Большой адронный коллайдер на карте


21 марта 2019 г. на конференции по электрослабым взаимодействиям и теориям большого объединения в Ля Туиле (Италия) представители коллаборации LHCb заявили об обнаружении СР-нарушения в распадах очарованных мезонов. Открытие может стать ключом к разгадке тайны асимметрии вещества и антивещества во Вселенной

В первые мгновения после Большого взрыва вещество и антивещество образовались в равном количестве, однако сейчас антивещества в окружающей нас Вселенной ничтожно мало. Что нам очень на руку, ведь в случае полного равенства частиц и античастиц они бы проаннигилировали друг с другом вскоре после рождения Вселенной, и мира, каким мы его знаем, просто не существовало бы. Преобладание вещества над антивеществом во Вселенной – одна из задач физики, над решением которой бьются лучшие умы.

В 1967 г. советский академик А.Д. Сахаров предположил, что дисбаланс вещества и антивещества мог возникнуть в результате нарушения так называемой CP-симметрии.


ея симметрии четности заключается в том, что законы физики инвариантны (неизменны) относительно зеркальной инверсии, т.е. зеркальное изображение реакции идет так же, как и сама реакция. Но это не касается слабых ядерных взаимодействий, и при одновременной замене на античастицы всех частиц, участвующих в этих взаимодействиях, вероятности всех процессов не останутся прежними. В своей знаменитой работе о генерации барионной асимметрии Вселенной Сахаров показал, что CP-нарушение является одним из условий, при которых после Большого взрыва вещество и антивещество уничтожают друг друга не полностью – остается маленький избыток вещества, из которого и сформировались звезды, галактики и, в конечном итоге, мы с вами.

Кстати сказать, о наблюдении нарушения CP-симметрии в распаде нейтральных К-мезонов американские физики Д. Кронин и В. Фитч объявили еще в 1964 г. на 12-ой Международной конференции по физике высоких энергий ICHEP в Дубне. За два года до этого группа Э. О. Оконова из дубнинского Объединенного института ядерных исследований искала CP-запрещенные распады каонов, но эксперимент был признан безнадежным и закрыт по финансовым соображениям. Так что Нобелевская премия по физике за 1980 г. досталась американским ученым.

В 1973 г. два японских исследователя, будущие нобелевские лауреаты М. Кобаяши и Т. Маскава предложили теоретическое объяснение нарушения четности, экспериментально обнаруженной в 1964 г. В рамках теории Кобаяси-Маскава для объяснения эффекта СР-нарушения была предложена модель, предполагавшая существование трех поколений кварков и наличие комплексной фазы в амплитудах переходов между разными поколениями. Однако проявление этого эффекта в распадах частиц, содержащих различные тяжелые кварки, во многом зависит от других свойств Стандартной модели.


Эксперимент LHCb на Большом адронном коллайдере (БАК, LHC) в ЦЕРН предназначен для изучения B-мезонов, неустойчивых частиц, при распаде которых наиболее ярко проявляется асимметрия между веществом и антивеществом. LHCb – самый маленький из четырех основных детекторов БАК, но далеко не «последний». Два года назад известный популяризатор науки, физик Игорь Иванов писал, что «LHC – единственный из экспериментов БАК, исправно поставляющий позитивные результаты».

Новый сенсационный результат исследователи из российского Национального исследовательского университета «Высшая школа экономики» и Школы анализа данных Яндекса в составе коллаборации LHCb получили при анализе данных по распаду очарованных D-мезонов (частиц, содержащих один очарованный кварк) в эксперименте LHCb в 2011–2018 гг. Кстати сказать, вероятность рождения самих D-мезонов очень невелика, к тому же эти частицы практически сразу распадаются.

Ожидалось, что эффект СР-нарушения в распадах этих частиц должен быть на уровне 0,1–0,01%. Ученые обнаружили, что количество распадов анти-D⁰ мезонов действительно превышало соответствующее количество распадов D⁰, при этом значение для CP-нарушения отличается от нуля на 5,3 стандартных отклонения, что выше порога в пять стандартных отклонений, принятом в физике высоких энергий для признания достоверности наблюдаемых различий.


Чтобы улучшить качества набора и анализа данных эксперимента LHCb исследователи применили элементы искусственного интеллекта, а вычислительные мощности Яндекса были использованы для моделирования событий эксперимента LHCb, необходимого для правильной интерпретации физических результатов. По словам ведущего научного сотрудника лаборатории LAMBDA факультета компьютерных наук ВШЭ Ф. Ратникова, благодаря усилиям их группы «эффективность триггера для отбора значимых событий была увеличена в среднем на 40%, а за счет использования нейросетевых байесовских подходов был улучшен алгоритм определения типа частиц, наблюдаемых детектором. Также была разработана интеллектуальная система мониторинга качества работы последнего».

Как резюмировал старший научный сотрудник той же лаборатории Д. Деркач, «изучение эффектов СР-нарушения исключительно важно для понимания механизмов образования нашей Вселенной. И сегодня мы сделали еще один шаг в изучении картины этого явления в распадах тяжелых мезонов».

Фото: https://home.cern

По материалам Пресс-службы НИУ ВШЭ (Москва)

Источник: pikabu.ru


БОЛЬШИЙ АДРОННЫЙ КОЛЛАЙДЕР (англ. Large Hadron Collider, LHC; сокр. БАК) — ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений. Коллайдер построен в научно-исследовательском центре Европейского совета ядерных исследований (фр. Conseil Européen pour la Recherche Nucléaire, CERN), на границе Швейцарии и Франции, недалеко от Женевы. БАК является самой крупной экспериментальной установкой в мире.

Большим назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 м [1]; адронным — из-за того, что он ускоряет адроны, то есть частицы, состоящие из кварков; коллайдером (англ. collide — сталкиваться) — из-за того, что пучки частиц ускоряются в противоположных направлениях и сталкиваются в специальных точках столкновения. [2]

Поставленные задачи [3][4]
Карта с нанесённым на неё расположением Коллайдера

В начале XX века в физике появились две основополагающие теории — общая теория относительности (ОТО) Альберта Эйнштейна, которая описывает Вселенную на макроуровне, и квантовая теория поля, которая описывает Вселенную на микроуровне. Проблема в том, что эти теории несовместимы друг с другом. Например, для адекватного описания происходящего в чёрных дырах нужны обе теории, а они вступают в противоречие.

Эйнштейн многие годы пытался разработать единую теорию поля, но безуспешно, поскольку игнорировал квантовую механику.


конце 1960-х физикам удалось разработать Стандартную модель (СМ) , которая объединяет три из четырёх фундаментальных взаимодействий — сильное, слабое и электромагнитное. Гравитационное взаимодействие по-прежнему описывают в терминах ОТО. Таким образом, в настоящее время фундаментальные взаимодействия описываются двумя общепринятыми теориями: ОТО и СМ. Их объединения пока достичь не удалось из-за трудностей создания теории квантовой гравитации.

Для дальнейшего объединения фундаментальных взаимодействий в одной теории используются различные подходы: теория струн, получившая своё развитие в М-теории (теории бран) , теория супергравитации, петлевая квантовая гравитация и др. Некоторые из них имеют внутренние проблемы, и ни у одной из них нет экспериментального подтверждения. Проблема в том, что для проведения соответствующих экспериментов нужны энергии, недостижимые на современных ускорителях заряженных частиц.

БАК позволит провести эксперименты, которые ранее было невозможно провести и, вероятно, подтвердит или опровергнет часть этих теорий. Так, существует целый спектр физических теорий с размерностями больше четырёх, которые предполагают существование «суперсимметрии» — например, теория струн, которую иногда называют теорией суперструн именно из-за того, что без суперсимметрии она утрачивает физический смысл. Подтверждение существования суперсимметрии, таким образом, будет косвенным подтверждением истинности этих теорий.
[править] Изучение топ-кварков


Топ-кварк — самый тяжёлый кварк и, более того, это самая тяжёлая из открытых пока элементарных частиц. Согласно последним результатам Тэватрона, его масса составляет 173,1 ± 1,3 ГэВ/c² [5]. Из-за своей большой массы топ-кварк до сих пор наблюдался пока лишь на одном ускорителе — Тэватроне, на других ускорителях просто не хватало энергии для его рождения. Кроме того, топ-кварки интересуют физиков не только сами по себе, но и как «рабочий инструмент» для изучения хиггсовского бозона. Один из наиболее важных каналов рождения хиггсовского бозона в БАК — ассоциативное рождение вместе с топ-кварк-антикварковой парой. Для того, чтобы надёжно отделять такие события от фона, надо вначале хорошо изучить свойства самих топ-кварков.
[править] Изучение механизма электрослабой симметрии
Фейнмановские диаграммы, показывающие возможные варианты рождения W- и Z-бозонов, которые в совокупности образуют нейтральный бозон Хиггса

Источник: otvet.mail.ru

Что такое адронный коллайдер

По сути адронный коллайдер представляет собой сложный ускоритель элементарных частиц. С его помощью физикам удается разогнать протоны и тяжелые ионы. Изначально адронный коллайдер создавался для подтверждения существования бозона Хиггса, неуловимой элементарной частицы, которую физики порой в шутку называют «частичкой Бога». И да, существование этой частички было подтверждено экспериментально с помощью коллайдера, а сам ее первооткрыватель Питер Хиггс получил за это нобелевскую премию по физике в 2013 году.

Разумеется, одним лишь бозоном Хиггса дело не ограничилось, помимо него физиками были найдены и некоторые другие элементарные частицы. Теперь вы знаете ответ на вопрос, зачем нужен адронный коллайдер.


Большой адронный коллайдер

Что представляет собой большой адронный коллайдер

Прежде всего, необходимо заметить, что большой адронный колайдер не возник на пустом месте, а появился как эволюция своего предшественника – большого электрон-позитронного коллайдера, представляющего собой 27-ми километровый подземный туннель, строительство которого началось еще в 1983 году. В 1988 году кольцевой тоннель сомкнулся, притом интересно то, что строители подошли к делу очень тщательно, настолько, что расхождение между двумя концами туннеля составляет лишь 1 сантиметр.

Большой адронный коллайдер


Так выглядит схема адронного коллайдера.

Электрон-позитронный коллайдер проработал до 2000 года и за время его работы в физике был сделан с его помощью целый ряд открытий, среди которых открытие W и Z бозонов и их дальнейшее исследование.

С 2001 года на месте электрон-позитронного коллайдера началось уже строительство коллайдера адронного, которое закончилось в 2007 году.

Где находится адронный коллайдер

Большой адронный коллайдер находится на границе Швейцарии и Франции, в долине женевского озера, всего лишь в 15 км от самой Женевы. И располагается он на глубине 100 метров.

место расположения адронного коллайдера

Место расположения адронного коллайдера.

В 2008 году начались его первые испытания под патронатом ЦЕРН – Европейской организации по ядерным исследованиям, которая на данный момент является крупнейшей лабораторией в мире в области физики высоких энергий.

Для чего нужен адронный коллайдер

С помощью этого гигантского ускорителя элементарных частиц физики могут проникать так глубоко внутрь материи, как никогда раньше. Все это помогает, как подтверждать старые научные гипотезы, так и создавать новые интересные теории. Детальное изучение физики элементарных частиц помогает нам приблизиться в поисках ответов на вопросы об устройстве Вселенной, о том, как она зародилась.


Глубокое погружение в микромир позволяет открыть революционно новые пространственно-временные теории, и как знать, может быть, даже удастся проникнуть в тайну времени, этого четвертого измерения нашего мира.

Как работает адронный коллайдер

Теперь давайте опишем, как собственно работает большой адронный коллайдер. О принципах его работы говорит название, так как само слово «коллайдер» с английского переводится как «тот, кто сталкивает». Главная его задача – устроить столкновение элементарных частиц. Причем частицы в коллайдере летают (и сталкиваются) на скоростях, близких к скоростям света. Результаты столкновений частиц фиксируют четыре основных больших детектора: ATLAS, CMS, ALICE и LHCb и множество вспомогательных детекторов.

Более детально принцип работы адронного коллайдера описан в этом интересно видео.

Опасность адронного коллайдера


В целом людям свойственно боятся вещей, которые они не понимают. Именно это иллюстрирует отношение к адроному коллайдеру и различные опасения, с ним связанные. Самые радикальные из них, высказывались, что в случае возможного взрыва адронного коллайдера может погибнуть, не много, не мало, а все человечество вместе с планетой Землей, которую поглотит образовавшаяся после взрыва черная дыра. Разумеется, первые же опыты показали, что подобные опасения не более чем детская страшилка.

А вот некоторые серьезные опасения относительно работы коллайдера были высказаны недавно умершим английским ученым Стивеном Хокингом. Причем опасения Хокинга связаны не столько с самим коллайдером, сколько с полученным с его помощью бозоном Хиггса. По мнению ученого этот бозон является крайне не стабильным материалом и в результате определенного стечения обстоятельств может привести к распаду вакуума и полному исчезновению таких понятий как пространство и время. Но не все так страшно, так согласно Хокингу, для того, чтобы произошло нечто подобное необходим коллайдер величиной с целую планету.

Источник: www.poznavayka.org

В заключительной части я хочу рассказать о том, что обычно остается за кадром, но является непосредственной частью создания и использования того оборудования, на котором делаются открытия.

Первая часть здесь

Вторая часть здесь

Третья часть здесь

Часть 4. Мастерские и лаборатории

Во время дня открытых дверей в CERN посетители могли увидеть места, где создается и отлаживается оборудование, различные детекторы, а также посетить лаборатории. Основой всего, конечно, является ускорительная техника

image

и различные детекторы

image

Видно, как детектор отдельных частиц, созданный на основе CMOS технологии, в реальном времени отслеживает космическое излучение

image

Пройдя далее, мы попадаем в мастерские, где создается большое количество различного специфического оборудования

image

Вот, например, разделитель протонов, который предназначен для использования в ускорителе

image

А это еще одна загогулина, назначение которой я не понял

image

Вообще, надо сказать, что мастерские оснащены самыми современными станками, хотя встречаются и довольно древние (видны на заднем плане)

image

Современные станки используются для автоматической прецезионной обработки деталей без участия человека. Например, вот этот высокотехнологичный станок вытачивает бюст дважды героя для установки на его родине

image

Поскольку некоторое оборудовани должно работать в вакууме, его тестируют в такой камере

image

Пройдем далее в самое большое здание в CERN — место, где налаживают и тестируют важнейшую часть коллайдера — детекторы элементарных частиц

image

Здесь сотрудники устроили небольшую выставку. Вот, например, настоящая бериллиевая мишень для протонов

image

А это квадропульный магнит

image

Надо добавить, что сотрудники проводят экскурсии и объясняют простым гражданам физические принципы работы каждого экспоната

image

Не уверен, что народ понимает суть дела, но всем все равно интересно

image

Это детектор частиц, состоящий из множества плоскостей, согнутых в гармошку

image

А это прототип детектора, содержащего множество проволочек, которые создают магнитное поле. Этот детектор затем наполняют газом. При попадании частицы в такой детектор, газ ионизируется и ионы дрейфуют под воздействием электрического тока к стенкам детектора, где их и регистрируют. Зная величину электрического поля можно определить траекторию заряженной частицы

image

Надо сказать, что в этом здании одновременно можно отлаживать много различного оборудоания. Для того, чтобы не мешать друг другу, положены эти бетонные блоки

image

Видно множество измерительных приборов

image

Заглянем в криогенную лабораторию. Как известно, для работы сверхпроводящих магнитов необходима температура близкая к абсолютному нулю. Для охлаждения используется жидкий гелий. С использованием гелия (и частично жидкого азота) в этой лаборатории было устроено настоящее представление

image

Вот, например, колдуны-ученые заставили летать кусочек магнита

image

А это вообще, явление, которое, как утверждали ведущие, не видели своими глазами даже большинство физиков, не говоря уже о простых людях — сверхтекучий гелий. Да, не каждый день видишь чисто квантовый эффект.

image

Пройдя в следующее здание можно увидеть синхроциклотрон. Правда, он уже не работает.

image

Вот такие пульты хорошо знакомы по старым фильмам про физиков, когда эта профессия еще была в нашей стране в почете

image

Это я на фоне синхроциклотрона

image

На этом мое пребывание на дне открытых дверей в CERN подошло к концу. Я посетил еще это футуристическое здание, где демонстрировался фильм на нескольких экранах (по типу круговой кинопанорамы на ВДНХ, кто помнит) о происхождении вселенной и как Большой Адронный Коллайдер помогает в изучении природы на самом фундаментальном уровне.

image

Еще я хотел бы добавить несколько слов от себя. С моей точки зрения организовать такое мероприятие как день открытых дверей стоило намалых средств и огромных усилий сотрудников и я снимаю шляпу и стоя аплодирую организаторам. Это является примером того, как наука должна показывать, чем она занимается и почему необходимо тратить столько средств на изучение природы. Надеюсь, наши ученые возьмут это на заметку. Кроме того, в наши дни все меньше молодых людей выбирают физику в качестве своей будущей профессии и подобные мероприятия как ничто другое могут вдохновить их изучать самую интересную науку о природе.

Источник: habr.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.