Квазар картинки


Благодаря удачной комбинации гравитационной линзы и технических возможностей телескопа «Хаббл», астрономам удалось обнаружить ярчайший квазар, существовавший в ранней Вселенной. Его свет был испущен всего через 1 миллиард лет после Большого взрыва.
Квазары являются самыми яркими известными нам объектами. Они представляют собой ядра наиболее активных галактик, в центрах которых расположены сверхмассивные черные дыры. Они окружены мощными аккреционными дисками, состоящими из газа и пыли. В процессе поглощения сверхмассивной черной дырой вещества диска происходит выделение огромного количества энергии, которое можно наблюдать на всех длинах волн. Самые мощные квазары испускают в сотни и тысячи раз больше света, чем весь Млечный путь.Вновь открытый квазар получил обозначение J0439+1634 (J043947.08+163415.7). Его светимость в 600 трлн раз превышает светимость Солнца. По оценкам астрономов, масса расположенной в центре J0439+1634 черной дыры в 700 миллионов раз превосходит массу нашей звезды. Для сравнения, масса черной дыры в центре Млечного пути оценивается в 4.3 миллиона солнечных.


Несмотря на столь внушительные характеристики, даже всей мощи Hubble не хватило бы, чтобы увидеть J0439+1634. Ведь квазар находится на самой границе наблюдаемой Вселенной. К счастью, в распоряжении астрономов оказался «помощник». Им стала тусклая галактика, расположенная на линии между J0439+1634 и Землей. Ее гравитация усилила свет квазара в 50 раз, что позволило Hubble сфотографировать объект.Анализ данных показал, что квазар не просто излучает огромное количество энергии, но и также способствует формированию большого количества звезд. Ежегодно в J0439+1634 образуется до 10 тысяч светил. Для сравнения, современный показатель звездообразования в Млечном пути составляет 1 новая звезда в год.
Объекты, подобные J0439+1634, существовали в эпоху реионизации, когда излучение первых звезд ионизировало окружавшие галактики облака нейтрального водорода, сделав их прозрачными для видимого света. Изучение J0439+1634 может помочь ученым лучше разобраться в том, как проходил этот процесс. Поэтому уже в ближайшее время астрономы планируют провести новые наблюдения квазара с использованием Очень Большого Телескопа ESO и комплекса радиотелескопов ALMA.

Материал на сайте журнала «Вселенная, пространство, время»

Источник: kiri2ll.livejournal.com

Квазар. Немного истории


Давайте мысленно переместимся в 30-е годы прошлого века. Один из основоположников современной астрономии, американский физик и астроном Карл Янский сделал странное открытие. Ученый обнаружил, что источником помех, которые наблюдались в трансатлантических телефонных линиях являлся, ни много, ни мало, Млечный Путь! Это открытие весьма озадачило научный мир. Но лишь в 50-х годах прошлого столетия астрономы начали активно использовать радиотелескопы для сканирования неба. Они сравнивали результаты своей работы с изображениями неба в видимом диапазоне.

И то что они обнаружили, поразило всех. Оказалось, что некоторые из слабых источников излучения в радиодиапазоне не имеют эквивалента в видимом участке спектра. То есть в радиосигналах ученые нашли источник излучения. Однако на фотографиях они не нашли звезды или другого объекта, который мог бы быть источником этой энергии. Астрономы назвали эти объекты «квазизвездными радиоисточниками». Или «квазарами».

Скорость света

И в научном мире возник резонный вопрос – а что же за процессы рождают подобные объекты? Какие чудовищные силы способны генерировать столько энергии? Этот вопрос просто необходимо было срочно решить. Некоторые из профессоров даже начали собирать деньги на ракету, чтобы посетить ближайший квазар. И выяснить, в чем же дело. Но подсчеты показали, что путешествие будет длинным. И в мире нет столько тушенки, чтобы загрузить ее в ракету. Потому что ближайший к Земле квазар удален от Земли на 600 миллионов световых лет! Поэтому изучать природу квазара было решено удаленно.


Так какое же мнение имеет наша наука по поводу того, что же такое квазар? Современные ученые считают, что интенсивные космические радиосигналы исходят из ядер далеких галактик. Которые, фактически, являются сверхмассивными черными дырами. Постойте, скажете Вы. Но ведь черные дыры не могут ничего излучать! Да, это действительно так. Но здесь задействован очень интересный процесс. Когда материя приближается слишком близко к горизонту событий черной дыры, она уже не может покинуть ее цепкие объятья. В этом месте только фотоны, переносчики энергии, еще могут это сделать. Падающая в черную дыру материя набирает огромную скорость и сжимается. И разогревается из-за сжатия до нескольких миллионов градусов. В результате этого процесса образуется так называемый аккреционный диск. Этот диск испускает огромное количество излучения. Считается, что до 30% вещества в ходе этого процесса превращается в энергию.

аккреционный диск
Аккреционный диск вокруг черной дыры.

Мощное магнитное поле, которое существует вокруг любой черной дыры, выбрасывает струи этой энергии в противоположных направлениях в космическое пространство. И они летят с огромными скоростями по всей Вселенной…

Как далеко они от нас?


Каждый квазар испускает просто колоссальное количество энергии. Даже большее, чем свет всех звезд в любой галактике. Квазары являются самыми яркими объектами во Вселенной. Однако это не единственные объекты в космосе с подобными характеристиками. На самом деле квазары являются частью целой группы небесных тел, известных как активные ядра галактик. В эту группу также входят еще так называемые сейфертовские галактики. И еще блазары.

Большинство обнаруженных в космосе квазаров находятся на расстоянии миллиардов световых лет от нас. Поэтому, даже имея скорость света, эти излучения путешествуют к нам очень долго. Но в этом есть и плюсы. Изучение этих сигналов можно использовать в качестве своеобразной машины времени. Используя их, мы можем видеть небесное тело таким, каким оно было миллионы лет назад.

Известно, что большинство из более чем двух тысяч найденных квазаров возникло на ранних стадиях развития своих галактик. Вполне возможно, что Млечный Путь тоже имел подобный объект. Но со временем он почему-то замолчал. А в противном случае жизнь на Земле была бы невозможна.

Блазары и сейферовские галактики? Что это?


Сейфертские галактики, в отличие от квазаров, легко обнаруживаются в видимом диапазоне. Около 10% всех галактик во Вселенной относятся к этому типу. И хотя они могут казаться нормальными в видимом спектре, при наблюдении в других спектрах можно увидеть, что светимость их активного галактического ядра сравнима с яркостью галактики, подобной нашей.

самый далекий квазар
Художественное представление о квазаре ULAS J1120 + 0641. Это самый дальний из известных подобных объектов. Расстояние до него – более 12,9 миллиарда световых лет.

А что же такое блазары? На самом деле блазары и квазары это практически одно и тоже. Блазары просто более компактны, чем квазары. Но разница между ними заключается еще и в том, что струи энергии от квазаров испускаются под углом к ​Земле. А энергия блазаров падает прямо на нашу планету. Возможно это проще объяснить через пример машины на ночной дороге. Если Вы посмотрите на нее со стороны – можно увидеть, что у нее включены фары. Так мы видим квазар. Если фары будут светить прямо на нас – так мы видим блазар. Все просто.

Сколько живут квазары?


Сверхмассивные черные дыры – это вовсе не вечные источники питания. Если вокруг черной дыры заканчивается материал, то все, ребята. Аккреционный диск исчезает. Энергии для выброса больше нет. Всем спасибо, все свободны.

Однако стоить отметить, что работа квазара может через некоторое время возобновится. Если новые порции материи приблизятся к черной дыре. Очень хочется верить, что этого не случится в нашей Галактике. Ну, по крайне мере, в ближайшие пару миллионов лет…

Источник: alivespace.ru

Квазар картинки

«Ненужное открытие» 

Астрономы издревле любят порядок — все у них подсчитано, классифицировано и идентифицировано. Однако ночное небо не перестает удивлять внимательных наблюдателей и постоянно подбрасывает новые и неведомые объекты в звездные каталоги. Квазары, открытые всего 40 лет назад, не на шутку озадачили ученых своей феноменальной яркостью свечения и компактностью размеров. И только недавно астрофизикам удалось понять, откуда эти «динозавры Вселенной» черпают энергию, необходимую для того, чтобы сиять на звездном небе с такой удивительной яркостью.

В 1960 году астрономы Т. Мэттьюз и А. Сендидж, работая на 5-метровом телескопе, расположенном на горе Паломар в Калифорнии, обнаружили ничем не примечательную, еле заметную в любительский телескоп звездочку 13-й звездной величины, наблюдаемую в созвездии Девы.
именно из этой искры возгорелось пламя!     Все началось с того, что в 1963 году Мартином Шмидтом было обнаружено, что этот объект (по каталогy ЗС 2731 имеет очень большое красное смещение. Значит, расположен он чрезвычайно далеко от нас и очень ярок. Расчеты показали, что ЗС 273 находится на расстоянии 620 мегапарсек, и удаляется со скоростью 44 тысячи км/с. Обычную звезду с

Квазар

Фотография квазара PG 1012+008 (яркое пятно в центре), взаимодействующего с галактикой, проле-тавшей по соседству. И если между ними всего 35 тыс. световых лет, то от Земли они удалены на 1,5 млрд. световых лет. Гравитационные силы пере-местили звезды с их прежних орбит, и теперь многие из них упадут в черную дыру в центре квазара.

Художественное изображение квазара

Серия последовательных радиоизображений квазара 3C 273. кажущаяся скорость перемещения яркой области джета существенно превышает скорость света. Однако это обстоятельство не опровергает СТО Эйнштейна, поскольку реальная скорость движения яркой области меньше скорости света, а видимое сверхсветовое движение обусловлено на направленностью джета в сторону Земли.


Квазары

такого расстояния не увидишь, а на большую звездную систему, типа галактики, квазар, будучи очень маленьким, был не похож.
В том же 1963 году ЗС 273 был отождествлен с мощным радиоисточником. Радиотелескопы тогда не были столь точны в определении направления прихода радиоволн, как сейчас, поэтому звездные координаты квазара ЗС 273 были определены путем наблюдения его покрытия Луной на обсерватории «Паркском» в Австралии. Таким образом, перед изумленными взорами астрофизиков предстал совершенно необычный объект, ярко сверкавший в видимом и радиодиапазоне электромагнитных волн. На данный момент обнаружено уже более 20 тысяч таких звездоподобных объектов, часть из которых хорошо видна также в рентгеновском и радиодиапазоне.

Московские астрономы А. Шаров и Ю. Ефремов решили выяснить, как менялась светимость ЗС 273 в прошлом. Они нашли 73 фотографии этого объекта, самая ранняя из которых датировалась 1896 годом. Оказалось, что объект ЗС 273 несколько раз менял свою яркость почти в 2 раза, а иногда, например в период с 1927 по 1929 год в 3-4 раза.     Надо сказать, что феномен переменной яркости был обнаружен еще раньше. Так, исследования, проведенные в Пулковской обсерватории в 1956-м, показали, что ядро галактики NGC 5548 достаточно сильно изменяет со временем свою яркость.


Теперь специалисты понимают всю важность этого наблюдения, но несколько десятилетий назад ученые были убеждены, что излучение от ядер галактик в оптическом диапазоне обеспечивается исключительно миллиардами находящихся там звезд, и даже если несколько тысяч из них по каким-то причинам погаснут, то с Земли этого заметно не будет. Значит, рассуждали ученые, большинство звезд в ядре галактики должны «мигать» синхронно! Хотя, конечно, управлять подобным оркестром не под силу ни одному дирижеру. Таким образом, именно из-за своей абсолютной непонятности эта открытие и не привлекло к себе особого внимания.

Дальнейшие наблюдения показали, что изменение интенсивности излучения с периодом несколько месяцев — для квазаров явление обычное, и размер области излучения не превосходит расстояния, которое проходит свет за эти самые несколько месяцев. А для того чтобы изменения во всех точках области происходили синхронно, нужно, чтобы информация о начинающемся изменении успела дойти до всех точек. Понятно, что материя квазара излучает свет не по команде, а в силу происходящих на нем процессов, но факт синхронности, то есть одновременности, изменения условий и величины излучения указывает на компактность данного квазизвездного объекта. Поперечник большинства квазаров, по-видимому, не превышает одного светового года, что в 100 тысяч раз меньше размеров галактики, а светят они при этом порой как целая сотня галактик.


Как это обычно и бывает, сразу после обнаружения квазаров начались попытки введения новых законов физики, хотя поначалу непонятно было даже, из какого же именно вещества они состоят, столь необычным был спектр излучения квазаров. Впрочем, прошло совсем немного времени, и химический состав излучающих областей квазаров был опознан по спектральным линиям известных химических элементов. Водород и гелий на квазарах идентичны земным, вот только спектры их излучения, как оказалось, сильно смещены в красную сторону из-за большой скорости убегания.

На сегодняшний день наиболее распространена точка зрения, согласно которой квазар — это сверхмассивная черная дыра, втягивающая в себя окружающее вещество (аккреция вещества). По мере приближения к черной дыре заряженные частицы разгоняются, сталкиваются, и это приводит к сильному излучению света. Если черная дыра при этом имеет мощное магнитное поле, то оно дополнительно закручивает падающие частицы и собирает их в тонкие пучки, джеты, разлетающиеся от полюсов.

Под действием мощных гравитационных сил, создаваемых черной дырой, вещество устремляется к центру, но движется при этом не по радиусу, а по сужающимся окружностям — спиралям. При этом закон сохранения момента импульса заставляет вращающиеся частицы двигаться все быстрее по мере приближения к центру черной дыры, одновременно собирая их в аккреционный диск, так что вся «конструкция» квазара чем-то напоминает Сатурн с его кольцами. В аккреционном диске скорости частиц очень велики, и их столкновения порождают не только энергичные фотоны (рентгеновское излучение), но и другие длины волн электромагнитного излучения. При столкновениях энергия частиц и скорость кругового движения уменьшаются, они потихоньку приближаются к черной дыре и поглощаются ею. Другая часть заряженных частиц направляется магнитным полем к полюсам черной дыры и вылетает оттуда с огромной скоростью. Так образуются наблюдаемые учеными джеты, длина которых достигает 1 млн. световых лет. Частицы в джете сталкиваются с межзвездным газом, излучая радиоволны.

В центре аккреционного диска температура относительно невысокая, она достигает 100 000 К. Эта

Джет

На оптическом изображении квазара 3С 273 хорошо виден джет, испускаемый черной дырой.

область излучает рентгеновские лучи. Чуть дальше от центра температура еще немного ниже — примерно 50 000 К, там излучается ультрафиолет. С приближением же к границе аккреционного диска температура падает и в этой области происходит излучение электромагнитных волн все большей длины, вплоть до инфракрасного диапазона.

Не надо забывать и о том, что свет от далеких квазаров приходит к нам сильно «покрасневшим». Для количественного определения степени покраснения астрономы используют букву z. Именно выражение z+1 показывает, во сколько раз увеличилась длина волны электромагнитного излучения, долетевшего от источника (квазара) до Земли. Так, если появляется сообщение, что обнаружен квазар с z=4, то это означает, что его ультрафиолетовое излучение с длиной волны 300 нанометров превращается в инфракрасное излучение с длиной волны 1 500 нанометров. Кстати, для исследователей на Земле это большая удача, ведь ультрафиолетовая часть спектра поглощается атмосферой и эти линии никогда бы не наблюдались. Здесь же длина волны за счет красного смещения увеличилась, как будто специально для того, что-бы пройти сквозь земную атмосферу и быть зарегистрированной в приборах.

Согласно другой точке зрения квазары — это первые молодые галактики, и мы просто наблюдаем процесс их зарождения. Впрочем, существует и промежуточный, хотя вернее было бы сказать «объединенный» вариант гипотезы, согласно которому квазар — это черная дыра, поглощающая вещество формирующейся галактики.

Так или иначе, но предположение о сверхмассивной черной дыре в центре галактики оказалось плодотворным и способным объяснить многие свойства квазаров. Так, например, масса черной дыры, находящейся в центре типичной галактики, составляет 106-1010 солнечных масс и, следовательно, ее гравитационный радиус варьируется в пределах Зх106-Зх1010 км, что согласуется с предыдущей оценкой размеров квазаров.

Новейшие данные также подтверждают компактность тех областей, из которых исходит свечение. Например, 5-летние наблюдения позволили определить орбиты шести звезд, вращающихся около похожего центра излучения, находящегося в нашей галактике. Одна из них недавно пролетела от черной дыры на расстоянии, составляющем всего 8 световых часов, двигаясь со скоростью 9 000 км/с.

Динамика поглощения

Как только вокруг черной дыры появляется материя в любой форме, черная дыра начинает излучать энергию, поглощая вещество. На начальной стадии, когда формировались первые галактики, вокруг черных дыр было много вещества, являющегося для них своеобразной «пищей», и черные дыры светились очень ярко — вот они, квазары! Кстати, энергии, которую средний квазар излучает за секунду, хватило бы для обеспечения Земли электричеством на миллиарды лет. А один рекордсмен с номером 550014+81 излучает свет в 60 тысяч раз интенсивнее всего на шего Млечного пути с его сотней миллиардов звезд!

Когда вещества в окрестности центра становится меньше, свечение ослабевает, но тем не менее ядро галактики продолжает оставаться самой яркой ее областью (это явление, называемое «Активное галактическое ядро», астрономам известно давно). Наконец, настает момент, когда черная дыра поглощает из окружающего пространства основную часть ве щества, после чего излучение почти прекращается и черная дыра становится тусклым объектом. Но она ждет своего часа! Как только в окрестностях появится новое вещество (например, при столкновении двух галактик), черная дыра засияет с новой силой, с жадностью поглощая звезды и частицы окружающего межзвездного газа. Так что, стать заметным квазару удается только за счет своего окружения. Современная техника уже позволяет различить вокруг далеких квазаров отдельные звездные структуры, являющиеся питательной средой для ненасытных черных дыр.
Впрочем, в наше время, когда столкновения галактик редки, квазары возникать не могут. И судя по всему, это действительно так — почти все наблюдаемые квазары находятся на очень существенном удалении, а значит, прилетающий от них свет был испущен очень давно, еще в те времена, когда рождались первые галактики. Именно поэтому

Радиотелескоп

На этом телескопе впервые были отождествлены радиоисточник 3С 273 и слабая звездочка с удивительно большим красным смещением. Размер основного зеркала телескопа «Паркском» — 64 м, общий вес — 300 т.

Гибель звезды

Купол 5-метрового телескопа «Паломар», находящегося на высоте 1706 м над уровнем моря. Главное зеркало весит 13 т и имеет фокусное расстояние 16,5 м. Изучение спектрального состава. Построен в 1947 году.

Телескоп оптический

квазары иногда называют «динозаврами Вселенной», намекая не только на их крайне почтенный возраст, но и на то, что они, образно говоря, «вымерли».

Столь мощные источники лучистой энергии, как квазары, — опасные соседи, поэтому нам, землянам, можно только радоваться тому обстоятельству, что в нашей Галактике и в ближайшем скоплении галактик они отсутствуют. Их обнаруживают в основном на самом краю видимой части нашей Вселенной, в тысячах мегапарсек от Земли. Но тут волейневолей возникает естественный вопрос — а не противоречит ли это наблюдение распространенному мнению об однородности Вселенной? Как получилось, что в одних галактиках квазары существуют, а в других нет? Для того чтобы ответить на эти вопросы, необходимо вспомнить, что свет от наблюдаемых нами квазаров летел миллиарды лет. А это означает, что взору землян квазары предстают в «первозданном» виде, такими, какими они были миллиарды лет назад, и сегодня они скорее всего уже утратили свою былую силу. Следовательно, те галактики, которые расположены недалеко от квазаров, «видят» гораздо более слабые источники света. Но тогда, если Вселенная однородна, то же самое должно относиться и к нашей Галактике! И тут остается повнимательнее присмотреться к ближайшим к нам космическим структурам, в попытке отыскать объекты, напоминающие остывшие квазары, эдакие квазары-призраки. Оказывается, такие объекты действительно сущестеуют.

Квазары, являющиеся одними из самых древних образований, родились почти одновременно со Вселенной, то есть примерно 13 млрд. лет назад. Причем они не только крайне отдалены от нашей Галактики — согласно закону расширения Хаббла (чем дальше от нас объект, тем быстрее он удаляется), расстояние между нами продолжает неуклонно увеличиваться. Так вот, наиболее далекие квазары «убегают» от нас со скоростью всего на 5% меньшей скорости света.

Наиболее яркие квазары испускают ежесекундно столько же световой энергии, сколько сотня обычных галактик типа нашего Млечного пути (это примерно 1042 ватт). Чтобы обеспечить выход такого количества энергии, черная дыра каждую секунду поглощает массу, равную массе Земли, за год же «съедается» около 200 солнечных масс. Подобный процесс не может проходить бесконечно долго — когда-нибудь окружающее вещество иссякнет, и квазар либо перестанет функционировать, либо же станет излучать относительно слабо.

Итак, свечение квазара со временем уменьшается, но что же может заставить его время от времени увеличивать яркость? Чтобы понять механизм этого процесса, вспомним, что черная дыра поглощает любую материю, а не только элементарные частицы. В галактике же, центр которой занят черной дырой, особого порядка нет. Конечно, в целом звезды вращаются вокруг центра, но всегда есть те звезды одиночки или их небольшие скопления, которые нарушают заведенный порядок. Они-то и бывают наказаны — их захватывает и поглощает черная дыра. При этом если звезда «проглатывается» целиком, без предварительного разрушения, то света выделяется мало. Причина состоит в том, что как бы звезда ни была велика, ее электрический заряд равен нулю. Поэтому она не излучает активно свет и не теряет быстро энергию и момент импульса, испуская в окружающее пространство в основном гравитационные волны. А значит, она вращается вокруг черной дыры достаточно долго, потихоньку падая на нее. Но если звезда при подходе к так называемому Шварцшильдовскому горизонту черной дыры — гравитационному радиусу, прохождение которого закрывает путь обратно навсегда — разрушается приливными силами, то дополнительное излучение может быть очень заметно. После поглощения нарушителя порядка, свечение квазара возвращается к норме.

Еще совсем недавно считалось, что черные дыры являются одной из конечных стадий существования звезд, а затем, с течением времени, эти черные дыры сливаются в сверхмассивные. Но тогда откуда же взялись массивные черные дыры в период формирования первых галактик? Проблема легко разрешается в рамках моделей первичных, то есть появившихся до начала звездообразования, черных дыр. Возможна и другая точка зрения — черные дыры и звезды образуются практически одновременно и по одному и тому же сценарию. Облака водорода и темной материи сжимаются под действием гравитационных сил. Малые облака образуют звезды, а большие — массивные черные дыры.

Разобравшись в общих чертах с устройством квазаров, ученые пытаются использовать их в качестве инструмента для исследования Космоса. Например, наблюдая эффект микролинзирования, можно обнаружить темные объекты с массой, примерно равной массе Юпитера. Они выдают себя, отклоняя свет квазара так, что мы видим как бы кратковременное увеличение его блеска. Если такие тела будут обнаружены, то, возможно, будет решена проблема темной материи.

Сейчас для многих ученых открытие нового квазара обозначает открытие новой черной дыры. Так, изучение недавно открытого квазара с красным смещением z=6.43 указывает на то, что черная дыра, сердце этого квазара, очень массивна — примерно миллиард масс Солнца. Следовательно, массивные черные дыры появились очень рано. Этот вывод крайне важен для космологии. ученым не так давно стало понятно, что энергия вакуума, хоть и чрезвычайно мала, но отлична от нуля. Этот революционный для науки вывод был впервые сделан на основе исследования скорости удаления квазаров. Оказалось, что красное смещение, а значит, и скорость космических объектов по мере удаления от Земли растут даже быстрее, чем того требует закон Хаббла. Затем другие наблюдения, в том числе за реликтовым излучением, еще более утвердили научную общественность в правильности этого вывода. Так что получается, что наша Вселенная не просто степенно расширяется, а разлетается со все увеличивающейся скоростью. Открытие квазаров очень сильно повлияло на космологию, породив множество новых моделей зарождения и развития Вселенной. И сегодня ученые почти уверены в том, что черные дыры играют существенную роль в формировании галактик и их последующей судьбе.

Родственные связи

По мнению ученых, такие различные объекты, как квазары, Активные галактические ядра, Сейфертовские и радиогалактики, а также блазары, по всей видимости, имеют единое происхождение — в их центре располагается большая черная дыра. Все дело в том, под каким углом наблюдатель их видит. Если — в плоскости аккреционного диска, то окружающее вещество экранирует ее центральную часть, смягчая излучение, и наблюдается радиогалактика, поскольку максимум излучения находится в радиодиапазоне.

Если же на наблюдателя направлен один из джетов (пучок высокоэнергичных элементарных частиц) активного ядра какой-либо галактики, то виден блазар, источник жесткого гамма-излучения переменной яркости. Хотя чаще всего, конечно, наблюдение за активным галактическим ядром происходит под каким-либо промежуточным углом. В этом случае до Земли долетает излучение и от джетов, и от аккреционного диска, и от нагретого в окружающем пространстве газа, и тогда речь идет о квазаре.

В спектре излучения квазара представлены все длины волн, измеряемые современными детекторами, — от радиоволн до жесткого гамма-излучения с энергией квантов в несколько тераэлектронвольт. Тем не менее название «квазар» произошло от английского «quasar» («quasi-stellar rаdio source»)-«звездоподобный источник радиоволн». Объяснение этого факта простое — в начале 1960-х годов квазары были впервые обнаружены именно в радиодиапазоне. На данный момент лишь у 1% квазаров выявлено заметное излучение энергии в виде радиоволн. Теперь часто можно встретить обозначение «QSO» («quasi-stellar objects)- звездоподобные объекты. Дальнейшие исследования показали, что квазар гораздо больше звезды, но лишь немногим больше солнечной системы. По космическим меркам, это все равно ничтожно мало — ведь излучает он как целая галактика. Причем яркость квазаров существенно меняется за время от суток до месяцев, что совершенно несвойственно обычным галактикам.

Источник: planetologia.ru

Первоначальное определение понятия «квазар»[править | править код]

Кроме современного определения, существовало ещё и первоначальное[18]: «Квазар (квазизвёздный объект) — класс небесных объектов, которые в оптическом диапазоне похожи на звезду, но имеют сильное радиоизлучение и чрезвычайно малые угловые размеры (меньше 10″)»; подобное звёздам самоизлучающее космическое тело, по массе и светимости во много раз большее Солнца[19][20].

Первоначальное определение сложилось в конце 1950-х — начале 1960-х годов, когда были открыты первые квазары и их изучение только началось. Это определение в целом верно, однако со временем были открыты радиоспокойные квазары, не создающие сильного радиоизлучения[18][21]; по состоянию на 2004 год таковыми являются порядка 90 % известных квазаров.

История наблюдений[править | править код]

История квазаров началась с проводимой радиообсерваторией «Джодрелл-Бэнк» программы измерений видимых угловых размеров радиоисточников.

Первый квазар, 3C 48, был обнаружен в конце 1950-х годов Алланом Сэндиджем и Томасом Метьюзом во время радиообзора неба. В 1963 году было известно уже 5 квазаров. Новый тип объектов объединяли некоторые аномальные свойства, которые на тот момент не могли быть объяснены. Они испускали большое количество излучения широкого спектра, но большая их часть оптически не обнаруживалась, хотя в некоторых случаях удавалось идентифицировать слабый и точечный объект, похожий на далёкую звезду. Спектральные линии, которые идентифицируют химические элементы, из которых состоит объект, тоже были чрезвычайно странными и не поддавались разложению на спектры всех известных на тот момент элементов и их различных ионизированных состояний.

В том же году голландский астроном Мартин Шмидт доказал, что линии в спектрах квазаров сильно смещены в красную сторону. Странный спектр 3C 48 был быстро идентифицирован Шмидтом, Гринштейном и Оке как линии водорода и магния, сильно сдвинутые в красную часть спектра. Если бы это было связано с физическим движением «звезды», то 3C 273 двигался от нас с огромной скоростью, около 47 000 км/с, намного превышающей скорость любой известной звезды[22]. Также экстремальная скорость не помогла бы объяснить огромные радиоизлучения 3C 273. Если красное смещение было космологическим (теперь известно, что это предположение оказалось правильным[источник не указан 178 дней]), большое расстояние означало, что 3C 273 был намного ярче, чем любая галактика, но гораздо более компактным.

Почти сразу, 9 апреля 1963 года, Ю. Н. Ефремовым и А. С. Шаровым по фотометрическим измерениям снимков источника 3C 273 была открыта переменность блеска квазаров с периодом всего лишь в несколько дней[23][24]. Нерегулярная переменность блеска квазаров на временных масштабах менее суток указывает на то, что область генерации их излучения имеет малый размер, сравнимый с размером Солнечной системы, но их яркость многократно превосходила яркость обычных галактик. Кроме того, 3C 273 был достаточно ярким, чтобы его можно было обнаружить на архивных фотографиях 1900-х годов; было обнаружено, что он варьируется в годовом масштабе времени, подразумевая, что значительная часть света испускалась из области размером менее 1 светового года, крошечной по сравнению с галактикой. Принимая, что это красное смещение вызвано эффектом космологического красного смещения, возникшего в результате удаления квазаров, расстояние до них определили по закону Хаббла.

Один из ближайших и наиболее яркий квазар, 3C 273, имеет блеск около 13m[25] и красное смещение z = 0,158[26] (что соответствует расстоянию около 3 млрд св. лет)[27]. Самые далёкие квазары, благодаря своей гигантской светимости, превосходящей в сотни раз светимость обычных галактик, регистрируются с помощью радиотелескопов на расстоянии более 12 млрд св. лет. На июль 2011 года самый удалённый квазар (ULAS J112001.48+064124.3) находился на расстоянии около 13 млрд св. лет от Земли[28].

Очень сложно определить точное число обнаруженных на сегодняшний день квазаров. Это объясняется, с одной стороны, постоянным открытием новых квазаров, а с другой — отсутствием чёткой границы между квазарами и другими типами активных галактик. В опубликованном в 1987 году списке Хьюитта — Бэрбриджа число квазаров 3594. В 2005 году группа астрономов использовала в своём исследовании данные уже о 195 000 квазаров[29].

Эволюция понимания природы квазаров[править | править код]

Квазары сразу с момента своего открытия вызвали множество дискуссий и споров в научной среде. Небольшие размеры были подтверждены интерферометрией и наблюдением скорости, с которой квазар в целом менялся по мощности, и невозможностью увидеть даже в самые мощные оптические телескопы что-то большее, чем слабые звездные точечные источники. Но если бы объекты были малых размеров и находились далеко в космосе, их энерговыделение получалось чрезвычайно огромным и трудным для объяснения. Напротив, если они при их размерах находились намного ближе к нашей галактике, то было бы легко объяснить их кажущуюся мощность, но тогда сложно объяснить их красные смещения и отсутствие обнаруживаемых движений на фоне Вселенной (параллакс).

Если измеренное красное смещение было вызвано расширением, то это поддержало бы интерпретацию очень далеких объектов с необычайно высокой яркостью и выходной мощностью, намного превышающей любой объект, замеченный до настоящего времени. Эта крайняя яркость также объясняет большой радиосигнал. Шмидт пришел к выводу, что 3C 273 может быть либо отдельной звездой диаметром около 10 км внутри (или вблизи) нашей галактики, либо далеким активным ядром галактики. Он заявил, что предположение об отдаленном и чрезвычайно мощном объекте, скорее всего, будет правильным[22].

Объяснение сильного красного смещения в то время не было общепринятым. Главной проблемой было огромное количество энергии, которое эти объекты должны были бы излучать, если бы они были на таком расстоянии. В 1960-х годах ни один общепринятый известный механизм не мог объяснить этого. Принятое в настоящее время объяснение, что это происходит из-за падения вещества в аккреционном диске в сверхмассивную черную дыру, было предложено только в 1964 году Зельдовичем и Эдвином Салпетером[30], и даже тогда оно было отвергнуто многими астрономами, потому что в 1960-х годах существование черных дыр всё ещё широко рассматривалось как теоретическое и слишком экзотическое и ещё не было подтверждено, что многие галактики (включая нашу) имеют сверхмассивные чёрные дыры в их центре. Странные спектральные линии в их излучении и скорость изменения, наблюдаемая у некоторых квазаров, многими астрономам и космологам объяснялось, что объекты были сравнительно небольшими и, следовательно, возможно, яркими, массивными, но не настолько далёкими; соответственно, что их красные смещения происходили не из-за расстояния или скорости удаления от нас из-за расширения Вселенной, а из-за какой-то другой причины или неизвестного процесса, означающего, что квазары не были действительно настолько яркими объектами на экстремальных расстояниях.

Различные объяснения были предложены в 1960-х и 1970-х годах и у каждого были свои недостатки. Было высказано предположение, что квазары являются близлежащими объектами, и что их красное смещение связано не с расширением пространства (объясняется специальной теорией относительности), а со светом, выходящим из глубокой гравитационной ямы (гравитационное красное смещение объясняется общей теорией относительности). Это потребовало бы массивного объекта, который также объяснил бы высокую яркость. Однако звезда, обладающая достаточной массой для получения измеренного красного смещения, будет нестабильной и превысит предел Хаяси[31]. Квазары также показывают запрещенные спектральные эмиссионные линии, которые ранее были видны только в горячих газовых туманностях низкой плотности, которые были бы слишком диффузными, чтобы одновременно генерировать наблюдаемую мощность и вписываться в глубокую гравитационную яму[32]. Были также серьезные космологические опасения относительно идеи далеких квазаров. Один сильный аргумент против них заключался в том, что они подразумевали энергии, которые намного превышали известные процессы преобразования энергии, включая ядерный синтез. Были некоторые предположения, что квазары были сделаны из некоторой неизвестной ранее формы стабильных областей антивещества и мы наблюдаем область его аннигиляции с обычным веществом, и это могло бы объяснить их яркость[33]. Другие предполагали, что квазары были концом белой дыры червоточины[34][35] или цепной реакцией многочисленных сверхновых.

В конце концов, начиная примерно с 1970-х годов, многие свидетельства (включая первые рентгеновские космические обсерватории, знания о черных дырах и современные модели космологии) постепенно продемонстрировали, что красные смещения квазара являются подлинными, и, из-за расширения пространства, что квазары на самом деле столь же мощные и столь же далекие, как предположили Шмидт и некоторые другие астрономы, и что их источником энергии является вещество из аккреционного диска, падающего на сверхмассивную черную дыру. Это предположение укрепилось благодаря важнейшим данным оптического и рентгеновского наблюдения галактик-хозяев квазара, обнаружение «промежуточных» линий поглощения, объясняющих различные спектральные аномалии, наблюдения гравитационного линзирования, обнаружение Петерсоном и Ганном в 1971 году факта, что галактики, содержащие квазары, показали такое же красное смещение, что и квазары и открытие Кристианом в 1973 году, что «туманное» окружение многих квазаров соответствовало менее светящейся галактике-хозяину.

Эта модель также хорошо согласуется с другими наблюдениями, которые предполагают, что многие или даже большинство галактик имеют массивную центральную чёрную дыру. Это также объясняет, почему квазары более распространены в ранней вселенной: когда квазар поглощает вещество из своего аккреционного диска, наступает момент, когда в окрестностях оказывается мало вещества, и поток энергии падает или прекращается, и тогда квазар становится обычной галактикой.

Механизм производства энергии в аккреционном диске был окончательно смоделирован в 1970-х годах, и доказательства существования самих чёрных дыр также были пополнены новыми данными (включая свидетельства того, что сверхмассивные чёрные дыры могут быть обнаружены в центрах нашей собственной и многих других галактик), что позволило решить проблему квазаров.

Современные представления[править | править код]

Квазары находятся в центре активных галактик и являются одними из самых ярких объектов, известных во Вселенной, излучая в тысячу раз больше энергии, чем Млечный путь, который содержит от 200 до 400 миллиардов звезд. Болометрическая (интегральная по всему спектру) светимость квазаров может достигать 1046—1047 эрг/с[36]. В среднем, квазар производит примерно в 10 триллионов раз больше энергии в секунду, чем наше Солнце (и в миллион раз больше энергии, чем самая мощная известная звезда), и обладает переменностью излучения во всех диапазонах длин волн[18]. Спектральная плотность излучения квазара распределена почти равномерно от рентгеновских лучей до дальнего инфракрасного диапазона с пиком в ультрафиолетовом и видимом диапазонах, причем некоторые квазары также являются сильными источниками радиоизлучения и гамма-излучения. С помощью изображений высокого разрешения, полученных с наземных телескопов и космического телескопа Хаббла, в некоторых случаях были обнаружены «галактики-хозяева», окружающие квазары[37]. Эти галактики обычно слишком тусклые, чтобы их можно было увидеть на ярком свете квазара. Средняя видимая звёздная величина большинства квазаров мала и их нельзя увидеть с помощью небольших телескопов. Исключением выступает объект 3C 273, видимая звёздная величина которого составляет 12,9.

Механизм излучения квазаров известен: аккреция вещества в сверхмассивных чёрных дырах, находящихся в ядрах галактик. Свет и другое излучение не могут покидать область внутри горизонта событий чёрной дыры, но энергия, создаваемая квазаром, генерируется снаружи, когда под действием гравитации и огромного трения (из-за вязкости газа в аккреционном диске) падающее в чёрную дыру вещество нагревается до очень высоких температур. При данном механизме в энергию излучения может преобразовываться от 6 % до 32 % массы объекта, что, например, на порядок превосходит величину 0,7 % для процесса термоядерного синтеза в протон-протонном цикле, который превалирует в звёздах, похожих на Солнце. Центральные массы квазаров были измерены с помощью реверберационного картирования и находятся в диапазонах от 105 до 109 солнечных масс. Подтверждено, что несколько десятков близлежащих крупных галактик, в том числе наша собственная галактика Млечный Путь, которые не имеют активного центра и не проявляют никакой активности, подобной квазарам, содержат в своих ядрах подобную сверхмассивную чёрную дыру (центр галактики). Таким образом, теперь считается, что хотя все большие галактики имеют чёрную дыру такого типа, но только небольшая часть имеет достаточное количество вещества в её окрестности, чтобы стать активной и излучать энергию таким образом, чтобы её можно было рассматривать как квазар[38].

Это также объясняет, почему квазары были более распространены в ранней Вселенной, поскольку выделение энергии заканчивается, когда сверхмассивная чёрная дыра поглощает весь газ и пыль около неё. Это означает, возможно, что большинство галактик, включая Млечный Путь, прошли свою активную стадию, выглядя как квазар или какой-то другой класс активной галактики, которые зависели от массы чёрной дыры и скорости аккреции, и теперь находятся в состоянии покоя, потому что им не хватает вещества в ближайших окрестностях для генерации излучения. Для нашей Галактики есть свидетельства активности чёрной дыры в прошлом, например пузыри Ферми[источник не указан 340 дней].

Вещество, накапливающееся около чёрной дыры, вряд ли попадет непосредственно в неё, но из-за некоторого изначального момента импульса вещество будет накапливаться в аккреционном диске, причём благодаря закону сохранения момента количества движения чем ближе оно к чёрной дыре, тем выше скорости вращения, фактически приближаясь к скорости света. Квазары также могут повторно зажечься, когда обычные галактики сливаются и окрестности чёрной дыры наполняются свежим источником вещества. Было высказано предположение, что квазар может образоваться после столкновения соседней галактики Андромеды с нашей собственной галактикой Млечный Путь примерно через 3-5 миллиардов лет[39][40][41].

Свойства[править | править код]

Вариации блеска[править | править код]

Многие квазары меняют свою светимость в коротких промежутках времени. Это является, по-видимому, одним из фундаментальных свойств квазаров (кратчайшая вариация с периодом t ≈ 1 ч, максимальные изменения блеска — в 50 раз). Поскольку размеры переменного по блеску объекта не могут превышать сt (с — скорость света)[источник не указан 519 дней], размеры квазаров (или их активных частей) очень малы — порядка световых часов.

Литература[править | править код]

  • Даукурт Г. Что такое квазары? — К.: Радяньска школа, 1985. — 131 с.
  • Квазары / Дибай Э. А. // Физика космоса: Маленькая энциклопедия / Редкол.: Р. А. Сюняев (Гл. ред.) и др. — 2-е изд. — М. : Советская энциклопедия, 1986. — С. 295—296. — 783 с. — 70 000 экз.
  • K. I. Kellermann. The Discovery of Quasars (англ.) // Bulletin of the Astronomical Society of India. — 2013. — arXiv:1304.3627.

Источник: ru.wikipedia.org

Квазар картинки

«Ненужное открытие» 

Астрономы издревле любят порядок — все у них подсчитано, классифицировано и идентифицировано. Однако ночное небо не перестает удивлять внимательных наблюдателей и постоянно подбрасывает новые и неведомые объекты в звездные каталоги. Квазары, открытые всего 40 лет назад, не на шутку озадачили ученых своей феноменальной яркостью свечения и компактностью размеров. И только недавно астрофизикам удалось понять, откуда эти «динозавры Вселенной» черпают энергию, необходимую для того, чтобы сиять на звездном небе с такой удивительной яркостью.

В 1960 году астрономы Т. Мэттьюз и А. Сендидж, работая на 5-метровом телескопе, расположенном на горе Паломар в Калифорнии, обнаружили ничем не примечательную, еле заметную в любительский телескоп звездочку 13-й звездной величины, наблюдаемую в созвездии Девы. И именно из этой искры возгорелось пламя!     Все началось с того, что в 1963 году Мартином Шмидтом было обнаружено, что этот объект (по каталогy ЗС 2731 имеет очень большое красное смещение. Значит, расположен он чрезвычайно далеко от нас и очень ярок. Расчеты показали, что ЗС 273 находится на расстоянии 620 мегапарсек, и удаляется со скоростью 44 тысячи км/с. Обычную звезду с

Квазар

Фотография квазара PG 1012+008 (яркое пятно в центре), взаимодействующего с галактикой, проле-тавшей по соседству. И если между ними всего 35 тыс. световых лет, то от Земли они удалены на 1,5 млрд. световых лет. Гравитационные силы пере-местили звезды с их прежних орбит, и теперь многие из них упадут в черную дыру в центре квазара.

Художественное изображение квазара

Серия последовательных радиоизображений квазара 3C 273. кажущаяся скорость перемещения яркой области джета существенно превышает скорость света. Однако это обстоятельство не опровергает СТО Эйнштейна, поскольку реальная скорость движения яркой области меньше скорости света, а видимое сверхсветовое движение обусловлено на направленностью джета в сторону Земли.

Квазары

такого расстояния не увидишь, а на большую звездную систему, типа галактики, квазар, будучи очень маленьким, был не похож.
В том же 1963 году ЗС 273 был отождествлен с мощным радиоисточником. Радиотелескопы тогда не были столь точны в определении направления прихода радиоволн, как сейчас, поэтому звездные координаты квазара ЗС 273 были определены путем наблюдения его покрытия Луной на обсерватории «Паркском» в Австралии. Таким образом, перед изумленными взорами астрофизиков предстал совершенно необычный объект, ярко сверкавший в видимом и радиодиапазоне электромагнитных волн. На данный момент обнаружено уже более 20 тысяч таких звездоподобных объектов, часть из которых хорошо видна также в рентгеновском и радиодиапазоне.

Московские астрономы А. Шаров и Ю. Ефремов решили выяснить, как менялась светимость ЗС 273 в прошлом. Они нашли 73 фотографии этого объекта, самая ранняя из которых датировалась 1896 годом. Оказалось, что объект ЗС 273 несколько раз менял свою яркость почти в 2 раза, а иногда, например в период с 1927 по 1929 год в 3-4 раза.     Надо сказать, что феномен переменной яркости был обнаружен еще раньше. Так, исследования, проведенные в Пулковской обсерватории в 1956-м, показали, что ядро галактики NGC 5548 достаточно сильно изменяет со временем свою яркость.

Теперь специалисты понимают всю важность этого наблюдения, но несколько десятилетий назад ученые были убеждены, что излучение от ядер галактик в оптическом диапазоне обеспечивается исключительно миллиардами находящихся там звезд, и даже если несколько тысяч из них по каким-то причинам погаснут, то с Земли этого заметно не будет. Значит, рассуждали ученые, большинство звезд в ядре галактики должны «мигать» синхронно! Хотя, конечно, управлять подобным оркестром не под силу ни одному дирижеру. Таким образом, именно из-за своей абсолютной непонятности эта открытие и не привлекло к себе особого внимания.

Дальнейшие наблюдения показали, что изменение интенсивности излучения с периодом несколько месяцев — для квазаров явление обычное, и размер области излучения не превосходит расстояния, которое проходит свет за эти самые несколько месяцев. А для того чтобы изменения во всех точках области происходили синхронно, нужно, чтобы информация о начинающемся изменении успела дойти до всех точек. Понятно, что материя квазара излучает свет не по команде, а в силу происходящих на нем процессов, но факт синхронности, то есть одновременности, изменения условий и величины излучения указывает на компактность данного квазизвездного объекта. Поперечник большинства квазаров, по-видимому, не превышает одного светового года, что в 100 тысяч раз меньше размеров галактики, а светят они при этом порой как целая сотня галактик.

Как это обычно и бывает, сразу после обнаружения квазаров начались попытки введения новых законов физики, хотя поначалу непонятно было даже, из какого же именно вещества они состоят, столь необычным был спектр излучения квазаров. Впрочем, прошло совсем немного времени, и химический состав излучающих областей квазаров был опознан по спектральным линиям известных химических элементов. Водород и гелий на квазарах идентичны земным, вот только спектры их излучения, как оказалось, сильно смещены в красную сторону из-за большой скорости убегания.

На сегодняшний день наиболее распространена точка зрения, согласно которой квазар — это сверхмассивная черная дыра, втягивающая в себя окружающее вещество (аккреция вещества). По мере приближения к черной дыре заряженные частицы разгоняются, сталкиваются, и это приводит к сильному излучению света. Если черная дыра при этом имеет мощное магнитное поле, то оно дополнительно закручивает падающие частицы и собирает их в тонкие пучки, джеты, разлетающиеся от полюсов.

Под действием мощных гравитационных сил, создаваемых черной дырой, вещество устремляется к центру, но движется при этом не по радиусу, а по сужающимся окружностям — спиралям. При этом закон сохранения момента импульса заставляет вращающиеся частицы двигаться все быстрее по мере приближения к центру черной дыры, одновременно собирая их в аккреционный диск, так что вся «конструкция» квазара чем-то напоминает Сатурн с его кольцами. В аккреционном диске скорости частиц очень велики, и их столкновения порождают не только энергичные фотоны (рентгеновское излучение), но и другие длины волн электромагнитного излучения. При столкновениях энергия частиц и скорость кругового движения уменьшаются, они потихоньку приближаются к черной дыре и поглощаются ею. Другая часть заряженных частиц направляется магнитным полем к полюсам черной дыры и вылетает оттуда с огромной скоростью. Так образуются наблюдаемые учеными джеты, длина которых достигает 1 млн. световых лет. Частицы в джете сталкиваются с межзвездным газом, излучая радиоволны.

В центре аккреционного диска температура относительно невысокая, она достигает 100 000 К. Эта

Джет

На оптическом изображении квазара 3С 273 хорошо виден джет, испускаемый черной дырой.

область излучает рентгеновские лучи. Чуть дальше от центра температура еще немного ниже — примерно 50 000 К, там излучается ультрафиолет. С приближением же к границе аккреционного диска температура падает и в этой области происходит излучение электромагнитных волн все большей длины, вплоть до инфракрасного диапазона.

Не надо забывать и о том, что свет от далеких квазаров приходит к нам сильно «покрасневшим». Для количественного определения степени покраснения астрономы используют букву z. Именно выражение z+1 показывает, во сколько раз увеличилась длина волны электромагнитного излучения, долетевшего от источника (квазара) до Земли. Так, если появляется сообщение, что обнаружен квазар с z=4, то это означает, что его ультрафиолетовое излучение с длиной волны 300 нанометров превращается в инфракрасное излучение с длиной волны 1 500 нанометров. Кстати, для исследователей на Земле это большая удача, ведь ультрафиолетовая часть спектра поглощается атмосферой и эти линии никогда бы не наблюдались. Здесь же длина волны за счет красного смещения увеличилась, как будто специально для того, что-бы пройти сквозь земную атмосферу и быть зарегистрированной в приборах.

Согласно другой точке зрения квазары — это первые молодые галактики, и мы просто наблюдаем процесс их зарождения. Впрочем, существует и промежуточный, хотя вернее было бы сказать «объединенный» вариант гипотезы, согласно которому квазар — это черная дыра, поглощающая вещество формирующейся галактики.

Так или иначе, но предположение о сверхмассивной черной дыре в центре галактики оказалось плодотворным и способным объяснить многие свойства квазаров. Так, например, масса черной дыры, находящейся в центре типичной галактики, составляет 106-1010 солнечных масс и, следовательно, ее гравитационный радиус варьируется в пределах Зх106-Зх1010 км, что согласуется с предыдущей оценкой размеров квазаров.

Новейшие данные также подтверждают компактность тех областей, из которых исходит свечение. Например, 5-летние наблюдения позволили определить орбиты шести звезд, вращающихся около похожего центра излучения, находящегося в нашей галактике. Одна из них недавно пролетела от черной дыры на расстоянии, составляющем всего 8 световых часов, двигаясь со скоростью 9 000 км/с.

Динамика поглощения

Как только вокруг черной дыры появляется материя в любой форме, черная дыра начинает излучать энергию, поглощая вещество. На начальной стадии, когда формировались первые галактики, вокруг черных дыр было много вещества, являющегося для них своеобразной «пищей», и черные дыры светились очень ярко — вот они, квазары! Кстати, энергии, которую средний квазар излучает за секунду, хватило бы для обеспечения Земли электричеством на миллиарды лет. А один рекордсмен с номером 550014+81 излучает свет в 60 тысяч раз интенсивнее всего на шего Млечного пути с его сотней миллиардов звезд!

Когда вещества в окрестности центра становится меньше, свечение ослабевает, но тем не менее ядро галактики продолжает оставаться самой яркой ее областью (это явление, называемое «Активное галактическое ядро», астрономам известно давно). Наконец, настает момент, когда черная дыра поглощает из окружающего пространства основную часть ве щества, после чего излучение почти прекращается и черная дыра становится тусклым объектом. Но она ждет своего часа! Как только в окрестностях появится новое вещество (например, при столкновении двух галактик), черная дыра засияет с новой силой, с жадностью поглощая звезды и частицы окружающего межзвездного газа. Так что, стать заметным квазару удается только за счет своего окружения. Современная техника уже позволяет различить вокруг далеких квазаров отдельные звездные структуры, являющиеся питательной средой для ненасытных черных дыр.
Впрочем, в наше время, когда столкновения галактик редки, квазары возникать не могут. И судя по всему, это действительно так — почти все наблюдаемые квазары находятся на очень существенном удалении, а значит, прилетающий от них свет был испущен очень давно, еще в те времена, когда рождались первые галактики. Именно поэтому

Радиотелескоп

На этом телескопе впервые были отождествлены радиоисточник 3С 273 и слабая звездочка с удивительно большим красным смещением. Размер основного зеркала телескопа «Паркском» — 64 м, общий вес — 300 т.

Гибель звезды

Купол 5-метрового телескопа «Паломар», находящегося на высоте 1706 м над уровнем моря. Главное зеркало весит 13 т и имеет фокусное расстояние 16,5 м. Изучение спектрального состава. Построен в 1947 году.

Телескоп оптический

квазары иногда называют «динозаврами Вселенной», намекая не только на их крайне почтенный возраст, но и на то, что они, образно говоря, «вымерли».

Столь мощные источники лучистой энергии, как квазары, — опасные соседи, поэтому нам, землянам, можно только радоваться тому обстоятельству, что в нашей Галактике и в ближайшем скоплении галактик они отсутствуют. Их обнаруживают в основном на самом краю видимой части нашей Вселенной, в тысячах мегапарсек от Земли. Но тут волейневолей возникает естественный вопрос — а не противоречит ли это наблюдение распространенному мнению об однородности Вселенной? Как получилось, что в одних галактиках квазары существуют, а в других нет? Для того чтобы ответить на эти вопросы, необходимо вспомнить, что свет от наблюдаемых нами квазаров летел миллиарды лет. А это означает, что взору землян квазары предстают в «первозданном» виде, такими, какими они были миллиарды лет назад, и сегодня они скорее всего уже утратили свою былую силу. Следовательно, те галактики, которые расположены недалеко от квазаров, «видят» гораздо более слабые источники света. Но тогда, если Вселенная однородна, то же самое должно относиться и к нашей Галактике! И тут остается повнимательнее присмотреться к ближайшим к нам космическим структурам, в попытке отыскать объекты, напоминающие остывшие квазары, эдакие квазары-призраки. Оказывается, такие объекты действительно сущестеуют.

Квазары, являющиеся одними из самых древних образований, родились почти одновременно со Вселенной, то есть примерно 13 млрд. лет назад. Причем они не только крайне отдалены от нашей Галактики — согласно закону расширения Хаббла (чем дальше от нас объект, тем быстрее он удаляется), расстояние между нами продолжает неуклонно увеличиваться. Так вот, наиболее далекие квазары «убегают» от нас со скоростью всего на 5% меньшей скорости света.

Наиболее яркие квазары испускают ежесекундно столько же световой энергии, сколько сотня обычных галактик типа нашего Млечного пути (это примерно 1042 ватт). Чтобы обеспечить выход такого количества энергии, черная дыра каждую секунду поглощает массу, равную массе Земли, за год же «съедается» около 200 солнечных масс. Подобный процесс не может проходить бесконечно долго — когда-нибудь окружающее вещество иссякнет, и квазар либо перестанет функционировать, либо же станет излучать относительно слабо.

Итак, свечение квазара со временем уменьшается, но что же может заставить его время от времени увеличивать яркость? Чтобы понять механизм этого процесса, вспомним, что черная дыра поглощает любую материю, а не только элементарные частицы. В галактике же, центр которой занят черной дырой, особого порядка нет. Конечно, в целом звезды вращаются вокруг центра, но всегда есть те звезды одиночки или их небольшие скопления, которые нарушают заведенный порядок. Они-то и бывают наказаны — их захватывает и поглощает черная дыра. При этом если звезда «проглатывается» целиком, без предварительного разрушения, то света выделяется мало. Причина состоит в том, что как бы звезда ни была велика, ее электрический заряд равен нулю. Поэтому она не излучает активно свет и не теряет быстро энергию и момент импульса, испуская в окружающее пространство в основном гравитационные волны. А значит, она вращается вокруг черной дыры достаточно долго, потихоньку падая на нее. Но если звезда при подходе к так называемому Шварцшильдовскому горизонту черной дыры — гравитационному радиусу, прохождение которого закрывает путь обратно навсегда — разрушается приливными силами, то дополнительное излучение может быть очень заметно. После поглощения нарушителя порядка, свечение квазара возвращается к норме.

Еще совсем недавно считалось, что черные дыры являются одной из конечных стадий существования звезд, а затем, с течением времени, эти черные дыры сливаются в сверхмассивные. Но тогда откуда же взялись массивные черные дыры в период формирования первых галактик? Проблема легко разрешается в рамках моделей первичных, то есть появившихся до начала звездообразования, черных дыр. Возможна и другая точка зрения — черные дыры и звезды образуются практически одновременно и по одному и тому же сценарию. Облака водорода и темной материи сжимаются под действием гравитационных сил. Малые облака образуют звезды, а большие — массивные черные дыры.

Разобравшись в общих чертах с устройством квазаров, ученые пытаются использовать их в качестве инструмента для исследования Космоса. Например, наблюдая эффект микролинзирования, можно обнаружить темные объекты с массой, примерно равной массе Юпитера. Они выдают себя, отклоняя свет квазара так, что мы видим как бы кратковременное увеличение его блеска. Если такие тела будут обнаружены, то, возможно, будет решена проблема темной материи.

Сейчас для многих ученых открытие нового квазара обозначает открытие новой черной дыры. Так, изучение недавно открытого квазара с красным смещением z=6.43 указывает на то, что черная дыра, сердце этого квазара, очень массивна — примерно миллиард масс Солнца. Следовательно, массивные черные дыры появились очень рано. Этот вывод крайне важен для космологии. ученым не так давно стало понятно, что энергия вакуума, хоть и чрезвычайно мала, но отлична от нуля. Этот революционный для науки вывод был впервые сделан на основе исследования скорости удаления квазаров. Оказалось, что красное смещение, а значит, и скорость космических объектов по мере удаления от Земли растут даже быстрее, чем того требует закон Хаббла. Затем другие наблюдения, в том числе за реликтовым излучением, еще более утвердили научную общественность в правильности этого вывода. Так что получается, что наша Вселенная не просто степенно расширяется, а разлетается со все увеличивающейся скоростью. Открытие квазаров очень сильно повлияло на космологию, породив множество новых моделей зарождения и развития Вселенной. И сегодня ученые почти уверены в том, что черные дыры играют существенную роль в формировании галактик и их последующей судьбе.

Родственные связи

По мнению ученых, такие различные объекты, как квазары, Активные галактические ядра, Сейфертовские и радиогалактики, а также блазары, по всей видимости, имеют единое происхождение — в их центре располагается большая черная дыра. Все дело в том, под каким углом наблюдатель их видит. Если — в плоскости аккреционного диска, то окружающее вещество экранирует ее центральную часть, смягчая излучение, и наблюдается радиогалактика, поскольку максимум излучения находится в радиодиапазоне.

Если же на наблюдателя направлен один из джетов (пучок высокоэнергичных элементарных частиц) активного ядра какой-либо галактики, то виден блазар, источник жесткого гамма-излучения переменной яркости. Хотя чаще всего, конечно, наблюдение за активным галактическим ядром происходит под каким-либо промежуточным углом. В этом случае до Земли долетает излучение и от джетов, и от аккреционного диска, и от нагретого в окружающем пространстве газа, и тогда речь идет о квазаре.

В спектре излучения квазара представлены все длины волн, измеряемые современными детекторами, — от радиоволн до жесткого гамма-излучения с энергией квантов в несколько тераэлектронвольт. Тем не менее название «квазар» произошло от английского «quasar» («quasi-stellar rаdio source»)-«звездоподобный источник радиоволн». Объяснение этого факта простое — в начале 1960-х годов квазары были впервые обнаружены именно в радиодиапазоне. На данный момент лишь у 1% квазаров выявлено заметное излучение энергии в виде радиоволн. Теперь часто можно встретить обозначение «QSO» («quasi-stellar objects)- звездоподобные объекты. Дальнейшие исследования показали, что квазар гораздо больше звезды, но лишь немногим больше солнечной системы. По космическим меркам, это все равно ничтожно мало — ведь излучает он как целая галактика. Причем яркость квазаров существенно меняется за время от суток до месяцев, что совершенно несвойственно обычным галактикам.

Источник: planetologia.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.