Темная материя фото


В вопросах, касающихся природы и свойств темной материи, астрономы до сих пор находятся на начальном этапе изучения, в первую очередь, потому что реальность ее существования до сих пор не доказана.

Теория о существовании этой субстанции была выдвинута более 40 лет назад в качестве объяснения несоответствия между массой всех видимых объектов в галактике с массой самой галактики. Астроном Вера Рубин, которая впервые обнаружила несоответствие, определила, что эта невидимая субстанция крайне распространена, и из нее состоит большая часть Вселенной. Сегодня мы знаем эту субстанцию как темную материю.

Вера Рубин. Фото: Carnegie Institution for Science / carnegiescience.edu

Хотя у астрономов есть по меньшей мере три доказательства того, что темная материя существует, ни одна из попыток обнаружить прямое доказательство ее существования и определить ее свойства успехом не увенчалась.


Однако работа ученых из Йельского университета во главе с Питером ван Доккумом, опубликованная в журнале Nature в марте 2018 года, как никогда раньше приблизила ученых к обнаружению еще одного доказательства существования этой субстанции.

Что астрономам известно о темной материи?

Темная материя — субстанция, которая не взаимодействует с другими материями с помощью электромагнитных (EM) или сильных ядерных сил. Отсутствие электромагнитных взаимодействий означает, что она не может испускать, поглощать, отражать, преломлять или рассеивать свет. Это, естественно, делает ее довольно сложным предметом для наблюдений. Тем не менее, около 85% всего вещества во Вселенной представляет собой темную материю.

Пока у ученых нет ни одного практического доказательства того, что темная материя действительно существует, но есть теоретические. Вот три главных.

Галактические кривые вращения

Когда один объект вращается вокруг другого, объект на орбите должен постоянно ускоряться к центральному (или, точнее, они оба ускоряются к их объединенному центру масс). Без этого ускорения орбитальное тело просто улетит.


Чем быстрее движется орбитальное тело, тем большее ускорение требуется, чтобы удержать его на орбите. Поскольку в этом случае ускорение происходит из-за силы тяжести, это означает, что центральная масса должна быть больше.

Это знание позволяет ученым «взвешивать» разные части галактики, а также измерять скорости вращения, сравнивая красные смещения на приближающейся и удаляющейся сторонах галактики. При взвешивании астрономы видят несоответствие между массой всех объектов в галактике и ее общей массой.


Красное смещение — сдвиг спектральных линий химических элементов в красную (длинноволновую) сторону. Это явление может быть выражением слабого диффузного рассеяния, эффекта Доплера или гравитационного красного смещения, или их комбинацией. Впервые сдвиг спектральных линий в спектрах небесных тел описал французский физик Ипполит Физо в 1848 году и предложил для объяснения сдвига эффект Доплера, вызванный лучевой скоростью звезды.


Гравитационное линзирование

Согласно общей теории относительности, всякий раз, когда свет проходит через гравитационное поле, он слегка искажается. Это действует как гравитационная линза и может производить, например, «кольца Эйнштейна», как на изображении ниже.


Общая теория относительности Эйнштейна гласит, что гравитация столь крупных космических объектов, как галактики, искривляет пространство вокруг себя и отклоняет лучи света. При этом возникает искаженное изображение другой галактики — источника света.

«Кольцо Эйнштейна» на изображении выше — это искаженное изображение одной галактики (она подсвечена синим), расположенной за другой (красной) галактикой в ​​центре. Свет от синей распространяется во всех направлениях, но изгибается гравитацией красной галактики. Это означает, что свет, который, например, был изначально направлен прямо на Землю, никогда не достигнет нашей планеты — в отличие от света, который имел другое направление, но исказился линзой и исходит как будто из всех направлений сразу. Этот процесс объясняет появление кольца.

В слабых гравитационных линзах статистический анализ искажений в свете, который мы получаем, позволяет «заметить» гравитационное поле между Землей и далекими галактиками. Часто в этом поле оказывается больше массы — соответственно, и больше материи, — чем ученые могут объяснить.

Пример гравитационного линзирования, которое с точки зрения существующей теории доказывает наличие темной материи, — фотография скопления галактик Пуля, расположенного в созвездии Киля.


На снимке изображены последствия столкновения двух галактик. Красным на изображении показаны области видимой материи, синим — темная материя, наличие которой определено гравитационным линзированием.

Столь отчетливое разделение объясняется тем, что большая часть светящегося вещества в скоплении галактик находится во внутрикластерной среде — в горячей, плотной плазме. Когда части плазмы сталкиваются друг с другом, значительное количество вещества замедляется и остается в центре. Но темная материя слабо взаимодействует с веществом, поэтому ее компоненты из двух кластеров могут свободно проходить друг через друга — это приводит к изображенному на фотографии разделению.

Реликтовое излучение

В течение первых нескольких сотен тысяч лет после Большого взрыва Вселенная была достаточно горячей, чтобы сильно ионизироваться. Это на время делало ее почти непрозрачной для света — фотоны вращались, как и любая другая частица. Однако, когда все достаточно охладилось, значительные количества протонов и электронов объединились в нейтральный водород, который стал достаточно прозрачен для большей части окружающего его света. Это процесс произошел довольно быстро (с точки зрения космологического времени) — в результате весь свет, содержащийся во Вселенной, условно говоря, внезапно был выпущен наружу, сделав снимок на том этапе ее эволюции. Так упрощенно можно описать реликтовое излучение.


Чтобы зафиксировать этот свет, ученые могут направить радиотелескопы в любом направлении — и в зависимости от области наблюдений температура будет незначительно меняться. Разница в температуре объясняется наличием или отсутствием темной материи в этой области.

Что необычного нашли в первой галактике?

DF2 — галактика, которая входит в большую группу во главе с массивной эллиптической галактикой NGC 1052. Галактика привлекла внимание ученых тем, что она выглядела по-разному на фотографиях, сделанных аппаратами Dragonfly и Sloan Digital Sky Survey (SDSS). На первом галактика представляла собой пятно слабого света, тогда как на втором — группу точечных объектов.

На основе этих наблюдений ученые во главе с Питером ван Доккумом определили десять шаровых скоплений (большие группы старых звезд) внутри галактики и обнаружили, что они движутся в три раза медленнее, чем при наличии большого количества темной материи. Дело в том, что если бы масса была галактики была больше массы видимых объектов, скопления вращались быстрее.


Научное сообщество оценило публикацию критически — в качестве ошибки исследователей называлось то, что они наблюдали лишь за десятью скоплениями и только в течение двух ночей. Скептики посчитали, что ученые могли упустить из виду ключевые детали движения звездных скоплений, и это в результате исказило их оценку массы галактики и ее видимой материи.

А во второй?

Единственным способом доказать правильность своих наблюдений стал поиск второй галактики, в которой содержалось бы минимальное количество темной материи — и в марте 2019 года такая галактика была обнаружена.

Исследователи опубликовали две научные статьи — в первой они повторно измерили массу DF2 с помощью усовершенствованной камеры «Хаббла» и десятиметрового телескопа обсерватории Кека на Гавайях. На этот раз астрономы наблюдали не только за скоростью движения скоплений, но и за скоростью вращения звезд внутри них. В результате ученые установили, что DF2 является прозрачной ультрадиффузной галактикой, размер которой примерно соответствует Млечному пути. Только звезд в ней оказалось примерно в 200 раз меньше.

Вторая статья была посвящена открытию подобной DF2 галактики — DF4, которая находится в том же скоплении рядом с галактикой NGC 1052. Исследователи полагают, что, во-первых, галактики с минимальным количеством темной материи — не редкость, и, во-вторых, что крупная галактика могла «украсть» темную материю у своих более мелких соседей.


Как отсутствие темной материи может служить доказательством ее наличия?

Для понимания утверждения, что отсутствие темной материи в двух галактиках подтверждает ее наличие во Вселенной в соответствии с Общей теорией относительности, стоит рассмотреть критику идеи о наличии темной материи.

Часть ученых не согласна с тем, что во Вселенной существует темная материя, а теоретические свидетельства ее наличия приписывают так называемой модифицированной ньютоновской динамике (MOND). Эта альтернативная теория гласит, что гравитация в космических масштабах работает не так, как предсказали Исаак Ньютон или Альберт Эйнштейн. Это значит, что Общая теория относительности, на которой строятся теории о существовании темной материи, в случае с галактиками не работает.

Например, физик-теоретик Эрик Верлинде из Амстердамского университета в 2016 году опубликовал научную статью, в которой рассмотрел гравитацию как побочный продукт квантовых взаимодействий и предположил, что дополнительная гравитация, приписываемая темной материи, является эффектом темной энергии — фоновой энергии, вплетенной в ткань пространства-времени Вселенной.

Другими словами, Верлинде считает, что темная материя — не материя, а лишь взаимодействие между обычной материей и темной энергией.


Открытие ученых из Йельского университета демонстрирует, что темная материя может быть отделена от обычной — при условии, что обе обнаруженные галактики ведут себя в соответствии со стандартной теорией гравитации. То есть происходящие в них процессы можно объяснить с помощью уравнений, открытых Ньютоном и Кеплером.

Какие остались вопросы

Открытие астрономов, если его удастся окончательно подтвердить в ходе будущих наблюдений, бросает вызов существующей теории о формировании галактик. В частности, речь идет о предположении, что более крупная NGC 1052 могла «украсть» темную материю у DF2 и DF4. Если это действительно возможно при условии сохранения упорядоченности, которая наблюдается в обеих наблюдаемых галактиках, то астрономам придется полностью пересмотреть механизм формирования и существования их.

«Мы надеемся выяснить, насколько распространены эти галактики и существуют ли они в других областях Вселенной. Хотим найти больше доказательств, которые помогут нам понять, как их свойства согласуются или не согласуются с нашими нынешними теориями. Мы надеемся, что это позволит сделать еще один шаг в понимании одной из самых больших загадок в нашей вселенной — природы темной материи», — рассказал Доккум в разговоре с Astronomy.

Источник: hightech.fm


Темная материя фото

“В реальной Вселенной есть особенность, которую мы просто не учитываем в наших нынешних теоретических моделях”, – говорится в заявлении Приямвады Натараджана, астрофизика-теоретика из Йельского университета и соавтора нового исследования.


Это может сигнализировать о пробеле в нашем нынешнем понимании природы тёмной материи и её свойств, поскольку новые данные позволили нам исследовать детальное распределение тёмной материи в мельчайших масштабах.

Учёные, стоящие за новым исследованием, хотели проверить, как нынешние теоретические модели для тёмной материи сочетаются с имеющимися наблюдениями. Поэтому они решили исследовать скопления галактик, которые скрывают огромное количество тёмной материи.

“Скопления галактик – идеальные лаборатории, позволяющие понять, верны ли наши компьютерные модели Вселенной”, – говорит Массимо Менегетти, космолог из Национального института астрофизики в Италии и ведущий автор нового исследования.

Исследователи использовали наблюдения трёх различных скоплений галактик, собранные двумя инструментами, космическим телескопом “Хаббл” и Очень большим телескопом в Чили. Учёные нанесли на карту местоположение тёмной материи в кластерах, заметив, как она искажает свет.

Среди крупномасштабных искажений, которые ожидали обнаружить астрономы, они также заметили меньшие области искривления, которые, как они подозревают, отмечают местоположения отдельных небольших скоплений тёмной материи.

Но когда исследователи объединили свою карту тёмной материи с предсказаниями модели о том, как тёмная материя может выглядеть в скоплениях галактик, эти два ландшафта не совпали. Это означает, что учёные до сих пор не до конца понимают, как ведёт себя тёмная материя.

Исследование описано в статье, опубликованной сегодня 11 сентября в журнале Science.

Источник: universetoday.ru

Игорь Сокальский,
кандидат физико-математических наук
«Химия и жизнь» №11, 2006

Невидимые действующие лица и их предполагаемые исполнители

В предыдущих статьях цикла мы рассмотрели устройство видимой Вселенной. Поговорили о ее структуре и частицах, которые формируют эту структуру. О нуклонах, играющих главную роль, поскольку именно из них состоит всё видимое вещество. О фотонах, электронах, нейтрино, а также о второстепенных актерах, занятых во вселенском спектакле, что разворачивается 14 миллиардов лет, прошедших с момента Большого взрыва. Казалось бы, рассказывать больше не о чем. Но это не так. Дело в том, что видимое нами вещество — лишь малая часть того, из чего состоит наш мир. Все остальное — нечто, о чем мы почти ничего не знаем. Это загадочное «нечто» получило название темной материи.

Если бы тени предметов зависели не от величины сих последних,
а имели бы свой произвольный рост, то, может быть,
вскоре не осталось бы на всем земном шаре ни одного светлого места.

Козьма Прутков

Что будет с нашим миром?

После открытия в 1929 году Эдвардом Хабблом красного смещения в спектрах удаленных галактик стало ясно, что Вселенная расширяется. Одним из вопросов, возникших в этой связи, был следующий: как долго будет продолжаться расширение и чем оно закончится? Силы гравитационного притяжения, действующие между отдельными частями Вселенной, стремятся затормозить разбегание этих частей. К чему торможение приведет — зависит от суммарной массы Вселенной. Если она достаточно велика, силы тяготения постепенно остановят расширение и оно сменится сжатием. В результате Вселенная в конце концов опять «схлопнется» в точку, из которой когда-то начала расширяться. Если же масса меньше некоторой критической массы, то расширение будет продолжаться вечно. Обычно принято говорить не о массе, а о плотности, которая связана с массой простым соотношением, известным из школьного курса: плотность есть масса, деленная на объем.

Расчетное значение критической средней плотности Вселенной примерно 10–29 граммов на кубический сантиметр, что соответствует в среднем пяти нуклонам на кубический метр. Следует подчеркнуть, что речь идет именно о средней плотности. Характерная концентрация нуклонов в воде, земле и в нас с вами составляет около 1030 на кубический метр. Однако в пустоте, разделяющей скопления галактик и занимающей львиную долю объема Вселенной, плотность на десятки порядков ниже. Значение концентрации нуклонов, усредненное по всему объему Вселенной, десятки и сотни раз измеряли, тщательно подсчитывая разными методами количества звезд и газопылевых облаков. Результаты таких измерений несколько различаются, но качественный вывод неизменен: значение плотности Вселенной едва дотягивает до нескольких процентов от критической.

Поэтому вплоть до 70-х годов XX столетия общепринятым был прогноз о вечном расширении нашего мира, которое неизбежно должно привести к так называемой тепловой смерти. Тепловая смерть — это такое состояние системы, когда вещество в ней распределено равномерно и разные ее части имеют одну и ту же температуру. Как следствие, невозможна ни передача энергии от одной части системы к другой, ни перераспределение вещества. В такой системе ничего не происходит и никогда уже не сможет произойти. Наглядной аналогией служит вода, разлитая по какой-либо поверхности. Если поверхность неровная и есть хотя бы небольшие перепады высот, вода перемещается по ней с более высоких мест на более низкие и в конце концов собирается в низинах, образуя лужи. Движение прекращается. Оставалось утешаться только тем, что тепловая смерть наступит через десятки и сотни миллиардов лет. Следовательно, еще очень-очень долго об этой мрачной перспективе можно не задумываться.

Однако постепенно стало ясно, что истинная масса Вселенной намного больше видимой массы, заключенной в звездах и газопылевых облаках и, скорее всего, близка к критической. А возможно, в точности равна ей.

Свидетельства существования темной материи

Первое указание на то, что с подсчетом массы Вселенной что-то не так, появилось в середине 30-х годов XX века. Швейцарский астроном Фриц Цвикки измерил скорости, с которыми галактики скопления Волосы Вероники (а это одно из самых больших известных нам скоплений, оно включает в себя тысячи галактик) движутся вокруг общего центра. Результат получился обескураживающим: скорости галактик оказались гораздо больше, чем можно было ожидать, исходя из наблюдаемой суммарной массы скопления. Это означало, что истинная масса скопления Волосы Вероники гораздо больше видимой. Но основное количество материи, присутствующей в этой области Вселенной, остается по каким-то причинам невидимой и недоступной для прямых наблюдений, проявляя себя только гравитационно, то есть только как масса.

О наличии скрытой массы в скоплениях галактик свидетельствуют также эксперименты по так называемому гравитационному линзированию. Объяснение этого явления следует из теории относительности. В соответствии с ней, любая масса деформирует пространство и подобно линзе искажает прямолинейный ход лучей света. Искажение, которое вызывает скопление галактик, столь велико, что его легко заметить. В частности, по искажению изображения галактики, которая лежит за скоплением, можно рассчитать распределение вещества в скоплении-линзе и измерить тем самым его полную массу. И оказывается, что она всегда во много раз больше, нежели вклад видимого вещества скопления.

Через 40 лет после работ Цвикки, в 70-е годы, американский астроном Вера Рубин изучала скорости вращения вокруг галактического центра вещества, расположенного на периферии галактик. В соответствии с законами Кеплера (а они напрямую следуют из закона всемирного тяготения), при движении от центра галактики к ее периферии скорость вращения галактических объектов должна убывать обратно пропорционально квадратному корню из расстояния до центра. Измерения же показали, что для многих галактик эта скорость остается почти постоянной на весьма значительном удалении от центра. Эти результаты можно истолковать только одним способом: плотность вещества в таких галактиках не убывает при движении от центра, а остается почти неизменной. Поскольку плотность видимого вещества (содержащегося в звездах и межзвездном газе) быстро падает к периферии галактики, недостающую плотность должно обеспечивать нечто, чего мы по каким-то причинам увидеть не можем. Для количественного объяснения наблюдаемых зависимостей скорости вращения от расстояния до центра галактик требуется, чтобы этого невидимого «чего-то» было примерно в 10 раз больше, чем обычного видимого вещества. Это «нечто» получило название «темная материя» (по-английски «dark matter») и до сих пор остается самой интригующей загадкой в астрофизике.

Еще одно важное свидетельство присутствия темной материи в нашем мире приходит из расчетов, моделирующих процесс формирования галактик, который начался примерно через 300 тысяч лет после начала Большого взрыва. Эти расчеты показывают, что силы гравитационного притяжения, которые действовали между разлетающимися осколками возникшей при взрыве материи, не могли скомпенсировать кинетической энергии разлета. Вещество просто не должно было собраться в галактики, которые мы тем не менее наблюдаем в современную эпоху. Эта проблема получила название галактического парадокса, и долгое время ее считали серьезным аргументом против теории Большого взрыва. Однако если предположить, что частицы обычного вещества в ранней Вселенной были перемешаны с частицами невидимой темной материи, то в расчетах всё становится на свои места и концы начинают сходиться с концами — формирование галактик из звезд, а затем скоплений из галактик становится возможным. При этом, как показывают вычисления, сначала в галактики скучивалось огромное количество частиц темной материи и только потом, за счет сил тяготения, на них собирались элементы обычного вещества, общая масса которого составляла лишь несколько процентов от полной массы Вселенной. Получается, что знакомый и, казалось бы, изученный до деталей видимый мир, который мы совсем недавно считали почти понятым, — только небольшая добавка к чему-то, из чего в действительности состоит Вселенная. Планеты, звезды, галактики да и мы с вами — всего лишь ширма для громадного «нечто», о котором мы не имеем ни малейшего представления.

Наконец, общая теория относительности однозначно связывает темп расширения Вселенной со средней плотностью вещества, заключенного в ней. В предположении о том, что средняя кривизна пространства равна нулю, то есть в нем действует геометрия Эвклида, а не Лобачевского (что надежно проверено, например, в экспериментах с реликтовым излучением), эта плотность должна быть равна 10–29 граммам на кубический сантиметр. Плотность же видимого вещества примерно в 20 раз меньше. Недостающие 95% от массы Вселенной и есть темная материя. Обратите внимание, что измеренное из скорости расширения Вселенной значение плотности равно критическому. Два значения, независимо вычисленные совершенно разными способами, совпали! Если в действительности плотность Вселенной в точности равна критической, это не может быть случайным совпадением, а представляет собой следствие какого-то фундаментального свойства нашего мира, которое еще предстоит понять и осмыслить.

Что это?

Что же мы знаем сегодня о темной материи, составляющей 95% массы Вселенной? Почти ничего. Но что-то всё же знаем. Прежде всего, нет никаких сомнений в том, что темная материя существует — об этом неопровержимо свидетельствуют факты, приведенные выше. А еще нам доподлинно известно, что темная материя существует в нескольких формах. После того как к началу XXI века в результате многолетних наблюдений в экспериментах SuperKamiokande (Япония) и SNO (Канада) было установлено, что у нейтрино масса есть, стало ясно, что от 0,3% до 3% из 95% скрытой массы заключается в давно знакомых нам нейтрино — пусть масса их чрезвычайно мала, но количество во Вселенной примерно в миллиард раз превышает количество нуклонов: в каждом кубическом сантиметре содержится в среднем 300 нейтрино. Оставшиеся 92–95% состоят из двух частей — темной материи и темной энергии. Незначительную долю темной материи составляет обычное барионное вещество, построенное из нуклонов, за остаток отвечают, по-видимому, какие-то неизвестные массивные слабовзаимодействующие частицы (так называемая холодная темная материя). Баланс энергий в современной Вселенной представлен в таблице, а рассказ о ее трех последних графах — ниже.

Барионная темная материя

Небольшая (4–5%) часть темной материи — это обычное вещество, которое не испускает или почти не испускает собственного излучения и поэтому невидимо. Существование нескольких классов таких объектов можно считать экспериментально подтвержденным. Сложнейшие эксперименты, основанные всё на том же гравитационном линзировании, привели к открытию так называемых массивных компактных галообъектов, то есть расположенных на периферии галактических дисков. Для этого потребовалось следить за миллионами удаленных галактик в течение нескольких лет. Когда темное массивное тело проходит между наблюдателем и далекой галактикой, ее яркость на короткое время уменьшается (или увеличивается, поскольку темное тело выступает в роли гравитационной линзы). В результате кропотливых поисков такие события были выявлены. Природа массивных компактных галообъектов ясна не до конца. Скорее всего, это либо остывшие звезды (коричневые карлики), либо планетоподобные объекты, не связанные со звездами и путешествующие по галактике сами по себе. Еще один представитель барионной темной материи — недавно обнаруженный в галактических скоплениях методами рентгеновской астрономии горячий газ, который не светится в видимом диапазоне.

Небарионная темная материя

В качестве главных кандидатов на небарионную темную материю выступают так называемые WIMP (сокращение от английского Weakly Interactive Massive Particles — слабовзаимодействующие массивные частицы). Особенность WIMP состоит в том, что они почти никак не проявляют себя во взаимодействии с обычным веществом. Именно поэтому они и есть самая настоящая невидимая темная материя, и именно поэтому их чрезвычайно сложно обнаружить. Масса WIMP должна быть как минимум в десятки раз больше массы протона. Поиски WIMP ведутся во многих экспериментах в течение последних 20–30 лет, но, несмотря на все усилия, они до сих пор обнаружены не были.

Одна из идей состоит в том, что если такие частицы существуют, то Земля в своем движении вместе с Солнцем по орбите вокруг центра Галактики должна лететь сквозь дождь, состоящий из WIMP. Несмотря на то что WIMP представляет собой чрезвычайно слабо взаимодействующую частицу, какая-то очень малая вероятность провзаимодействовать с обычным атомом у нее всё же есть. При этом в специальных установках — очень сложных и дорогостоящих — может быть зарегистрирован сигнал. Количество таких сигналов должно меняться в течение года, поскольку, двигаясь по орбите вокруг Солнца, Земля меняет свою скорость и направление движения относительно ветра, состоящего из WIMP. Экспериментальная группа DAMA, работающая в итальянской подземной лаборатории Гран-Сассо, сообщает о наблюдаемых годичных вариациях скорости счета сигналов. Однако другие группы пока не подтверждают этих результатов, и вопрос, по существу, остается открытым.

Другой метод поиска WIMP основан на предположении о том, что в течение миллиардов лет своего существования различные астрономические объекты (Земля, Солнце, центр нашей Галактики) должны захватывать WIMP, которые накапливаются в центре этих объектов, и, аннигилируя друг с другом, рождать поток нейтрино. Попытки детектирования избыточного нейтринного потока из центра Земли в направлении к Солнцу и к центру Галактики были предприняты на подземных и подводных нейтринных детекторах MACRO, LVD (лаборатория Гран-Сассо), NT-200 (озеро Байкал, Россия), SuperKamiokande, AMANDA (станция Скотт-Амундсен, Южный полюс), но пока не привели к положительному результату.

Эксперименты по поиску WIMP активно проводят также на ускорителях элементарных частиц. В соответствии со знаменитым уравнением Эйнштейна Е=mс2, энергия эквивалентна массе. Следовательно, ускорив частицу (например, протон) до очень высокой энергии и столкнув ее с другой частицей, можно ожидать рождения пар других частиц и античастиц (в том числе WIMP), суммарная масса которых равна суммарной энергии сталкивающихся частиц. Но и ускорительные эксперименты пока не привели к положительному результату.

Темная энергия

В начале прошлого века Альберт Эйнштейн, желая обеспечить космологической модели в общей теории относительности независимость от времени, ввел в уравнения теории так называемую космологическую постоянную, которую обозначил греческой буквой «лямбда» — Λ. Эта Λ была чисто формальной константой, в которой сам Эйнштейн не видел никакого физического смысла. После того как было открыто расширение Вселенной, надобность в ней отпала. Эйнштейн очень жалел о своей поспешности и называл космологическую постоянную Λ своей самой большой научной ошибкой. Однако спустя десятилетия выяснилось, что постоянная Хаббла, которая определяет темп расширения Вселенной, меняется со временем, причем ее зависимость от времени можно объяснить, подбирая величину той самой «ошибочной» эйнштейновской постоянной Λ, которая вносит вклад в скрытую плотность Вселенной. Эту часть скрытой массы и стали называть «темная энергия».

О темной энергии можно сказать еще меньше, чем о темной материи. Во-первых, она равномерно распределена по Вселенной, в отличие от обычного вещества и других форм темной материи. В галактиках и скоплениях галактик ее столько же, сколько вне их. Во-вторых, она обладает несколькими весьма странными свойствами, понять которые можно, лишь анализируя уравнения теории относительности и интерпретируя их решения. Например, темная энергия испытывает антигравитацию: за счет ее присутствия темп расширения Вселенной растет. Темная энергия как бы расталкивает саму себя, ускоряя при этом и разбегание обычной материи, собранной в галактиках. А еще темная энергия обладает отрицательным давлением, благодаря которому в веществе возникает сила, препятствующая его растяжению.

Главный кандидат на роль темной энергии — вакуум. Плотность энергии вакуума не изменяется при расширении Вселенной, что и соответствует отрицательному давлению. Еще один кандидат — гипотетическое сверхслабое поле, получившее название квинтэссенция. Надежды на прояснение природы темной энергии связывают прежде всего с новыми астрономическими наблюдениями. Продвижение в этом направлении, несомненно, принесет человечеству радикально новые знания, поскольку в любом случае темная энергия должна представлять собой совершенно необычную субстанцию, абсолютно непохожую на то, с чем имела дело физика до сих пор.

Итак, наш мир на 95% состоит из чего-то, о чем мы почти ничего не знаем. Можно по-разному относиться к такому не подлежащему никакому сомнению факту. Он может вызывать тревогу, которая всегда сопутствует встрече с чем-то неизвестным. Или огорчение, оттого что такой долгий и сложный путь построения физической теории, описывающей свойства нашего мира, привел к констатации: большая часть Вселенной скрыта от нас и неизвестна нам.

Но большинство физиков сейчас испытывают воодушевление. Опыт показывает, что все загадки, которые ставила перед человечеством природа, рано или поздно разрешались. Несомненно, разрешится и загадка темной материи. И это наверняка принесет совершенно новые знания и понятия, о которых мы пока не имеем никакого представления. И возможно, мы встретимся с новыми загадками, которые, в свою очередь, также будут разгаданы. Но это будет совсем другая история, которую читатели «Химии и жизни» смогут прочесть не раньше, чем через несколько лет. А может быть, и через несколько десятилетий.

Источник: elementy.ru

В начале XX века человечество обнаружило, что Вселенная огромна. До этого момента галактика Млечный путь и была всей Вселенной, о которой знал человек. С развитием телескопов обнаружилось, что в космосе более ста миллиардов галактик, в каждой из которых сто миллиардов звезд! Как всегда случается в науке, новое открытие принесло еще больше новых вопросов.

В ходе изучения новых галактик обнаружилось, что звезды, близкие к центрам галактик, движутся также быстро, как и звезды, находящиеся у самых краев. Это было неожиданно, так как, обладая столь большой скоростью, звезды и звездные системы должны были бы разлететься в разные стороны, и галактики потеряли бы большую часть своих звезд. Но, почему-то, галактики — стабильны.

Ученые исследовали галактику за галактикой, а результат оставался неизменным: при такой скорости внешних звезд эти образования могут оставаться стабильными только в одном случае — если допустить наличие очень большой невидимой массы. Расчеты показали, что масса этой невидимой материи должна быть настолько велика, что видимое вещество должно составлять лишь 10% от массы всей галактики!

Предполагалось, что эта гипотетическая материя пронизывает все вокруг, но не с чем не реагирует. И только гравитационное взаимодействие связывает эту материю с видимым веществом во Вселенной.

Поначалу, эта теория была воспринята в штыки. Но накапливающиеся факты говорили об одном: невидимое вещество должно существовать! Эту незримую материю назвали — темной. Но как наблюдать то, что незримо?

Ученые придумали способ регистрации этой неуловимой субстанции. Идея была такова: нужно было найти то, что покажет наличие или отсутствие большой массы в каком-то районе космоса. И это что-то было найдено: свет! Да: свет реагирует на присутствие массивных тел, ведь пространство рядом с ними искривляется. Астрономы начали мониторить далекие галактики. Этот метод получил название — метод гравитационного линзирования.

Метод сработал идеально: появлялась целая карта присутствия рядом с галактиками темной материи! Оказалось, что все видимое вещество вместе взятое составляет всего лишь около 4% всего вещества Вселенной! 22% приходится на темную материю. А остальные 74% — это темная энергия, о которой поговорим в следующих статьях.

Удивительно, не правда ли?! Все, что мы видим вокруг, и лишь недавно научились видеть в телескопы — лишь мизерная часть огромной Вселенной!

Сегодня ученые пришли к выводу, что темная материя необходима для образования галактик. Темная материя — это каркас, скелет Вселенной. Ведь, что мы видим, когда включаем новогоднюю гирлянду в темноте? Лишь свет лампочек. Сама основная масса — то, что питает и держит, скрыта от наших глаз.

То же самое — свет фар автомобилей. Саму машину ночью мы не видим, зато видим фары.

Посмотрите теперь на фото ниже. Это галактика.

Вещество, обладая огромными скоростями, после большого взрыва не смогло бы сгруппироваться в столь массивные объекты, как галактики, не будь темной материи. Она, обладая огромной массой, выполняет роль якоря или стержня, к которому во Вселенной "прилеплялось" вещество, образуя галактики. Именно этот каркас и сегодня не дает им распадаться.

На сегодняшний день попытки зарегистрировать темную материю не увенчались успехом. Но то, что нечто массивное и невидимое существует в галактиках, не вызывает сомнений.

P. S. Читайте! Подписывайтесь!

Источник: zen.yandex.ru

Невидимая темная материя и темная энергия

Но, если мы чего-то не видим, как доказать, что оно существует? И с чего мы решили, что темная материя и темная энергия — это нечто реальное?

Масса крупных объектов вычисляется по их пространственному перемещению. В 50-х годах исследователи, рассматривавшие галактики спирального типа, предполагали, что приближенный к центру материал будет двигаться намного быстрее удаленного. Но выяснилось, что звезды перемещались с одинаковой скоростью, а значит, было намного больше массы, чем думали ранее. Изученный газ в эллиптических типах показал те же результаты. Напрашивался один и тот же вывод: если ориентироваться только на видимую массу, то галактические скопления давно бы разрушились.

Альберт Эйнштейн смог доказать, что крупные вселенские объекты способны изгибать и искажать световые лучи. Это позволило использовать их как естественную увеличительную линзу. Исследуя этот процесс, ученым удалось создать карту темной материи.

Получается, что большая часть нашего мира представлена все еще неуловимым веществом. Вы узнаете больше интересного о темной материи, если посмотрите видео.

Если говорить о материи, то темная безусловно лидирует по процентному соотношению. Но в целом она занимает лишь четверть всего. Вселенная же изобилует темной энергией.

Изучение темной материи

С момента Большого Взрыва пространство запустило процесс расширения, что продолжается и сегодня. Исследователи полагали, что в итоге начальная энергия закончится и она замедлит свой ход. Но далекие сверхновые демонстрируют, что пространство не останавливается, а набирает скорость. Все это возможно только в том случае, если количество энергии настолько огромное, что преодолевает гравитационное влияние.

Разъяснение загадки

Мы знаем, что Вселенная, по большей части, представлена темной энергией. Это загадочная сила, которая приводит к тому, что пространство увеличивает скорость расширения Вселенной. Еще одним таинственным компонентом выступает темная материя, поддерживающая контакт с объектами только при помощи гравитации.

Ученые не могут разглядеть темную материю в прямом наблюдении, но эффекты доступны для изучения. Им удается уловить свет, изогнутый гравитационной силой невидимых объектов (гравитационное линзирование). Также замечают моменты, когда звезда совершает обороты вокруг галактики намного быстрее, чем должна.

Все это объясняется наличием огромного количества неуловимого вещества, воздействующего на массу и скорость. На самом деле, это вещество покрыто тайнами. Получается, что исследователи скорее могут сказать не, что перед ними, а чем «оно» не является.

Темная материя… темная. Она не производит свет и не наблюдается в прямой обзор. Следовательно, исключаем звезды и планеты.

Она не выступает облаком обычной материи (такие частички называют барионами). Если бы барионы присутствовали в темной материи, то она проявилась бы в прямом наблюдении.

Исключаем также черные дыры, потому что они выступают гравитационными линзами, излучающими свет. Ученые не наблюдают достаточного количества событий линзирования, чтобы вычислить объем темной материи, которая должна присутствовать.

Хотя Вселенная – огромнейшее место, но началось все с наименьших структур. Полагают, что темная материя приступила к конденсации, чтобы создать «строительные блоки» с нормальной материей, произведя первые галактики и скопления.

Чтобы отыскать темную материю, ученые применяют различные методы:

  • Большой адронный коллайдер.
  • инструменты, вроде WNAP и космическая обсерватория Планка.
  • эксперименты прямого обзора: ArDM, CDMS, Zeplin, XENON, WARP и ArDM.
  • косвенное обнаружение: детекторы гамма-лучей (Ферми), нейтринные телескопы (IceCube), детекторы антивещества (PAMELA), рентгеновские и радиодатчики.

Углубляемся в тайну

Еще ни раз ученые не смогли в буквальном смысле увидеть темную материю, потому что она не контактирует с барионной, а значит, остается неуловимой для света и прочих разновидностей электромагнитного излучения. Но исследователи уверены в ее присутствии, так как наблюдают за воздействием на галактики и скопления.

Стандартная физика говорит, что звезды, расположенные на краях галактики спирального типа, должны замедлять скорость. Но выходит так, что появляются звезды, чья скорость не подчиняется принципу расположения по отношению к центру. Это можно объяснить лишь тем, что звезды ощущают влияние от невидимой темной материи в ореоле вокруг галактики.

Наличие темной материи также способно расшифровать некоторые иллюзии, наблюдаемые во вселенских глубинах. Например, присутствие в галактиках странных колец и световых дуг. То есть, свет от отдаленных галактик проходит сквозь искажение и усиливается невидимым слоем темной материи (гравитационное линзирование).

Пока у нас есть несколько идей о том, что собою представляет темная материя. Главная мысль – это экзотические частицы, не контактирующие с обычной материей и светом, но имеющие власть в гравитационном смысле. Сейчас несколько групп (одни используют Большой адронный коллайдер) работают над созданием частиц темной материи, чтобы изучить их в лабораторных условиях.

Другие думают, что влияние можно объяснить фундаментальной модификацией гравитационной теории. Тогда получаем несколько форм гравитации, что существенно отличается от привычной картины и установленных физикой законов.

Расширяющаяся Вселенная и темная энергия

Ситуация с темной энергией еще более запутанная и само открытие в 1990-х годах стало непредсказуемым. Физики всегда думали, что сила притяжения работает на замедление и однажды может приостановить процесс вселенского расширения. За измерение скорости взялось сразу две команды и обе, к своему удивлению, выявили ускорение. Это словно вы подбрасываете яблоко в воздух и знаете, что оно обязано упасть вниз, а оно удаляется от вас все дальше.

Стало ясно, что на ускорение влияет некая сила. Более того, кажется, чем шире Вселенная, тем больше «власти» получает эта сила. Ученые решили обозначить ее темной энергией.

Темная материя фото

Если темную материю можно хоть как-то объяснить, то по поводу темной энергии нет вообще ничего. Некоторые правда полагают, что это пятая фундаментальная сила – квинтэссенция.

Однако, известные свойства темной энергии согласуются с космологической константой, созданной Альбертом Эйнштейном в общей теории относительности. Константа выступает отталкивающей силой, противодействующей гравитации и удерживающей пространство от разрушения. Позже Эйнштейн отказался от нее, потому что наблюдения выявили процесс расширения Вселенной (она рассчитывалась для статичной).

Но, если сейчас добавить темную энергию в качестве константы для ускорения расширения Вселенной, то может объяснить этот процесс. Но все это так и не дает понимания того, почему эта странная сила вообще существует.

Источник: v-kosmose.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.