Меркурий — самая близкая к Солнцу планета Солнечной системы, обращающаяся вокруг Солнца за 88 земных суток. Продолжительность одних звёздных суток на Меркурии составляет 58,65 земных, а солнечных — 176 земных. Планета названа древними римлянами в честь бога торговли быстроногого Меркурия, поскольку она движется по небу быстрее других планет.
Меркурий относится к внутренним планетам, так как его орбита лежит внутри орбиты Земли. После лишения Плутона в 2006 году статуса планеты, Меркурию перешло звание самой маленькой планеты Солнечной системы. Видимая звёздная величина Меркурия колеблется от −1,9 до 5,5, но его нелегко заметить по причине небольшого углового расстояния от Солнца (максимум 28,3°). О планете пока известно сравнительно немного. Только в 2009 году учёные составили первую полную карту Меркурия, используя снимки аппаратов «Маринер-10» и «Мессенджер». Наличие каких-либо естественных спутников у планеты не обнаружено.
Меркурий — самая маленькая планета земной группы.
о радиус составляет всего 2439,7 ± 1,0 км, что меньше радиуса спутника Юпитера Ганимеда и спутника Сатурна Титана. Масса планеты равна 3,3·1023 кг. Средняя плотность Меркурия довольно велика — 5,43 г/см3, что лишь незначительно меньше плотности Земли. Учитывая, что Земля больше по размерам, значение плотности Меркурия указывает на повышенное содержание в его недрах металлов. Ускорение свободного падения на Меркурии равно 3,70 м/с2. Вторая космическая скорость — 4,25 км/с. Несмотря на меньший радиус, Меркурий всё же превосходит по массе такие спутники планет-гигантов, как Ганимед и Титан.

Астрономический символ Меркурия представляет собой стилизованное изображение крылатого шлема бога Меркурия с его кадуцеем.
Движение планеты
Меркурий движется вокруг Солнца по довольно сильно вытянутой эллиптической орбите (эксцентриситет 0,205) на среднем расстоянии 57,91 млн км (0,387 а. е.). В перигелии Меркурий находится в 45,9 млн км от Солнца (0,3 а. е.), в афелии — в 69,7 млн км (0,46 а. е.) В перигелии Меркурий более чем в полтора раза ближе к Солнцу, чем в афелии. Наклон орбиты к плоскости эклиптики равен 7°. На один оборот по орбите Меркурий затрачивает 87,97 земных суток. Средняя скорость движения планеты по орбите 48 км/с. Расстояние от Меркурия до Земли меняется в пределах от 82 до 217 млн км.

В течение долгого времени считалось, что Меркурий постоянно обращён к Солнцу одной и той же стороной, и один оборот вокруг оси занимает у него те же 87,97 земных суток. Наблюдения деталей на поверхности Меркурия не противоречили этому. Данное заблуждение было связано с тем, что наиболее благоприятные условия для наблюдения Меркурия повторяются через период, примерно равный шестикратному периоду вращения Меркурия (352 суток), поэтому в различное время наблюдался приблизительно один и тот же участок поверхности планеты. Истина раскрылась только в середине 1960-х годов, когда была проведена радиолокация Меркурия.
Оказалось, что меркурианские звёздные сутки равны 58,65 земных суток, то есть 2/3 меркурианского года. Такая соизмеримость периодов вращения вокруг оси и обращения Меркурия вокруг Солнца является уникальным для Солнечной системы явлением.
о, предположительно, объясняется тем, что приливное воздействие Солнца отбирало момент количества движения и тормозило вращение, которое было первоначально более быстрым, до тех пор, пока оба периода не оказались связаны целочисленным отношением. В результате за один меркурианский год Меркурий успевает повернуться вокруг своей оси на полтора оборота. То есть если в момент прохождения Меркурием перигелия определённая точка его поверхности обращена точно к Солнцу, то при следующем прохождении перигелия к Солнцу будет обращена в точности противоположная точка поверхности, а ещё через один меркурианский год Солнце снова вернётся в зенит над первой точкой. В результате солнечные сутки на Меркурии длятся два меркурианских года или трое меркурианских звёздных суток.
В результате такого движения планеты на ней можно выделить «горячие долготы» — два противоположных меридиана, которые попеременно обращены к Солнцу во время прохождения Меркурием перигелия, и на которых из-за этого бывает особенно горячо даже по меркурианским меркам.
На Меркурии не существует таких времён года, как на Земле. Это происходит из-за того, что ось вращения планеты находится под прямым углом к плоскости орбиты. Как следствие, рядом с полюсами есть области, до которых солнечные лучи не доходят никогда. Обследование, проведённое радиотелескопом «Аресибо», позволяет предположить, что в этой студёной и тёмной зоне есть ледники. Ледниковый слой может достигать 2 м и покрыт слоем пыли.

Комбинация движений планеты порождает ещё одно уникальное явление. Скорость вращения планеты вокруг оси — величина практически постоянная, в то время как скорость орбитального движения постоянно изменяется. На участке орбиты вблизи перигелия в течение примерно 8 суток угловая скорость орбитального движения превышает угловую скорость вращательного движения. В результате Солнце на небе Меркурия останавливается и начинает двигаться в обратном направлении — с запада на восток. Этот эффект иногда называют эффектом Иисуса Навина, по имени главного героя Книги Иисуса Навина из Библии, остановившего движение Солнца. Для наблюдателя на долготах, отстоящих на 90° от «горячих долгот», Солнце при этом восходит (или заходит) дважды.
Интересно также, что, хотя ближайшими по расположению орбит к Земле являются Марс и Венера, Меркурий чаще других является ближайшей к Земле планетой (поскольку другие отдаляются в большей степени, не будучи столь «привязанными» к Солнцу).
Поверхность Меркурия
По своим физическим характеристикам Меркурий напоминает Луну. У планеты нет естественных спутников, но есть очень разреженная атмосфера. Планета обладает крупным железным ядром, являющимся источником магнитного поля по своей совокупности составляющим 0,01 от земного. Ядро Меркурия составляет 83 % от всего объёма планеты. Температура на поверхности Меркурия колеблется от 90 до 700 К (от −180 до +430 °C). Солнечная сторона нагревается гораздо больше, чем полярные области и обратная сторона планеты.

Поверхность Меркурия также во многом напоминает лунную — она сильно кратерирована. Плотность кратеров различна на разных участках. Предполагается, что более густо усеянные кратерами участки являются более древними, а менее густо усеянные — более молодыми, образовавшимися при затоплении лавой старой поверхности. В то же время крупные кратеры встречаются на Меркурии реже, чем на Луне. Самый большой кратер на Меркурии назван в честь великого голландского живописца Рембрандта, его поперечник составляет 716 км. Однако сходство неполное — на Меркурии видны образования, которые на Луне не встречаются.
жным различием гористых ландшафтов Меркурия и Луны является присутствие на Меркурии многочисленных зубчатых откосов, простирающихся на сотни километров, — эскарпов. Изучение их структуры показало, что они образовались при сжатии, сопровождавшем остывание планеты, в результате которого площадь поверхности Меркурия уменьшилась на 1 %. Наличие на поверхности Меркурия хорошо сохранившихся больших кратеров говорит о том, что в течение последних 3—4 млрд лет там не происходило в широких масштабах движение участков коры, а также отсутствовала эрозия поверхности, последнее почти полностью исключает возможность существования в истории Меркурия сколько-нибудь существенной атмосферы.
В ходе исследований, проводимых зондом «Мессенджер», было сфотографировано свыше 80 % поверхности Меркурия и выявлено, что она однородна. Этим Меркурий не схож с Луной или Марсом, у которых одно полушарие резко отличается от другого.

Первые данные исследования элементного состава поверхности с помощью рентгенофлуоресцентного спектрометра аппарата «Мессенджер» показали, что она бедна алюминием и кальцием по сравнению с плагиоклазовым полевым шпатом, характерным для материковых областей Луны.
то же время поверхность Меркурия сравнительно бедна титаном и железом и богата магнием, занимая промежуточное положение между типичными базальтами и ультраосновными горными породами типа земных коматиитов. Обнаружено также сравнительное изобилие серы, что предполагает восстановительные условия формирования планеты.
Геология и внутреннее строение

2. Мантия, толщина — 600 км.
3. Ядро, радиус — 1800 км.
До недавнего времени предполагалось, что в недрах Меркурия находится металлическое ядро радиусом 1800—1900 км, содержащее 60 % массы планеты, так как КА «Маринер-10» обнаружил слабое магнитное поле, и считалось, что планета с таким малым размером не может иметь жидкого ядра. Но в 2007 году группа Жана-Люка Марго подвела итоги пятилетних радарных наблюдений за Меркурием, в ходе которых были замечены вариации вращения планеты, слишком большие для модели с твёрдым ядром. Поэтому на сегодняшний день можно с высокой долей уверенности говорить, что ядро планеты именно жидкое.

Процентное содержание железа в ядре Меркурия выше, чем у любой другой планеты Солнечной системы. Было предложено несколько теорий для объяснения этого факта. Согласно наиболее широко поддерживаемой в научном сообществе теории, Меркурий изначально имел такое же соотношение металла и силикатов, как в обычном метеорите, имея массу в 2,25 раза больше, чем сейчас.
Однако в начале истории Солнечной системы в Меркурий ударилось планетоподобное тело, имеющее в 6 раз меньшую массу и несколько сот километров в поперечнике. В результате удара от планеты отделилась большая часть изначальной коры и мантии, из-за чего относительная доля ядра в составе планеты увеличилась. Подобный процесс, известный как теория гигантского столкновения, был предложен и для объяснения формирования Луны.
Однако первые данные исследования элементного состава поверхности Меркурия с помощью гамма-спектрометра АМС «Мессенджер» не подтверждают эту теорию: изобилие радиоактивного изотопа калий-40 умеренно летучего химического элемента калия по сравнению с радиоактивными изотопами торий-232 и уран-238 более тугоплавких элементов урана и тория не стыкуется с высокими температурами, неизбежными при столкновении.
этому предполагается, что элементный состав Меркурия соответствует первичному элементному составу материала, из которого он сформировался, близкому к энстатитовым хондритам и безводным кометным частицам, хотя содержание железа в исследованных к настоящему времени энстатитовых хондритах недостаточно для объяснения высокой средней плотности Меркурия.
Ядро окружено силикатной мантией толщиной 500—600 км. Согласно данным от «Маринера-10» и наблюдениям с Земли толщина коры планеты составляет от 100 до 300 км.
Магнитное поле Меркурия
Меркурий обладает магнитным полем, напряжённость которого в 100 раз меньше земного. Магнитное поле Меркурия имеет дипольную структуру и в высшей степени симметрично, а его ось всего на 10 градусов отклоняется от оси вращения планеты, что налагает существенное ограничение на круг теорий, объясняющих его происхождение. Магнитное поле Меркурия, возможно, образуется в результате эффекта динамо, то есть так же, как и на Земле. Этот эффект является результатом циркуляции жидкого ядра планеты. Из-за выраженного эксцентриситета планеты возникает чрезвычайно сильный приливный эффект. Он поддерживает ядро в жидком состоянии, что необходимо для проявления эффекта динамо.

Магнитное поле Меркурия достаточно сильное, чтобы изменять направление движения солнечного ветра вокруг планеты, создавая магнитосферу. Магнитосфера планеты, хотя и настолько мала, что может поместиться внутри Земли, достаточно мощная, чтобы поймать плазму солнечного ветра. Результаты наблюдений, полученные «Маринером-10», обнаружили низкоэнергетическую плазму в магнитосфере на ночной стороне планеты. В хвосте магнитосферы были обнаружены взрывы активных частиц, что указывает на динамические качества магнитосферы планеты.
Во время второго пролёта планеты 6 октября 2008 года «Мессенджер» обнаружил, что магнитное поле Меркурия может иметь значительное количество окон. Космический аппарат столкнулся с явлением магнитных вихрей — сплетённых узлов магнитного поля, соединяющих корабль с магнитным полем планеты. Вихрь достигал 800 км в поперечнике, что составляет треть радиуса планеты. Данная вихревая форма магнитного поля создаётся солнечным ветром.
Так как солнечный ветер обтекает магнитное поле планеты, оно связывается и проносится с ним, завиваясь в вихреподобные структуры. Эти вихри магнитного потока формируют окна в планетарном магнитном щите, через которые солнечный ветер проникает и достигает поверхности Меркурия. Процесс связи планетного и межпланетного магнитных полей, названный магнитным пересоединением, — обычное явление в космосе. Оно возникает и у Земли, когда она генерирует магнитные вихри. Однако, по наблюдениям «Мессенджера», частота пересоединения магнитного поля Меркурия в 10 раз выше.
Источник: astrofishki.net
Содержание заданий о Солнечной системе
Прежде чем приступать к рассмотрению задания по Солнечной системе вспомним некоторые основные сведения. Вот перечень некоторых фактов, которые необходимо знать:
- Порядок расположения планет: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран и Нептун;
- Самая большая планета Солнечной системы – это Юпитер;
- Солнечная система содержит 8 планет, которые делятся на две группы. В первую группу входят планеты земной группы – это Меркурий, Венера, Земля, Марс. Во вторую группу входят газовые гиганты: Юпитер, Сатурн, Уран и Нептун; Логично, что газовые гиганты имеют меньшую плотность, чем твердые;
- Между Марсом и Юпитером находится пояс астероидов;
- Практически все планеты обладают спутниками; для Земли – это Луна; не имеют спутников – Венера и Меркурий; Существует множество факторов, влияющих на наличие спутников у планеты, но основным является гравитация, то есть, чем больше масса планеты, тем наиболее вероятно у нее есть спутники. Например, Юпитер самая большая планета Солнечной системы и у него больше всех спутников.
- Наличие атмосферы. Все планеты Солнечной системы имеют атмосферу, кроме Меркурия.
- Все планеты вращаются по эллиптическим орбитам; плоскость вращения планеты Земля называется эклиптикой;
- Один оборот Земля делает за сутки, одно вращение вокруг Солнца – за год;
- Наклон оси планет к плоскости вращения определяет смену времен года;
- Последние исследования обнаружили еще один пояс астероидов за Нептуном, а ранее считавшийся планетой Плутон оказался по своим параметрам сравним с большими астероидами этого пояса, поэтому его перестали признавать планетой.
Для того чтобы двигаться дальше, необходимо познакомиться с некоторыми формулами важными при решении заданий по тематике планет. Причем практически все эти формулы известны из курса физики. Вот эти формулы:
$$ V=frac{4}{3}*pi*{R}^3 ,,,(1)$$
где (R) – радиус планеты.
Масса планеты
$$ M=rho*V ,,,,, (2) $$
где (rho) – плотность планеты.
Ускорение свободного падения для любой планеты, любого тела
$$ g=frac{G*M}{R^2},,,,, (3) $$
где (M) – масса планеты,
(R) – расстояние от тела до центра планеты, (G) – гравитационная постоянная,
Первая космическая скорость
$$ {V}_{1}=sqrt{g*R},,,,, (4)$$
Вторая космическая скорость
$$ {V}_{2}={V}_{1}sqrt{2},,,,,(5)$$
Используя эти формулы можно легко решать задачи посвященные планетам, спутникам.
Пример 3
Источник: sigma-center.ru
Валерия Сирота
«Квантик» №1, 2017
Путешествие по планетам Солнечной системы начнём с самой близкой к Солнцу планеты — Меркурия. Расстояние от него до Солнца в 2,5 раза меньше, чем от Земли. Из-за этого изучать его довольно сложно: для земного наблюдателя Меркурий никогда не отходит далеко от Солнца, и увидеть его можно только на заре — перед самым восходом или сразу после захода Солнца. А отправить к нему космический аппарат оказывается ничуть не легче, чем к Юпитеру, только по обратной причине: хоть Меркурий и несётся по своей орбите со скоростью 47 км/с — в полтора раза быстрее Земли, — всё равно посланный с Земли корабль так разогнался бы под действием солнечного притяжения, подлетев к нему, что проскочил бы мимо, не успев ничего сфотографировать. Приходится лететь сначала к Венере, делать возле неё гравитационный манёвр1 — но не чтобы разогнаться, а наоборот, чтобы затормозиться — и только потом уж лететь к Меркурию. До сих пор это проделали только две межпланетные станции: «Маринер-10» лет сорок назад и — совсем недавно — «Мессенджер».
Меркурий не только самая близкая к Солнцу (и потому — ещё и самая быстрая) планета, но и самая маленькая. По размеру он уступает даже крупным спутникам планет-гигантов — Ганимеду (спутнику Юпитера) и Титану (спутнику Сатурна). Однако по массе он их всё-таки обогнал. Это значит, что у Меркурия намного больше плотность; и действительно, 1 л его вещества весит в среднем около 5,4 кг, почти как у Земли (5,5 кг). Но Земля-то большая, внешние её слои сильно давят на внутренние, и вещество в её недрах сильно сжато. Маленькой планете трудно было так сильно сжаться; похоже, что у Меркурия очень большое — на 3/4 радиуса — железное ядро. (Для сравнения — у Земли ядро доходит только до половины радиуса. Поэтому у Меркурия ядро занимает почти половину всего объёма, а у Земли — 1/8.) Доля железа и других тяжёлых элементов на Меркурии — самая большая среди всех планет Солнечной системы.
Думаете, раз Меркурий близко к Солнцу, то на нём очень жарко? Это правда, да только отчасти. Действительно, днём там страшная жара: максимальная температура поверхности 430°С, при такой температуре расплавятся олово, свинец и цинк. Зато ночью очень холодно: минус 200°С! Это всё вблизи экватора. На полюсах — всегда холодно, около −90°С.
Почему так? Ответ — в решении задачи из «Квантика» № 10 за 2016 г. Меркурий делает один оборот вокруг Солнца за 88 земных суток, а один оборот вокруг оси — меркурианские звёздные сутки — длится около 58 суток, ровно 2/3 года.
Внимание! Представьте себе, что вы стоите на экваторе Меркурия (рис. 1; вы — красная точка) и видите восходящее Солнце, а рядом с ним — какую-нибудь звезду; небо на Меркурии чёрное даже днём, потому что атмосферы почти нет, так что звёзды прекрасно видно. Проследим, что вы увидите по мере движения Меркурия по орбите. Через 1/4 звёздных суток, то есть 1/6 местного года, звезда окажется в зените, ровно над головой. А Солнце отстаёт, оно ещё только поднимается. Вот проходит треть года — звезда садится на западе, а Солнце всё ещё продолжает подниматься… Только через полгода Солнце, наконец, достигает зенита, наступает полдень. Через 2/3 года от начала наблюдения звезда снова восходит — прошли звёздные сутки. Но Солнце ещё и не собирается садиться! Зайдёт оно только ещё через полгода, зато целый год после этого его не будет видно. И только через два меркурианских года мы, наконец, снова встретим восход Солнца, а рядом с ним звезду — всё как было. Так что если отсчитывать сутки по Солнцу, а не по звёздам (это называется солнечные сутки) — получится, что они длятся 2 года!
Итак, от восхода до заката Солнца проходит целый меркурианский год, 3 земных месяца. И столько же длится ночь. Неудивительно, что всё успевает днём как следует нагреться, а ночью — изрядно остыть… Кстати, долгое время люди думали, что звёздные сутки на Меркурии длятся не 2/3 года, а ровно год: тогда Меркурий, как Луна на Землю, «смотрел» бы на Солнце всё время одним и тем же полушарием. На половине планеты был бы вечный день, на половине — вечная ночь. Почему так думали? Потому что каждый раз, когда Меркурий нам особенно хорошо виден — а это происходит примерно каждые 348 земных суток, или примерно 4 меркурианских года, — он поворачивается к Земле (и к Солнцу соответственно тоже) одной и той же стороной. Только с применением радиолокаторов для исследования Меркурия лет 50 назад этот его «обман» раскрылся.
Случайно ли такое совпадение? Вряд ли. Ведь раньше Меркурий, как и Луна, вращался вокруг оси быстрее. Это Солнце затормозило его вращение (как Земля — вращение Луны) приливными силами; как это делается, мы подробно разберёмся в другой раз, а пока заметим, что, хоть Солнце и не совсем остановило — не «синхронизировало» — свой ближайший спутник, зато получился резонанс сразу и с Солнцем — отношение периодов 2 : 3, — и с Землёй. Похоже, это мы помешали Солнцу совсем остановить Меркурий. Так и танцует он свой сложный космический танец, успевая в такт поворачиваться «лицом» то к Солнцу, то к Земле, а то ещё и к Венере…
Это ещё не всё. У Меркурия очень вытянутая (для планеты) орбита — самая вытянутая из орбит всех планет Солнечной системы: в дальней точке Меркурий в полтора раза дальше от Солнца, чем в ближней (рис. 2). Из-за резонанса получается, что в ближайшей точке орбиты (она называется перигелий, по-гречески — ближний к Солнцу) Меркурий поворачивается к Солнцу всегда одной и той же стороной, а точнее — двумя меридианами на противоположных сторонах планеты, по очереди. Эти меридианы называются «горячие долготы», в них — самая жаркая погода на всём Меркурии.
Но и на этом чудеса с орбитальным движением Меркурия ещё не кончаются. Дело в том, что когда он ближе к Солнцу, он и летит по своей орбите быстрее, а когда дальше от Солнца — то медленнее. А вокруг оси он крутится равномерно; из-за этого вблизи перигелия угловая скорость его движения по орбите ненадолго оказывается больше, чем скорость вращения. И если в остальное время быстрый бег Меркурия по орбите только тормозит видимое движение Солнца с востока на запад, то тут он его совсем останавливает, и Солнце в это время движется по небу в обратную сторону, с запада на восток (рис. 3)! Это явление — из всех планет Солнечной системы оно есть только на Меркурии — называется «эффект Иисуса Навина», в честь библейского персонажа, который как-то попросил бога остановить солнце на небе — и тот остановил на несколько часов. Не знаю, как это ухитрился сделать Иисус Навин (или даже бог — против собственных законов идти сложно…), а вот на Меркурии это происходит, можно сказать, каждый день! Особенно интересно это выглядит в тех местах, где во время прохождения перигелия Солнце близко к горизонту: оно было взойдёт, потом передумает, сядет обратно — и взойдёт ещё раз. Дальше начинается длинный (годовой!) меркурианский день, в конце которого Солнце, уже сев за горизонт, опять передумывает и выходит обратно посветить ещё немножко…
На поверхность Меркурия ещё не ступала нога ни человека, ни даже спускаемого аппарата. Но мы уже знаем, что поверхность эта очень похожа на лунную: множество кратеров, образовавшихся от ударов метеоритов, гладкие долины, покрытые застывшей лавой, цепочки гор — возможно, бывшие вулканы, давно потухшие: маленькая планетка довольно быстро остывала, и не прошло и миллиарда лет, как лава уже не могла пробиться снизу через толстую застывшую кору. Но есть на Меркурии такая деталь рельефа, какой больше нигде в Солнечной системе не встретишь. Это эскарпы — очень длинные и высокие зубчатые обрывы, высотой несколько километров — как самые высокие скальные обрывы на Земле — и длиной несколько сотен километров (!). Они образовались в ту эпоху, когда только что «слепленный» Меркурий быстро остывал — кора остыла первой и затвердела, а внутренние, ещё горячие области продолжали остывать и сжиматься. С маленькими речками и большими лужами на Земле бывает так: в начале зимы верхний слой воды замёрз, а уровень воды упал (оттого, что приток воды резко уменьшился — замёрзли маленькие впадающие в речку ручьи) — и получается, что подо льдом пустота, ничто его снизу не держит. И под небольшой нагрузкой этот верхний слой льда проваливается. Так вышло и на Меркурии (только причина появления «пустоты» была другая), кора под собственной тяжестью стала трескаться и проседать, «догоняя» сжавшееся ядро. Вот эти трещины и сохранились до наших дней.
Вот он какой, Меркурий. И маленький, и не очень пока изученный — а сколько в нём удивительного!
Художник Мария Усеинова
Источник: elementy.ru