Максимальная скорость галактики


Тела Вселенной не стоят на месте. Они двигаются и изменяются. Скорости их движения, порой, превосходят наше воображение. Не скоро человечество сумеет их превзойти в технологическом плане. Давайте посмотрим детальнее.

1. Солнечная система

Мы с вами не ощущаем и не особо замечаем передвижение по небу космических объектов. Где-то на подсознании всплывает информация о движении Земли и Луны, других планет. Но даже само Солнце не стоит на месте.

Начнем с родной планеты. Она обращается вокруг своей оси за сутки, а также движется по орбите вокруг родительской звезды.


Земля мчится вокруг Солнца на огромной скорости

Вокруг оси Земля движется со скоростью 1670 км/час на экваторе, т.е. скорость сравнима с реактивным самолетом. А мы этого даже не замечаем.

Но это мелочи. Например, вокруг Солнца Земля летит уже со скоростью 108 тыс. км/час. Самый быстрый летательный аппарат пока не умеет так мчаться.

Также, мы прекрасно понимаем, что и Луна не стоит на одном месте. В частности, скорость ее движения около нашей планеты равняется 3700 км/час.

Говоря о планетах солнечной системы отметим, что чем дальше они от звезды, тем медленнее передвигаются. Поэтому приведем характеристику Меркурия и Венеры, которые ближе к светилу.

Меркурий мчится вокруг Солнца на скорости в 173 тыс. км/час. Венера разгоняется до 126 тыс. км/час.

Ио близок к Юпитеру. Поэтому двигается быстро.

Планеты-гиганты имеют скорость пониже, но у них есть масса спутников. Например, самый вулкано-активный сателлит солнечной системы Ио (родная планета — Юпитер) летит на 64 тыс. км/час.


2. Солнце

Наша звезда, хоть и кажется стоящей на одном месте, двигается как вокруг своей оси, так и по галактике. Приведем цифры.

Так, на экваторе Солнце вращается вокруг оси со скоростью около 7,3 тыс. км/час. В других областях – медленнее.

Известно, что на нем происходят вспышки. Максимальная скорость зарегистрированного выброса вещества с поверхности светила составила 2300 км/сек, т.е. около 8,3 млн. км/час.

В Млечном Пути масса быстрых звезд

Млечный Путь не стоит бездвижно. Звезды в нем обращаются вокруг центра. Так, наше Солнце за 230 млн. лет делает один оборот вокруг галактики. Следовательно, для этого необходима скорость около 830 тыс. км/час.

3. Звезды


Обычно, скорость движения звезд сопоставима с солнечной. Чем ближе к центру галактики, тем она выше, и наоборот. Величина эта разнится в 2-4 раза в ту или иную сторону.

Но даже среди небесных светил имеются свои рекордсмены. Так, в гало Млечного Пути обнаружены солнца, скорость которых составляет около 3-5 млн. км/час. Следовательно, они покинут нашу галактику.

Скорость некоторых светил позволяет им покинуть родную галактику

Интересны и нейтронные звезды. Они могут оборачиваться вокруг оси 1000 раз в секунду. Представьте себе Москву, которая за 1 секунду делает 1000 поворотов. Удивительно.

4. Галактики

Наблюдение за галактиками позволяет определить скорости их перемещения в космическом пространстве. Так, наша галактика, Андромеда и Треугольник летят на 2,3 млн. км/час.

Двигатель не меньшей скорости понадобиться вам для того, чтобы ее покинуть.


Далекие галактики убегают от нас на сверхсветовой скорости

Говоря о других звездных домах, их убегание от нас зависит от удаленности. Чем они дальше, тем скорость выше. И, что самое занимательное, предела тут нет. Объекты на границе наблюдения (около 13-13,5 млрд. св. лет) уже превысили скорость света. Мы, видимо, их так напугали, что они не посчитали предельными 300 тыс. км/сек.

И, что самое главное, никакие законы физики не нарушены. Это расширяется пространство под действием темной энергии. А оно может себе позволить это делать с любым ускорением.

Что ж, даже движение родной планеты превосходит мощность любых человеческих двигателей. Что тут говорить о звездах и галактиках…

Спасибо за внимание. Не забывайте ПОДПИСАТЬСЯ. Вам не сложно, а мне – повод писать еще.

Источник: zen.yandex.ru


Вы сидите, стоите или лежите, читая эту статью, и не ощущаете, что Земля вращается вокруг своей оси с бешеной скоростью — примерно 1 700 км/ч на экваторе. Однако скорость вращения не кажется такой уж быстрой, если перевести ее в км/с. Получится 0,5 км/с — едва заметная вспышка на радаре, в сравнении с другими окружающими нас скоростями.

Так же, как и другие планеты Солнечной системы, Земля вращается вокруг Солнца. И чтобы удерживаться на своей орбите, она двигается со скоростью 30 км/с. Венера и Меркурий, находящиеся ближе к Солнцу, двигаются быстрее, Марс, орбита которого проходит за орбитой Земли, движется намного медленнее нее.

Движение планет солнечной системы по орбитам

Но даже Солнце не стоит на одном месте. Наша галактика Млечный Путь — огромная, массивная и тоже подвижная! Все звезды, планеты, газовые облака, частицы пыли, черные дыры, темная материя — все это движется относительно общего центра масс.

По предположениям ученых, Солнце находится на расстоянии 25 000 световых лет от центра нашей галактики и двигается по эллиптической орбите, совершая полный оборот каждые 220–250 млн лет. Получается, что скорость Солнца — около 200–220 км/с, что в сотни раз выше скорости движения Земли вокруг оси и в десятки раз выше скорости ее движения вокруг Солнца. Вот так выглядит движение нашей Солнечной системы.


Движение Солнечной системы во Вселенной

Стационарна ли галактика? Снова нет. Гигантские космические объекты обладают большой массой, а следовательно, создают сильные гравитационные поля. Дайте Вселенной немного времени (а оно у нас было — примерно 13,8 миллиардов лет), и все начнет двигаться в направлении наибольшего притяжения. Вот почему Вселенная не однородна, а представляет собой галактики и группы галактик.

Что это означает для нас?

Это означает, что Млечный Путь тянут к себе другие галактики и группы галактик, расположенные поблизости. Это означает, что доминируют в этом процессе массивные объекты. И это означает, что не только наша галактика, но и все окружающие испытывают влияние этих «тягачей». Мы все ближе подходим к пониманию того, что происходит с нами в космическом пространстве, но нам все еще не хватает фактов, например:

  • каковы были начальные условия, при которых зародилась Вселенная;
  • как различные массы в галактике двигаются и изменяются со временем;
  • как образовывался Млечный Путь и окружающие галактики и скопления;
  • и как это происходит сейчас.

Однако есть трюк, который поможет нам разобраться.

Вселенную наполняет реликтовое излучение с температурой 2,725 К, которое сохранилось со времен Большого Взрыва. Кое-где есть крошечные отклонения — около 100 мкК, но общий температурный фон постоянен.

Это происходит потому, что Вселенная образовалась в результате Большого Взрыва 13,8 миллиардов лет назад и до сих пор расширяется и охлаждается.


Эпохи эволюции Вселенной

Через 380 000 лет после Большого Взрыва Вселенная охладилась до такой температуры, что стало возможным образование атомов водорода. До этого фотоны постоянно взаимодействовали с остальными частицами плазмы: сталкивались с ними и обменивались энергией. По мере остывания Вселенной заряженных частиц стало меньше, а пространства между ними — больше. Фотоны смогли свободно перемещаться в пространстве. Реликтовое излучение — это фотоны, которые были излучены плазмой в сторону будущего расположения Земли, но избежали рассеяния, так как рекомбинация уже началась. Они достигают Землю сквозь пространство Вселенной, которая продолжает расширяться.

Томсоновское рассеяние, реликтовое излучение

Вы сами можете «увидеть» это излучение. Помехи, которые возникают на пустом канале телевизора, если вы используете простую антенну, похожую на заячьи уши, на 1% вызваны реликтовым излучением.


И все-таки температура реликтового фона не одинакова во всех направлениях. По результатам исследований миссии Planck, температура несколько различается в противоположных полушариях небесной сферы: она немного выше на участках неба южнее эклиптики — около 2,728 K, и ниже в другой половине — около 2,722 K.

Карта реликтового излучения
Карта микроволнового фона, сделанная при помощи телескопа Planck.

Эта разница почти в 100 раз больше остальных наблюдаемых колебаний температуры реликтового фона, и это вводит в заблуждение. Почему так происходит? Ответ очевиден — эта разница происходит не из-за флуктуаций реликтового излучения, она появляется, потому что есть движение!

эффект Доплера

Когда вы приближаетесь к источнику света или он приближается к вам, спектральные линии в спектре источника смещаются в сторону коротких волн (фиолетовое смещение), когда отдаляетесь от него или он от вас — спектральные линии смещаются в сторону длинных волн (красное смещение).


Реликтовое излучение не может быть более или менее энергичным, значит, мы движемся сквозь пространство. Эффект Доплера помогает определить, что наша Солнечная система движется относительно реликтового излучения со скоростью 368 ± 2 км/с, а местная группа галактик, включающая Млечный Путь, галактику Андромеды и галактику Треугольника, движется со скоростью 627 ± 22 км/с относительно реликтового излучения. Это так называемые пекулярные скорости галактик, которые составляют несколько сотен км/с. Помимо них существуют еще космологические скорости, обусловленные расширением Вселенной и рассчитываемые по закону Хаббла.

Благодаря остаточному излучению от Большого Взрыва мы можем наблюдать, что во Вселенной постоянно все движется и изменяется. И наша галактика — лишь часть этого процесса.

(via)

Источник: Lifehacker.ru

Первая космическая скорость

Максимальная скорость галактики

Первая космическая скорость или Круговая скорость V1 — скорость, которую необходимо придать объекту без двигателя, пренебрегая сопротивлением атмосферы и вращением планеты, чтобы вывести его на круговую орбиту с радиусом, равным радиусу планеты.

Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.

Формула


Максимальная скорость галактики

где   G — гравитационная постоянная (6,67259·10−11 м³·кг−1·с−2), — первая космическая скорость. Подставляя численные значения (для Земли M = 5,97·1024 кг, R = 6 378 км), найдем

7,9 км/с

Первую космическую скорость можно определить через ускорение свободного падения —

Максимальная скорость галактики

Вторая космическая скорость

Вторая космическая скорость (параболическая скорость, скорость убегания) — наименьшая скорость, которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала относительно массы небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела.

Предполагается, что после приобретения телом этой скорости оно не получает негравитационного ускорения (двигатель выключен, атмосфера отсутствует).

Максимальная скорость галактики

Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой:

  • для Земли вторая космическая скорость равна 11,2 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца.
  • для Солнца вторая космическая скорость составляет 617,7 км/с.
  • для Луны скорость убегания равна 2,4 км/с, несмотря на то, что в действительности для удаления тела на бесконечность с поверхности Луны необходимо преодолеть притяжение Земли, Солнца и Галактики.

Параболической вторая космическая скорость называется потому, что тела, имеющие вторую космическую скорость, движутся по параболе.

Формула

Для получения формулы второй космической скорости удобно обратить задачу — спросить, какую скорость получит тело на поверхности планеты, если будет падать на неё из бесконечности. Очевидно, что это именно та скорость, которую надо придать телу на поверхности планеты, чтобы вывести его за пределы её гравитационного влияния .

Максимальная скорость галактики

Третья космическая скорость

Третья космическая скорость минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение Солнца и в результате уйти за пределы Солнечной системы.

Максимальная скорость галактики

Только на космических кораблях, которым доступны такие скорости, принципиально могут быть осуществлены пилотируемые межзвёздные перелёты к планетным системам других звёзд.

Взлетая с поверхности Земли и наилучшим образом используя орбитальное движение планеты космический аппарат может достичь третей космической скорости уже при 16,6 км/с относительно Земли, а при старте с Земли в самом неблагоприятном направлении его необходимо разогнать до 72,8 км/с.

Здесь для расчёта предполагается, что космический аппарат приобретает эту скорость сразу на поверхности Земли и после этого не получает негравитационного ускорения (двигатели выключены и сопротивление атмосферы отсутствует).  Если к тому же учесть притяжение других планет, которое может как ускорить, так и притормозить аппарат, то диапазон возможных значений 3-й космической скорости станет еще больше.

При наиболее энергетически выгодном старте скорость объекта должна быть сонаправлена скорости орбитального движения Земли вокруг Солнца. Орбита такого аппарата в Солнечной системе представляет собой параболу.

Четвёртая и пятая космическая скорости

Четвёртая космическая скорость — минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение галактики Млечный Путь. Она используется довольно редко.

Максимальная скорость галактики

Четвёртая космическая скорость не постоянна для всех точек Галактики, а зависит от расстояния до центральной массы.

Для нашей галактики таковой является объект Стрелец A*, сверхмассивная чёрная дыра.

По грубым предварительным расчётам в районе нашего Солнца четвёртая космическая скорость составляет около 550 км/с. Значение сильно зависит не только (и не столько) от расстояния до центра галактики, а от распределения масс вещества по Галактике, о которых пока нет точных данных, ввиду того что видимая материя составляет лишь малую часть общей гравитирующей массы, а все остальное — скрытая масса.

Ещё реже в некоторых источниках встречается понятие «пятая космическая скорость». Это скорость, позволяющая добраться до иной планеты звездной системы вне зависимости от разности плоскостей эклиптики планет. Например, для Солнечной системы и, конкретно, для Земли, чтобы орбита межпланетного перелета была перпендикулярной к земной орбите, нужна скорость запуска 43,6 километра в секунду.

Видео



Источник: asteropa.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.