у комет. При этом заурядный астероид, видимый лишь в достаточно мощные телескопы, увеличил свою яркость в несколько десятков раз и стал доступен для наблюдения, чем и воспользовались многие астрономы-любители, сумев получить красивые снимки двухвостого космического странника.
Первоначально учёные объяснили появление «пушистого хвоста» столкновением Голта с другим астероидом. По предварительным расчётам, космическая катастрофа произошла недавно, в октябре-ноябре 2018 года. Однако, найдя архивные снимки этого объекта за 2013 год, астрономы с удивлением обнаружили, что образование хвоста началось за пять лет до предполагаемой катастрофы. В итоге учёные пришли к выводу, что причиной такого явления стало не столкновение, а очень быстрое вращение (полный оборот астероида вокруг своей оси равен двум часам), в результате которого небесное тело теряет пыль с поверхности или находится в состоянии медленного распада. Именно это отличает данный астероид от комет: их активность вызвана разогревом поверхности ядер солнечным излучением, а Голт обзавёлся хвостом в результате собственного движения.
Осенью этого года астрономы установили, что пыль, вылетающая с поверхности астероида, имеет синий цвет. Так что он не только самый хвостатый, но и самый синий среди малых планет.

Не опасен, но ярок

Самым ярким астероидом является Веста. Иногда её можно увидеть невооружённым глазом, хотя все остальные яркие астероиды без биноклей или телескопов не видны даже в пике блеска.
Но в 2029 году на нашем небе появится астероид, чья яркость затмит показатели Весты: если расчёты оправдаются, он станет самым ярким за всю историю наблюдений. И будет это знаменитый астероид Апофис, столкновением с которым нас часто пугают средства массовой информации. Его орбита к настоящему времени хорошо изучена, и установлено, что он не представляет никакой опасности и пролетит от нашей планеты на расстоянии 36 тысяч километров. Блеск при этом достигнет третьей звёздной величины — примерно такими мы видим звезды Малой Медведицы, за исключением Полярной. Апофис будет виден невооружённым глазом в виде движущейся по небу звезды, смещение которой будет заметно в течение получаса. Так что через десять лет мы станем свидетелями уникального небесного явления. В следующий раз астероид, видимый невооружённым глазом, но с расчётной яркостью уже на величину меньше, чем у Апофиса, появится на нашем небе только в 2099 году.

Первый межзвёздный

Астероиды, показывающие кометную активность, переклассифицируются из малых планет в кометы, и им присваивается обозначение «хвостатые звёзды». Обратный случай зафиксирован лишь однажды.
В 2017 году с помощью обзорного телескопа PANSTARRS, установленного на Гавайских островах, было обнаружено небесное тело с характерной гиперболической кометной орбитой. Однако дальнейшие наблюдения показали, что оно никак не может быть кометой: об этом явно свидетельствовало отсутствие пылевой активности. Появилось даже предположение о том, что это межзвёздный корабль. Случай в истории астрономии не уникальный: за рукотворные объекты ранее принимались и интересные образования на Луне, и разломы Марса (те самые каналы) и даже его спутники. Все эти гипотезы были связаны с несовершенством наблюдений. Так произошло и на этот раз: с развитием инструментальной базы стали открывать новые объекты, которые не могли быть замечены раньше, поэтому новый объект и удивил астрономов.
Астероид, получивший сложное имя Оумуамуа, что в переводе с гавайского означает «разведчик» или «посланник издалека», является межзвёздным небесным телом. Предполагается, что он прибыл к нам из системы звезды Вега и, вероятнее всего, был выброшен оттуда мощными гравитационными силами. По расчётам астрономов, через 100000000 лет аналогичное событие ожидает и Меркурий, орбита которого постепенно трансформируется под влиянием Солнца, и при очередном сближении с нашим светилом его вытолкнет из Солнечной системы в свободное галактическое плавание.
Сейчас уже открыто несколько планет, которые не вращаются вокруг звёзд, а путешествуют вокруг центра Галактики. Вполне вероятно, что Оумуамуа некоторое время будет оставаться единственным известным «межзвёздным астероидом, и скоро последуют другие открытия. Дело в том, что у двух ближайших к нам звёзд — проксима Центавра и Эпсилон Эридана — обнаружены астероидные пояса, и вполне возможно, что какая-то местная малая планета уже покинула их и направляется в нашу сторону.

Журнал: Тайны 20-го века №3, январь 2020 года
Рубрика: Тайны космоса
Автор: Юрий Соломонов

Источник: www.bagira.guru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.