Зарождение галактики


Зарождение галактики

19 марта 2003 года группа японских исследователей, возглавляемая Кейчи Кодиарой, Нобунари Касикавой и Есиаки Танигучи, объявила, что в созвездии Волосы Вероники ими с помощью телескопа «Субару» обнаружена самая удаленная из известных нам галактик. Свет, который можно увидеть сейчас, был испущен ею 12,8 млрд. лет назад, когда после большого Взрыва прошло всего около 900 млн. лет и Вселенная находилась в младенческом возрасте. Именно поэтому их изучение позволяет не только приблизиться к видимым границам Вселенной, но и выяснить, что же происходило на самом раннем этапе ее существования, когда галактики, которые нас окружают, еще только формировались. Сейчас многих из них уже не существует — за миллиарды истекших лет галактики рождались, умирали, разбегались и сливались, поглощая друг друга и образуя новые. В частности, судя по всему, и Млечный Путь (галактика, в которой мы живем) через несколько миллиардов лет сольется со своей ближайшей соседкой — Туманностью Андромеды.


В предыдущих статьях («Сотворение мира» и «Будущее мира») мы рассмотрели Эволюцию нашей Вселенной, теперь перейдем к Эволюции ее «составных» элементов — Галактикам.

Ясной, безлунной ночью каждый из нас может видеть Млечный Путь — светящуюся, туманную полосу,

На фотографии «Хаббла», хорошо виден «конвейер», перекачивающий вещество между двумя галактиками. Эти галактики — NGC 1410 (слева) и NGC 1409 (справа) — сильно пострадали при столкновении, которое произошло 100 млн. лет назад.

Зарождение галактики

протянувшуюся поперек неба. А первым, кто рассмотрел ее в телескоп и обнаружил, что она состоит из множества слабых звезд, был Галилей. В середине XVIII века астрономы предположили, что большинство наблюдаемых звезд образуют единую дискообразную структуру. И полвека спустя эта гипотеза была подтверждена Уильямом Гершелем, составившим каталог огромного числа звезд и расстояний до них. К началу ХХ века общепринятым стало мнение, что эта звездная полоса — часть единственной во Вселенной галактики, которая «приютила» миллиарды звезд, включая и наше Солнце. Сейчас предполагается, что в видимой части Вселенной находится около 40 миллиардов галактик.

Имя человека, который в 1924 году открыл, что наш Млечный Путь — лишь песчинка в море, постоянно находится на слуху. Звали его Эдвин Хаббл, и именно в его честь был назван ставший уже знаменитым орбитальный телескоп, который с момента своего запуска в 1990 году считается одним из основных инструментов астрофизиков в исследовании Вселенной.


В 1920-е годы, исследуя спектры излучения далеких звезд, астрономы обнаружили, что они смещены в красную сторону по сравнению со спектрами ближних звезд. По их предположению, скорее всего, благодаря эффектy Доплера, состоящему в том, что если некий объект, испуская волны любой природы, приближается к наблюдателю, то он будет «видеть» волны меньшей длины, а если объект удаляется — то большей. Простой пример — в том случае, если мимо вас проносится электричка, то при ее приближении гудок из высокого тона резко переходит в низкий. Эта ситуация аналогична и для электромагнитного излучения. Свет приближающегося объекта смещается к фиолетовой части спектра (менее длинные волн), а удаляющегося — к красной (более длинные волны).

Затратив годы на составление каталогов спектров галактик и расстояний до них, Хаббл к 1929 году обнаружил, что почти все галактики удаляются от нас (в то время считалось, что движутся они хаотично, то есть количество приближающихся и удаляющихся должно быть примерно одинаковым) и, более того, их спектры смещены в красную область тем сильнее (то есть скорость убегания тем выше), чем более галактика удалена.

Можно было предположить, что именно наша Галактика является центром расширяющегося мироздания, но гораздо более логичным представлялось другое объяснение — во Вселенной нет «центра», от которого бы разлетались галактики, она одинакова во всех направлениях.
сширение Вселенной, ставшее величайшим открытием космологии, надо понимать как разлет галактик (точнее, скоплений галактик), приводящий к непрерывному увеличению расстояния между ними. При этом их собственные размеры практически не меняются, поскольку представляют собой гравитационно связанные системы объектов.

На первый взгляд может показаться, что галактики беспорядочно рассеяны во Вселенной, на деле же космический хаос имеет свои закономерности. Разнообразные по форме и размеру галактики группируются в скопления, которые в свою очередь являются частями еще больших группировок, названных «сверхскоплениями». Например, Млечный Путь вместе с Туманностью Андромеды и еще 34 меньшими галактиками входит в состав так называемой Местной Группы, имеющей в поперечнике несколько миллионов световых лет.

Типичный случай — Эволюция галактик

Размеры галактик простираются от карликовых с какими-нибудь десятками миллионов звезд до массивных — с тысячами миллиардов звезд. Хотя, несмотря на их внешнее разнообразие, все они могут быть отнесены к тому или иному типу строения.

Сферические или эллипсоидные галактики имеют красноватый цвет, создаваемый их состарившимися обитателями. Их размеры меняются от гигантских звездных систем диаметром в сотни килопарсек, до карликовых — порядка одного килопарсека. И находятся они почти всегда в богатых галактических скоплениях.


Весьма распространены спиральные (или дисковые) галактики. Их плоские диски погружены в разряженное слабосветящееся сферическое облако слабых старых звезд и газа — гало. На диске заметен спиральный узор из двух или нескольких закрученных в одну сторону рукавов, выходящих иногда из центра галактики. Эффектные спиральные рукава выделяются за счет сверкающих, молодых голубых звезд. У некоторых спиральных систем в центральной часты имеется почти прямая звездная перемычка, от которой начинаются спиральные рукава. Некоторые спиральные системы, видимые с ребра, похожи на толстое или тонкое веретено, часто пересеченное темной полосой поглощающей материи.

Зарождение галактики

Последовательность из четырех изображений показывает слияние двух черных дыр и галактик, в центрах которых они находятся. Несколько сот миллионов лет они вращаются вокруг их общего центра, прежде чем образовать единую черную дыру. Такое слияние должно, как ожидается, сопровождаться интенсивным излучением гравитационных волн. Среднее изображение — реальное столкновение галактик.

Зарождение галактики

Используя компьютеры, ученые моделируют различные варианты столкновения галактик. На верхнем изображении галактики уже сблизились, но расстояние между ними еще велико и гравитационное взаимодействие еще не исказило их форму. На нижнем — галактики уже столкнулись. Сильно искореженные центральные области довольно быстро сольются в единую галактику.


Зарождение галактики

В отличие от них линзовидные галактики внешне гораздо менее привлекательны и фотогеничны — они хоть и обладают выпуклой центральной частью и тонким диском, как и спиральные галактики, но не имеют их эффектных спиральных рукавов, но иногда в наружных частях «линз» видны некоторые их зачатки, перемычки и наружные кольца.

Во время наблюдений было обнаружено и множество совершенно бесформенных, клочковатых галактик, получивших название неправильных. Около половины вещества в них составляет межзвездный газ.

Полная энергия, которую испускает «нормальная» галактика, представляет сумму излучений от всех ее звезд. Но есть такие галактики, которые в радио-, инфракрасной, ультрафиолетовой и рентгеновской областях электромагнитного спектра испускают энергии больше, чем следует. Такие галактики называются «активными». В чем же источник этой дополнительной энергии? Ответом на этот вопрос стало открытие черных дыр — объектов, в которых материя сжата настолько плотно, что не выпускает за свои пределы никакого излучения. Если черная дыра с массой от миллиона до миллиарда солнечных масс находится в центре галактики с большой плотностью вещества, то это вещество «эасасывается» черной дырой. При этом гравитационные силы настолько велики, что заставляют падающее вещество излучать, превращая галактику в активную. Именно это излучение и выдает ученым присутствие черных дыр.


Самые удаленные и самые яркие объекты — квазары (сокр. от «квазизвездные источники») из области меньшей, чем наша Солнечная система, испускают больше света, чем вся наша Галактика. По-видимому, это сверхмассианые черные дыры, находящиеся в центрах галактик, которые преобразуют гравитационную энергию падающей материи в излучение, заставляя его светиться. Возраст самых отдаленных квазаров, обнаруженных астрономами, составляет примерно 12 миллиардов лет, что лишь немногим меньше возраста Вселенной и свидетельствует о «бурной» молодости галактик.

На ранних этапах эволюции Вселенной, когда ее размеры были в 3-5 раз меньше современных, квазаров было значительно больше, чем сейчас. В настоящее время считается, что черные дыры есть в центрах почти всех близких галактик и представляют они собой бывшие квазары, собирающие материю значительно медленнее, чем они это делали в пору своей юности. И происходит это совсем не потому, что они «выдохлись», просто в окрестностях черных дыр стало меньше материала для поглощения. Вполне возможно, что квазары — это определенный этап развития галактики и что все современные галактики, в том числе и наша собственная, когда-то были квазарами.

Близкими родственниками квазаров, очевидно, являются Сейфертовские галактики и радиогалактики. Сейфертовскими называются галактики, в видимой области излучения похожие на обычные спиральные, но с очень активными ядрами, мощность излучения которых к тому же сильно меняется со временем, указывая на происходящие там грандиозные процессы.


диогалактики, отличающиеся мощным излучением в радиодиапазоне, являются огромными эллиптическими галактиками. Мощности Сейфертовских и радиогалактик также обеспечиваются сверхмассивными черными дырами, находящимися в их центрах. Не исключено, что все это разнообразие типов — просто определенные этапы эволюции галактик, которые наблюдаются во Вселенной сейчас

Согласно принятой иерархической модели формирования галактик первыми структурами, образовавшимися в ранней Вселенной, являются маленькие протогалактики, массы которых составляют всего несколько тысяч Солнц. Появляется все больше доказательств того, что главными движущими силами эволюции галактик и причиной их разнообразия являются взаимодействие и столкновение галактик друг с другом. При этом не следует думать, что столкновение двух галактик будет представлять собой бесчисленные столкновения между входящими в них звездами. На самом деле, вероятность столкновения двух звезд очень мала, потому что размеры их очень малы по сравнению со средним расстоянием между ними. Но межзвездное пространство заполнено газом и пылью, и именно эти компоненты взаимодействуют, когда галактики сталкиваются. Гравитационное взаимодействие приводит к нарушению структуры газопылевой среды и к перекачиванию вещества из одной галактики в другую.


Трение, возникающее между газом в сталкивающихся галактиках, порождает ударные волны, которые моryт вызвать образование новых звезд. Новые звезды в первые несколько миллионов лет своей жизни имеют весьма необычную светимость и голубизну, а потому обнаружение таких звезд является наиболее очевидным признаком произошедшего столкновения.
Эти процессы радикально влияют на их структyру. Например, две спиральные галактики могут слиться и сформировать эллиптическую. Большие галактики поглощают маленькие и растут до еще больших размеров. Все эти процессы длятся миллионы лет (не так уж много по астрономическим масштабам времени), но вот человеческой жизни явно не хватит на то, чтобы зафиксировать все их стадии. Для того чтобы увидеть динамику, нужно наблюдать несколько пар взаимодействующих галактик в различные моменты их слияния и затем составить последовательность изображений во времени.

Многие активные галактики, включая квазары, также являются частью взаимодействующих или сливающихся систем. Множество далеких, а следовательно, очень старых галактик носят следы разрушения, что свидетельствует о



Основные типы галактик и их свойства (по Э. Хабблу)

Спиральные

Эллиптические

Неправильные

Процентное соотношение во Вселенной

34%

13%

53%

Форма и структурные свойства

Плоский диск звезд и газа со спиральными рукавами, утолщающимися к центру. Ядро из более старых звезд и примерно сферическое гало (мезвездный газ, немного звезд и магнитные поля)

Диск отсутствует. Звезды распределены в объеме, напоминающем эллипсоид.

Никаких внутренних особенностей, кроме плотного ядра в центре. Структура отсутствует.

Состав звезд

Диск содержит молодые и старые звезды. Ядро — только старые

Только старые звезды.

Молодые и старые звезды.

Газ и пыль

В диске довольно много, в гало — мало или нет совсем.

Газа и пыли мало или нет совсем.

Газа и пыли много.

Образование звезд

Звезды продолжают рождаться в спиральных рукавах.

Звезды практически не образуются последние 10 млрд. лет.

Энергичное рождение звезд сейчас.

Движение звезд и газа

Газ и звезды в диске движутся по эллиптическим орбитам вокруг галактического центра. Звезды в гало движутся хаотически.

Звезды движутся хаотически.

Звезды и газ движутся хаотически.

том, что в ранней Вселенной столкновения галактик были скорее правилом, чем исключением. Проведенные вычисления показывают, что большинство скоплений галактик уже прошло через одно или более таких столкновений. Наш Млечный Путь, очевидно, тоже является результатом слияния небольших галактик. Существует маленькая карликовая галактика, которая вливается в нашу прямо сейчас, а еще восемь близрасположенных карликовых галактик сольются с ней через некоторое время.


меньшая (справа)- 1С 2163. Яркое пятно в центре большей галактики — это интенсивное излучение вещества, падающего на черную дыру, скрывающуюся в центре NGC 2207. Форма маленькой галактики уже начала искажаться. Видно, как из нее «вытекают» звезды и газ. Эти рукава простираются на сотни тысяч световых лет Группой ученых под руководством Брюса и Дебры Элмегрин были проведены компьютерные расчеты движения этих галактик. Им удалось восстановить детали столкновения. Оказывается, галактика 1С 2163 уже пролетела мимо NGC 2207, вращаясь против часовой стрелки. Казалось бы, свобода близка, но ее скорость слишком мала и гравитационное взаимодействие заставит ее вернуться назад. В конце концов обе галактики образуют одну, более массивную. Ученые палагают, что многие современные галактики, включая и Млечный Путь, образовались миллиарды лет назад именно путем слияния более мелких.

После Большого взрыва

Долгое время Вселенная, остыв после Большого Взрыва, оставалась темной и холодной — ничто ее не освещало. Этот период, названный «Темными веками», закончился, когда сформировались звезды. Очень ранний возраст Вселенной, к которому относят начало формирования первого поколения звезд, впервые осветивших ее спустя всего 200 млн. лет после Большого Взрыва, привел к идее о том, что таинственный тип невидимой материи собрал газ вместе вскоре после рождения Вселенной, позволив сформироваться первым звездам и галактикам.

Скрытая масса (или темная материя) возникла почти сразу после Большого Взрыва, в отличие от знакомых нам атомов. Она слабо взаимодействует с электромагнитным излучением (чем и объясняются трудности ее обнаружения), однако, как и «нормальная» материя, обладает гравитацией, поэтому способна сама собираться в сгущения и притягивать «нормальную» материю. Темная материя, возможно, служила теми гравитационными «зернами», которые вызывали увеличение плотности энергии в небольших областях пространства. Гравитационные силы этих областей притягивали к себе все окружающее вещество, становясь зернами будущих галактик. Сегодня уже достоверно известно, что галактики окружены гало из темной материи, которые в 10 раз массивнее видимых компонентов галактик.

Возможны два сценария развития событии: концентрация материи в больших структурах с последующим формированием в них звезд или формирование звезд с последующим объединением их в большие структуры. Пока еще не известно, какой из них был реализован и что в действительности являлось источником энергии для первых источников света, осветивших Вселенную, — звезды с их термоядерным синтезом или излучение, вызванное падением материи на черные дыры.

Черные дыры могут играть важную роль на начальной стадии формирования галактик, собирая материю вместе посредством своей мощной гравитации. Новые открытия супермассивных черных дыр в центрах трех ближайших эллиптических галактик только прибавляют в этом уверенности. Такая связь, естественно вызывает вопрос и о том, что появилось сначала — галактика или черная дыра, хотя последние данные в большей степени указывают на то, что именно черные дыры формируют вокруг себя галактики. Так что есть надежда, что спор по поводу того, что появилось раньше — «курица» (галактика) или «яйцо» (массивная черная дыра), по всей видимости, будет разрешен уже в обозримом будущем.Николай Андреев Частный случай на примере

Телескопом «Хаббл» были обнаружены две галактики, которые беспечно пролетали недалеко друг от друга, но были захвачены взаимными гравитационными силами.

Зарождение галактики

Источник: planetologia.ru

Как появились галактики

Для начала обратимся к теории Большого взрыва. Как известно, происхождение галактик, как и других объектов глубокого космоса, стало возможным именно после него.

Галактики
Галактики

К тому же, сразу после взрыва появилась сингулярность. То есть в первые секунды состояние Вселенной было бесконечно плотным и с одной огромной температурой. В дальнейшем однородная среда при остывании начала расширяться. С течением времени более плотные участки притягивались друг к другу силой гравитации.

Существует принцип гравитационной неустойчивости. Его смысл заключается в том, что частицы вещества не могут постоянно быть равномерно распределены в пространстве. Его элементы стремятся друг к другу. Тем самым создавая уплотнённые соединения.

Таким образом образовались газовые облака и сгустки материи. В последующем произошло образование звёзд. А затем из них появились целые галактики.

Газовые облака
Газовые облака

Развитие галактик

Проще говоря, рост и слияние галактик это и есть эволюция.
Как известно, под силой тяжести галактики притягиваются друг к другу. Так происходит процесс их объединения. Действительно, сейчас нам известны галактические группы, скопления и сверхскопления галактик.

Скопление галакатик
Скопление галактик

Как изестно, большие галактики поглощают малые. Из этого следует увеличение их массы. Интересно, что галактики приблизительно равного размера сливаются в единое объединение. Так образуются гигантские эллиптические галактики.

Конечная стадия развития галактик

Когда в межзвёздном пространстве иссякает запас газа и пыли, прекращается формирование звёзд. Этот процесс замедляется в течении миллиардов лет. Но при этом все же происходит слияние объектов глубокого космоса. Что ведёт к росту количества звёзд, газа и пыли. В результате система галактики поддерживается и растёт.

Иногда такие галактики поглощаются другими. В таком случае, им как-бы даётся вторая жизнь в новом составе.

Существует интересная теория о том, что когда-нибудь все галактики сольются в одного огромного эллиптического гиганта.

Эллиптическая галактика
Эллиптическая галактика

Бесспорно, эволюция галактик является очень долгим и сложным процессом. Только представьте, что было вначале и что есть сейчас. Это целая история, которой нет конца. По крайней мере, пока. Мы можем только предполагать, что в будущем ждёт галактики и вселенную в целом.
Момент роста и развития всегда очень занимательный и интересный. Независимо от того, что мы рассматриваем. Но следить за эволюцией Вселенной более увлекательный процесс. Тем более, что вопросов о ней всегда больше, чем ответов.

Источник: kosmosgid.ru

Первая стадия эволюции галактики — формирование

С чего начинается эволюция галактики? Вселенская материя появилась 13.8 миллиардов лет назад в момент Большого Взрыва. В тот временной отрезок она была настолько упакована и сжата, что представляла собою небольшой шар с неисчислимой плотностью и интенсивным теплом – сингулярность. Внезапно запустился процесс расширения, и сингулярность стала увеличивать свои «границы».

Чем больше Вселенная расширялась, тем сильнее остывала. Поэтому у материи появилась возможность распределиться практически равномерно. Дальше гравитация стала притягивать плотные области, накапливая газовые облака и большие скопления, которые и стали древними галактиками (родились первые звезды). Некоторые из них были маленькими и трансформировались в карликовые галактики, другие (покрупнее) – спиральные.

Вторая стадия эволюции галактики — слияние

Проследим дальнейшее развитие галактик. Полноценные галактики объединялись в группы, скопления и сверхскопления. В масштабах родной группы они могли подойти на достаточно близкое расстояние, чтобы запустить процесс слияния. Результат всегда зависит от массы.

В стандартном сценарии маленькие присоединяются к крупным («съедаются»). Не так давно и Млечный Путь «пообедал» несколькими карликовыми галактиками, присоединив их звезды к себе. Интересно наблюдать за столкновением одинаково крупных галактик, которые в конце трансформируются в гигантские эллиптические типы.

В момент галактического столкновения их спиральная структура рушится, поэтому позволяет перейти на новый уровень. Эллиптические считаются крупнейшими в своем виде. Кроме того, при слиянии увеличиваются и центральные сверхмассивные черные дыры.

Правда, здесь стоит отметить, что не во всех случаях все заканчивается появлением эллиптической галактики. Полагают, что некий контакт уже сейчас происходит между нашей галактикой и Магеллановыми Облаками. Даже больше, оказывается, что Карликовая галактика в Большом Псе уже стала частью Млечного Пути.

Хотя сам процесс слияния воспринимается как нечто серьезное, звезды расположены на больших дистанциях, поэтому катастрофические взрывы и столкновения бывают редко. Но в этом процессе формируются волны ударной гравитации, которые приводят к появлению новых звезд. Это то, чего стоит ожидать через 4 миллиарда лет, когда Млечный Путь и Андромеда столкнутся.

Третья стадия эволюции галактики — гибель

Эволюция галактики однажды завершится, ведь у всего есть начало и конец. Приходит время, когда в галактике заканчивается пыль и газ. А ведь это главный материал для появления новых звезд. Миллиарды лет активность замедляется, пока все не остановится полностью. Но это еще не смерть, так как галактика способна найти соседа и слиться с ним, чтобы запустить новый процесс.

Полагают, что Млечный Путь истратил большую часть «звездного топлива» и теперь замедляет свою активность. Звезды вроде Солнца живут примерно 10 миллиардов лет. Но карлики способны продержаться до нескольких триллионов. Переживать не стоит, ведь столкновение Млечного Пути с Андромедой продлит существование нашей галактики.

По прогнозам, однажды все галактики в этом участке объединятся в одного эллиптического гиганта. Ученые могут наблюдать подобный результат уже сейчас (например, Мессье 49). Эти галактики уже исчерпали газовые запасы. В итоге, звезды постепенно будут отдаляться, пока все пространство не достигнет фоновой температуры.

Когда у нашей галактики закончатся соседи, то она присоединится к той же участи. Сама же галактическая эволюция длится больше миллиарда лет и пока до конца еще очень далеко.

Эволюция галактик

Чтобы глубже вникнуть в процесс эволюции галактик, посмотрите интересно видео. Астрофизик Анатолий Засов о различии близких и далеких галактик, трансформации и пределе их возраста:

Источник: v-kosmose.com

Объект Вселенной — один из бесконечного множества объектов, распространённых во Вселенной, рассматриваемый как в практическом, так и в абстрактном смысле, и используемый в качестве основного понятия в теории бесконечной вложенности материи при изучении различных космических систем. Под объектом Вселенной может пониматься живой или неживой объект любого размера и массы, а также материальный объект в виде вещества или кванта поля.

Классификация объектов Вселенной по Сухоносу

Объекты Вселенной (ОВ) удобно различать по их местонахождению на структурных уровнях Вселенной. Сухонос С. И. описал два подхода такой классификации: физический и геометрический.

Физическая классификация объектов

Основанием деления множества объектов Вселенной выбраны области действия физических сил. Выделены три области Вселенной: Мегамир, Макромир, Микромир. В этих областях преимущественно действуют силы: гравитационные, электромагнитные, слабые. Границей между мегамиром и макромиром по расчетам Сухоноса являются объекты с размерами порядка 300 метров, что подтверждается анализом данных о малых планетах. Границей между макромиром и микромиром являются ядра атомов.

Геометрическая классификация объектов

Выделен ряд структурных уровней объектов, средний размер которых отличается в 100 000 раз. Отмечается, что подавляющая масса всех объектов Вселенной имеет именно эти размеры, что невозможно пока объяснить, пользуясь известными законами.

Практическая классификация объектов Вселенной Гольянова

В практической деятельности большинства людей в основном требуется информация об объектах Макромира. Поэтому возникла необходимость выделить такие структурные уровни, которые легко отличались от других, отделяя мало используемые уровни от используемых более часто. Гольянов Э.В. в качестве таких уровней выделил следующие уровни с объектами: геосферы, люди, клетки.

Структурный уровень, включающий оболочки планет, отделяет ряд уровней Мегамира от верхних уровней Макромира. Структурный уровень, где находятся люди, содержит также все объекты, с которыми человек может взаимодействовать. Этот уровень делит Макромир на верхнюю и нижнюю части и называется на картах Знания центральным. Уровень, содержащий клетки, отделяет нижние уровни Макромира от уровней Мегамира. Введение таких уровней – ориентиров делает их также границами между Мегамиром, Макромиром и Микромиром, отличающихся от тех, которые использует Суховей.

Цепочку, состоящую из описанных объектов, автор всегда располагает вертикально, сверху вниз от большего к меньшему и присваивает им различные цвета.

· Объекты Мегамира

· Объекты масштаба оболочек геосфер

· Объекты верха Макромира

· Объекты масштаба людей

· Объекты низа Макромира

· Объекты масштаба клеток

· Объекты Микромира

Возникновение галактик — появление крупных гравитационно-связанных скоплений материи, имевшее место в далёком прошлом Вселенной. Началось с конденсации нейтрального газа, начиная с окончания тёмных Веков. На данный момент удовлетворительной теории возникновения и эволюции галактик не существует. Есть несколько конкурирующих теорий, объясняющих это явление, но каждая имеет свои серьёзные проблемы.

Иерархическая теория

Согласно первой, после возникновения первых звёзд во Вселенной начался процесс гравитационного объединения звёзд в скопления и далее в галактики. В последнее время эта теория поставлена под сомнение. Современные телескопы способны «заглянуть» так далеко, что видят объекты, существовавшие приблизительно через 400 млн. лет после Большого взрыва (красное смещение z sim 10). Обнаружилось, что на тот момент уже существовали сформировавшиеся галактики. Предполагается, что между возникновением первых звёзд и вышеуказанным периодом развития Вселенной прошло слишком мало времени, и галактики сформироваться не успели бы.

Инфляционная теория

Другая распространённая версия заключается в следующем. Как известно, в вакууме постоянно происходят квантовые флуктуации. Происходили они и в самом начале существования Вселенной, когда шёл процесс инфляционного расширения Вселенной, расширения со сверхсветовой скоростью. Это значит, что расширялись и сами квантовые флуктуации, причём до размеров, возможно, в 101012 раз превышающих начальный. Те из них, которые существовали в момент прекращения инфляции, остались «раздутыми» и таким образом оказались первыми тяготеющими неоднородностями во Вселенной. Получается, что у материи было порядка 400 млн. лет на гравитационное сжатие вокруг этих неоднородностей и образование газовых туманностей. А далее начался процесс возникновения звёзд и превращения туманностей в галактики.

Звёздная эволюция в астрономии — последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло. В течение таких колоссальных промежутков времени изменения оказываются весьма значительными.

Звезда начинает свою жизнь как холодное разрежённое облако межзвёздного газа, сжимающееся под действием собственного тяготения и постепенно принимающее форму шара. При сжатии энергия гравитации переходит в тепло, и температура объекта возрастает. Когда температура в центре достигает 15—20 миллионов К, начинаются термоядерные реакции и сжатие прекращается. Объект становится полноценной звездой. Первая стадия жизни звезды подобна солнечной — в ней доминируют реакции водородного цикла. В таком состоянии она пребывает большую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга — Расселла, пока не закончатся запасы топлива в её ядре. Когда в центре звезды весь водород превращается в гелий, образуется гелиевое ядро, а термоядерное горение водорода продолжается на периферии ядра.

В этот период структура звезды начинает меняться. Её светимость растёт, внешние слои расширяются, а температура поверхности снижается — звезда становится красным гигантом, которые образуют ветвь на диаграмме Герцшпрунга-Рассела. На этой ветви звезда проводит значительно меньше времени, чем на главной последовательности. Когда накопленная масса гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; если звезда достаточно массивна, возрастающая при этом температура может вызвать дальнейшее термоядерное превращение гелия в более тяжёлые элементы (гелий — в углерод, углерод — в кислород, кислород — в кремний, и наконец — кремний в железо).

Большой взрыв (англ. Big Bang) — общепринятая космологическая модель, описывающая раннее развитие Вселенной, а именно — начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии.

Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление о холодной начальной Вселенной вблизи Большого взрыва. Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованием реликтового излучения, и рассматривается далее.

Современные представления теории Большого взрыва и теории горячей Вселенной

По современным представлениям, наблюдаемая нами сейчас Вселенная возникла 13,77 ± 0,059 млрд лет назад из некоторого начального «сингулярного» состояния и с тех пор непрерывно расширяется и охлаждается. Согласно известным ограничениям по применимости современных физических теорий, наиболее ранним моментом, допускающим описание, считается момент Планковской эпохи с температурой примерно 1032 К (Планковская температура) и плотностью около 1093 г/см³ (Планковская плотность). Ранняя Вселенная представляла собой высокооднородную и изотропную среду с необычайно высокой плотностью энергии, температурой и давлением. В результате расширения и охлаждения во Вселенной произошли фазовые переходы, аналогичные конденсации жидкости из газа, но применительно к элементарным частицам.

Приблизительно через 10−35 секунд после наступления Планковской эпохи (Планковское время — 10−43 секунд после Большого взрыва, в это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий) фазовый переход вызвал экспоненциальное расширение Вселенной. Данный период получил название Космической инфляции. После окончания этого периода строительный материал Вселенной представлял собой кварк-глюонную плазму. По прошествии некоторого времени температура упала до значений, при которых стал возможен следующий фазовый переход, называемый бариогенезисом. На этом этапе кварки и глюоны объединились в барионы, такие как протоны и нейтроны. При этом одновременно происходило асимметричное образование как материи, которая превалировала, так и антиматерии, которые взаимно аннигилировали, превращаясь в излучение.

Дальнейшее падение температуры привело к следующему фазовому переходу — образованию физических сил и элементарных частиц в их современной форме. После чего наступила эпоха нуклеосинтеза, при которой протоны, объединяясь с нейтронами, образовали ядра дейтерия, гелия-4 и ещё нескольких лёгких изотопов. После дальнейшего падения температуры и расширения Вселенной наступил следующий переходный момент, при котором гравитация стала доминирующей силой. Через 380 тысяч лет после Большого взрыва температура снизилась настолько, что стало возможным существование атомов водорода (до этого процессы ионизации и рекомбинации протонов с электронами находились в равновесии).

После эры рекомбинации материя стала прозрачной для излучения, которое, свободно распространяясь в пространстве, дошло до нас в виде реликтового излучения.

Проблема начальной сингулярности

Экстраполяция наблюдаемого расширения Вселенной назад во времени приводит, при использовании общей теории относительности и некоторых других альтернативных теорий гравитации, к бесконечной плотности и температуре в конечный момент времени в прошлом. Размеры Вселенной тогда равнялись нулю — она была сжата в точку. Это состояние называется космологической сингулярностью (многие учёные полушутя-полусерьёзно называют космологическую сингулярность «рождением» Вселенной).

Невозможность избежать сингулярности в космологических моделях общей теории относительности была доказана, в числе прочих теорем о сингулярностях, Р. Пенроузом и С. Хокингом в конце 1960-х годов.

Теория Большого взрыва не даёт никакой возможности говорить о чём-либо, что предшествовало этому моменту (потому что наша математическая модель пространства-времени в момент Большого взрыва теряет применимость, при этом теория вовсе не отрицает возможность существования чего-либо до Большого взрыва). Это сигнализирует о недостаточности описания Вселенной классической общей теорией относительности.

Насколько близко к сингулярности можно экстраполировать известную физику, является предметом научных дебатов, но практически общепринято, что допланковскую эпоху рассматривать известными методами нельзя. Проблема существования сингулярности в данной теории является одним из стимулов построения квантовой и других альтернативных теорий гравитации, которые стараются разрешить эту проблему.

Существует несколько гипотез о возникновении видимой Вселенной:

· Теория А. Линде о том, что Вселенная бесконечна и заполнена очень плотной энергией, а наша видимая часть возникла расширением (инфляцией) небольшой части в «пузырёк» (как возникают пузырьки в плотном сыре)

· Теория Ли Смолина о том, что Вселенные возникают от взрыва «сингулярности» внутри чёрных дыр

· Теория Нейла Турока о рождении Вселенных в результате столкновения «бран» (многомерных мембран в теории струн)

Дальнейшая эволюция Вселенной

Согласно теории Большого взрыва, дальнейшая эволюция зависит от экспериментально измеримого параметра — средней плотности вещества в современной Вселенной. Если плотность не превосходит некоторого (известного из теории) критического значения, Вселенная будет расширяться вечно, если же плотность больше критической, то процесс расширения когда-нибудь остановится и начнётся обратная фаза сжатия, возвращающая к исходному сингулярному состоянию. Современные экспериментальные данные относительно величины средней плотности ещё недостаточно надёжны, чтобы сделать однозначный выбор между двумя вариантами будущего Вселенной.

Есть ряд вопросов, на которые теория Большого взрыва ответить пока не может, однако основные её положения обоснованы надёжными экспериментальными данными, а современный уровень теоретической физики позволяет вполне достоверно описать эволюцию такой системы во времени, за исключением самого начального этапа — порядка сотой доли секунды от «начала мира». Для теории важно, что эта неопределённость на начальном этапе фактически оказывается несущественной, поскольку образующееся после прохождения данного этапа состояние Вселенной и его последующую эволюцию можно описать вполне достоверно.

Эдвин Пауэлл Хаббл (англ. Edwin Powell Hubble, 20 ноября 1889, Маршфилд, штат Миссури — 28 сентября 1953, Сан-Марино, штат Калифорния) — один из наиболее влиятельных астрономов и космологов в XX веке, внесший решающий вклад в понимание структуры космоса. В 1914—1917 годах работал в Йеркской обсерватории, с 1919 года — в обсерватории Маунт-Вилсон. Член Национальной академии наук в Вашингтоне с 1927 года.

Основательно изменил понимание Вселенной, подтвердив существование других галактик, а не только нашей (Млечный Путь). Также рассматривал идею о том, что величина эффекта Доплера (в данном случае называемом «Красное смещение»), наблюдаемого в световом спектре удалённых галактик, возрастает пропорционально расстоянию до той или иной галактики от Земли. Эта пропорциональная зависимость стала известна как Закон Хаббла (на два года ранее это же открытие сделал бельгийский учёный Жорж Леметр). Интерпретация Красного смещения как Доплеровского эффекта была ранее предложена американским астрономом Весто Слайфером, чьими данными пользовался Эдвин Хаббл. Однако Эдвин Хаббл всё же сомневался в интерпретации этих данных, что привело к созданию теории Метрического расширения пространства (Metric expansion of space, Расширение Вселенной), состоящего в почти однородном и изотропном расширении космического пространства в масштабах всей Вселенной.

Основные труды Эдвина Хаббла посвящены изучению галактик. В 1922 году предложил подразделить наблюдаемые туманности на внегалактические (галактики) и галактические (газо-пылевые). В 1924—1926 годах обнаружил на фотографиях некоторых ближайших галактик звёзды, из которых они состоят, чем доказал, что они представляют собой звёздные системы, подобные нашей Галактике (Млечный Путь). В 1929 году обнаружил зависимость между красным смещением галактик и расстоянием до них (Закон Хаббла). В 1935 году открыл астероид № 1373, названный им «Цинциннати» (1373 Цинциннати).

В честь Хаббла назван астероид № 2069, открытый в 1955 году (2069 Хаббл), а также знаменитый космический телескоп «Хаббл», выведенный на орбиту в 1990 году.

Источник: studopedia.ru

При написании данной странички была также использована информация с сайтов:

1. Википедия. Адрес доступа: http://ru.wikipedia.org/wiki/

2. Сайт "Astronet". Адрес доступа: http://www.astronet.ru/db/msg/1225526

Источник: ukhtoma.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.