Телескоп фотографии


Телескоп фотографииДумаю у любого человека, интересующегося космосом — возникала идея купить телескоп, чтобы лично все посмотреть.

Однако суровая реальность вечно портит всю малину: в пределах города – все небо засвечено уличным освещением и турбулентность воздуха высокая. Это означает, что либо придется ограничится самыми крупными и яркими объектами (вроде Луны и Юпитера), либо возить телескоп далеко за город.

Возможное решение проблемы — удаленно-управляемые телескопы большого размера и расположенные в горах. Конечно, возможность видеть все своими глазами это не заменит — но астрофотографии полученные таким образом будет трудно превзойти. Именно на этом способе я и хочу остановиться в этой статье.

Пример того, что получилось: галактика Андромеда, M31 на телескопе Т20
Телескоп фотографии


Когда у меня возникло желание купить телескоп — я решил вспомнить золотое правило: перед покупкой дорогой игрушки – всегда полезно её арендовать, быть может интерес удастся удовлетворить ценой намного меньшего гемора и затрат. Я поискал платные сервисы удаленного доступа к телескопам – и нашел iTelescope.net. Есть и бесплатные – но там очень большие очереди, а нам ведь подавай все здесь и сейчас :–)

У iTelescope – 19 телескопов с удаленным доступом, установленные на площадках в Австралии, Испании и США. Все они расположены вдали от городов, в горах. Самый маленький телескоп, куда пускают вообще бесплатно (T3) – диаметром 150мм, с учетом его расположения уже превосходит все, что можно увидеть в городских условиях. Более крутые телескопы – имеют диаметр зеркала до 70 сантиметров с огромными охлаждаемыми цифровыми матрицами и кучей светофильтров (ИК, RGB, узкополосные для исследований).

Цена вопроса – с бесплатным аккаунтом нам дают 40 «очков» и доступ к самому простому телескопу, и за 5$ (я платил картой mastercard yandex.денег) — еще +30 очков и доступ к «большим» телескопам. Время работы на самом большом доступном телескопе стоит 99 очков в час – считается только время экспонирования. Т.е. если вы снимаете галактику, и делаете 3 снимка по 10 минут (R+G+B) – то с вас спишут 50 очков. Снимки планет и других ярких объектов с короткой выдержкой – обойдутся в результате в 1 очко на любом телескопе (меньше 1 потратить нельзя). Таким образом за эти 5$ можно сделать пару хороших снимков галактик/туманностей из глубокого космоса и/или кучку фотографий планет. Покупка дополнительных очков обойдется гораздо дороже – порядка 1$ за 1 очко. Но начальных 70 для удовлетворения интереса вполне может хватить.


На большинстве телескопов стоит огромная (по площади) охлаждаемая черно-белая матрица, и колесо со светофильтрами. Это позволяет использовать необычные фильтры (например узкополосные) или снимать черно-белое изображение чтобы собрать больше света. Потому цветные снимки приходится делать в несколько экспозиций. Можно делать 1 экспозицию яркости по-больше (Luminosity), и 3 по-меньше для цвета (RGB/RVB).

Нужно также обратить внимание на тип матрицы (указано в описании телескопа) — есть ABG (Anti-blooming gate) и NABG (not ABG). На NABG матрицах при длинных экспозициях яркие звезды будут увеличиваться в площади (в вертикальные линии), но они могут быть более полезными в научных целях (т.к. они более линейные). Также NABG матрицы имеют несколько бОльшую чувствительность. На мой взгляд, если мы преследуем эстетические цели и нужно максимальное качество картинки — лучше использовать телескопы с ABG матрицей.

Телескопы весьма неторопливы — на поворот и фокусировку может уйди до 5 минут на 1 снимок, так что снять МКС может быть затруднительно 🙂

После логина на сайте вы попадете в панель управления:
Телескоп фотографии


Там видно свободные и занятые телескопы. Кликнув на надпись «available» рядом с нужным телескопом – можно залогиниться в конкретный телескоп. Далее жмем на Run Image Series, в Target Name пишем название объекта который будем фотографировать (например Jupiter, m33, m31 и т.д.) и жмем Get Coordinates. Если объект в базе найдется – сразу будут координаты. В базе нет луны – чтобы её сфотографировать, понадобится знать её точные координаты на момент съемки. Узнать их можно в Stellarium (там нужные координаты в левом верхнем углу “RA/DE"). При желании можно посмотреть и текущий скриншот управляющего компьютера.

Телескоп фотографии

Затем идет список снимков, которые нужно сделать и их настройки:

Фильтры:

R,G,B Цветные
V То же, что и G
I Инфракрасный
Luminosity Яркость (отрезан ИК и УФ)
Clear Прозрачный (возможно снижение четкости из-за усиления хроматических аберраций)
Ha H-alpha. Узкополсный фильтр линии возбужденного водорода. Используется чтобы более контрастно видеть детали в галактиках и туманностях.
Oiii Линия дважды ионизированного кислорода. Позволяет увидеть детали в диффузных и планетарных туманностях.
Sii Линия ионизированной серы. Позволяет увидеть детали в туманностях.

Если достаточно черно–белого снимка – лучше снимать Luminosity или Clear – тогда будет использован максимум света. В противном случае – делать 3-4 снимка RGB или LRGB. Duration – время съемки в секундах. Для объектов глубокого космоса (галактик, туманностей и проч) – чем больше, тем лучше. Оптимальные результаты – 300–600 секунд.

Применение узкополосных фильтров требуют увеличения экспозиции в 10-15 раз.

Планеты – требуют очень коротких выдержек, в 0.1–0.01 секунды + можно использовать узкополосные фильтры (Ha, Sii, Oiii). С экономической точки зрения использовать маленькие телескопы (150–200мм) с большими выдержками невыгодно – проще протиснуться на большой телескоп (500мм) и за меньшее время сделать более яркую фотографию. Последнее – все эти телескопы в целом заточены под сбор максимального количества света, а не высокую угловую разрешающую способность. Нужно при сравнении телескопов обращать внимание на параметр «Resolution» — сколько угловых секунд в каждом пикселе, какой угловой размер кадра (FOV) – помещается ли туда то, что мы хотим сфотографировать, или наоборот, не слишком ли маленький получится объект.

При выборе объекта для съемки – смотрите на звездную величину. Если это галактика 15–й звездной величины – то даже самому крутому наземному телескопу придется тяжко. Я бы рекомендовал начать со каталога Мессье, выбирая там объекты 7–й звездной величины и ярче.


Если нужный телескоп на данный момент занят – там же в интерфейсе можно создать план съемки, и запланировать съемку в автоматическом режиме (не позднее, чем за 4 часа до назначенного времени).

Результаты съемки – складываются на FTP (data.itelescope.net). По умолчанию фотографии сохраняются в формате FIT, с 16-и битной глубиной яркости. FIT — содержит не только само изображение, но и подробную информацию о параметрах съемки. Сохраняются 2 версии — напрямую данные с матрицы и Calibrated версия. Calibrated — уже прошла основные шаги обработки (вычитание темного кадра, коррекция разной чувствительности ячеек), обычно проще использовать её.

Далее изображения нужно будет конвертировать из формата FIT в TIFF с помощью программы FITS Liberator:
Телескоп фотографии

Телескоп фотографииЗатем — можно сразу в фотошоп, или склеить отдельные RGB кадры в единую цветную картинку (для этого нужен CCDStack или DeepSkyStacker). Ссылки на эти и другие полезные программы тут.

Совместить несколько снимков в CCDStack можно так: Открываем все картинки, Stack–>Register, двигаем настройки пока все кадры не совпадут. Потом Color–>Create, указываем в какая картинка является каким цветом — и готово :–)

При обработке яркости фотографий туманностей и галактик кривыми в редакторе — рекомендую попробовать что-то вроде графика справа (по каждому каналу отдельно).


Надеюсь этот затянувшийся пост либо позволит вам удовлетворить ваш космо–интерес малой кровью, или понять, что вам действительно нужен свой телескоп :–)

Предлагаю делится своими лучшими получившимися астрофотографиями в комментариях, по возможности выкладывать архивы с оригинальными файлами — на случай если у кого-то удасться обработать лучше.

Галактика Треугольника, М33. 4 снимка LGB+Ha, 5+3+3+15 минут на T7.
Телескоп фотографии

Луна (0.1 сек с фильтром Ha на Т16 – 150мм):
Телескоп фотографии

Юпитер Телескоп Т7 – 430мм. Видны также спутники Юпитера и даже тень от Ио на планете.
Телескоп фотографии

Кстати, касательно других планет — я посмотрел графики расстояний до планет с целью получения наилучших фотографий, и кратчайшее расстояние от земли до планет получаются в следующее время:

Mars: closest 1st of April 2014. Особенно это важно для Марса — сейчас там ничего не разглядеть, разница расстояний в ~4 раза.
Jupiter: 1st of January 2014
Saturn: 1st of July 2014 — Сейчас он в стороне солнца — и ночью его не застать.
Uranus: Now
Neptune: 1st of August 2014
Pluto: 1st of June/July 2014 (Разница расстояний — 5%, слишком уж он далеко)


PS. На сайте стараются следить за тем, чтобы 1 человек не создавал несколько бесплатных/5$ аккаунтов. Мы тут конечно все умные, но давайте не будем злоупотреблять гостеприимством.

Источник: habr.com

Думаю у любого человека, интересующегося космосом — возникала идея купить телескоп, чтобы лично все посмотреть.

Однако суровая реальность вечно портит всю малину: в пределах города – все небо засвечено уличным освещением и турбулентность воздуха высокая. Это означает, что либо придется ограничится самыми крупными и яркими объектами (вроде Луны и Юпитера), либо возить телескоп далеко за город.

Возможное решение проблемы — удаленно-управляемые телескопы большого размера и расположенные в горах. Конечно, возможность видеть все своими глазами это не заменит — но астрофотографии полученные таким образом будет трудно превзойти. Именно на этом способе я и хочу остановиться в этой статье.

Пример того, что получилось: галактика Андромеда, M31 на телескопе Т20
Телескоп фотографии

Когда у меня возникло желание купить телескоп — я решил вспомнить золотое правило: перед покупкой дорогой игрушки – всегда полезно её арендовать, быть может интерес удастся удовлетворить ценой намного меньшего гемора и затрат. Я поискал платные сервисы удаленного доступа к телескопам – и нашел iTelescope.net. Есть и бесплатные – но там очень большие очереди, а нам ведь подавай все здесь и сейчас :–)


У iTelescope – 19 телескопов с удаленным доступом, установленные на площадках в Австралии, Испании и США. Все они расположены вдали от городов, в горах. Самый маленький телескоп, куда пускают вообще бесплатно (T3) – диаметром 150мм, с учетом его расположения уже превосходит все, что можно увидеть в городских условиях. Более крутые телескопы – имеют диаметр зеркала до 70 сантиметров с огромными охлаждаемыми цифровыми матрицами и кучей светофильтров (ИК, RGB, узкополосные для исследований).

Цена вопроса – с бесплатным аккаунтом нам дают 40 «очков» и доступ к самому простому телескопу, и за 5$ (я платил картой mastercard yandex.денег) — еще +30 очков и доступ к «большим» телескопам. Время работы на самом большом доступном телескопе стоит 99 очков в час – считается только время экспонирования. Т.е. если вы снимаете галактику, и делаете 3 снимка по 10 минут (R+G+B) – то с вас спишут 50 очков. Снимки планет и других ярких объектов с короткой выдержкой – обойдутся в результате в 1 очко на любом телескопе (меньше 1 потратить нельзя). Таким образом за эти 5$ можно сделать пару хороших снимков галактик/туманностей из глубокого космоса и/или кучку фотографий планет. Покупка дополнительных очков обойдется гораздо дороже – порядка 1$ за 1 очко. Но начальных 70 для удовлетворения интереса вполне может хватить.


На большинстве телескопов стоит огромная (по площади) охлаждаемая черно-белая матрица, и колесо со светофильтрами. Это позволяет использовать необычные фильтры (например узкополосные) или снимать черно-белое изображение чтобы собрать больше света. Потому цветные снимки приходится делать в несколько экспозиций. Можно делать 1 экспозицию яркости по-больше (Luminosity), и 3 по-меньше для цвета (RGB/RVB).

Нужно также обратить внимание на тип матрицы (указано в описании телескопа) — есть ABG (Anti-blooming gate) и NABG (not ABG). На NABG матрицах при длинных экспозициях яркие звезды будут увеличиваться в площади (в вертикальные линии), но они могут быть более полезными в научных целях (т.к. они более линейные). Также NABG матрицы имеют несколько бОльшую чувствительность. На мой взгляд, если мы преследуем эстетические цели и нужно максимальное качество картинки — лучше использовать телескопы с ABG матрицей.

Телескопы весьма неторопливы — на поворот и фокусировку может уйди до 5 минут на 1 снимок, так что снять МКС может быть затруднительно 🙂

После логина на сайте вы попадете в панель управления:
Телескоп фотографии

Там видно свободные и занятые телескопы. Кликнув на надпись «available» рядом с нужным телескопом – можно залогиниться в конкретный телескоп.
лее жмем на Run Image Series, в Target Name пишем название объекта который будем фотографировать (например Jupiter, m33, m31 и т.д.) и жмем Get Coordinates. Если объект в базе найдется – сразу будут координаты. В базе нет луны – чтобы её сфотографировать, понадобится знать её точные координаты на момент съемки. Узнать их можно в Stellarium (там нужные координаты в левом верхнем углу “RA/DE"). При желании можно посмотреть и текущий скриншот управляющего компьютера.

Телескоп фотографии

Затем идет список снимков, которые нужно сделать и их настройки:

Фильтры:

R,G,B Цветные
V То же, что и G
I Инфракрасный
Luminosity Яркость (отрезан ИК и УФ)
Clear Прозрачный (возможно снижение четкости из-за усиления хроматических аберраций)
Ha H-alpha. Узкополсный фильтр линии возбужденного водорода. Используется чтобы более контрастно видеть детали в галактиках и туманностях.
Oiii Линия дважды ионизированного кислорода. Позволяет увидеть детали в диффузных и планетарных туманностях.
Sii Линия ионизированной серы. Позволяет увидеть детали в туманностях.

Если достаточно черно–белого снимка – лучше снимать Luminosity или Clear – тогда будет использован максимум света. В противном случае – делать 3-4 снимка RGB или LRGB. Duration – время съемки в секундах. Для объектов глубокого космоса (галактик, туманностей и проч) – чем больше, тем лучше. Оптимальные результаты – 300–600 секунд.

Применение узкополосных фильтров требуют увеличения экспозиции в 10-15 раз.

Планеты – требуют очень коротких выдержек, в 0.1–0.01 секунды + можно использовать узкополосные фильтры (Ha, Sii, Oiii). С экономической точки зрения использовать маленькие телескопы (150–200мм) с большими выдержками невыгодно – проще протиснуться на большой телескоп (500мм) и за меньшее время сделать более яркую фотографию. Последнее – все эти телескопы в целом заточены под сбор максимального количества света, а не высокую угловую разрешающую способность. Нужно при сравнении телескопов обращать внимание на параметр «Resolution» — сколько угловых секунд в каждом пикселе, какой угловой размер кадра (FOV) – помещается ли туда то, что мы хотим сфотографировать, или наоборот, не слишком ли маленький получится объект.

При выборе объекта для съемки – смотрите на звездную величину. Если это галактика 15–й звездной величины – то даже самому крутому наземному телескопу придется тяжко. Я бы рекомендовал начать со каталога Мессье, выбирая там объекты 7–й звездной величины и ярче.

Если нужный телескоп на данный момент занят – там же в интерфейсе можно создать план съемки, и запланировать съемку в автоматическом режиме (не позднее, чем за 4 часа до назначенного времени).

Результаты съемки – складываются на FTP (data.itelescope.net). По умолчанию фотографии сохраняются в формате FIT, с 16-и битной глубиной яркости. FIT — содержит не только само изображение, но и подробную информацию о параметрах съемки. Сохраняются 2 версии — напрямую данные с матрицы и Calibrated версия. Calibrated — уже прошла основные шаги обработки (вычитание темного кадра, коррекция разной чувствительности ячеек), обычно проще использовать её.

Далее изображения нужно будет конвертировать из формата FIT в TIFF с помощью программы FITS Liberator:
Телескоп фотографии

Телескоп фотографииЗатем — можно сразу в фотошоп, или склеить отдельные RGB кадры в единую цветную картинку (для этого нужен CCDStack или DeepSkyStacker). Ссылки на эти и другие полезные программы тут.

Совместить несколько снимков в CCDStack можно так: Открываем все картинки, Stack–>Register, двигаем настройки пока все кадры не совпадут. Потом Color–>Create, указываем в какая картинка является каким цветом — и готово :–)

При обработке яркости фотографий туманностей и галактик кривыми в редакторе — рекомендую попробовать что-то вроде графика справа (по каждому каналу отдельно).

Надеюсь этот затянувшийся пост либо позволит вам удовлетворить ваш космо–интерес малой кровью, или понять, что вам действительно нужен свой телескоп :–)

Предлагаю делится своими лучшими получившимися астрофотографиями в комментариях, по возможности выкладывать архивы с оригинальными файлами — на случай если у кого-то удасться обработать лучше.

Галактика Треугольника, М33. 4 снимка LGB+Ha, 5+3+3+15 минут на T7.
Телескоп фотографии

Луна (0.1 сек с фильтром Ha на Т16 – 150мм):
Телескоп фотографии

Юпитер Телескоп Т7 – 430мм. Видны также спутники Юпитера и даже тень от Ио на планете.
Телескоп фотографии

Кстати, касательно других планет — я посмотрел графики расстояний до планет с целью получения наилучших фотографий, и кратчайшее расстояние от земли до планет получаются в следующее время:

Mars: closest 1st of April 2014. Особенно это важно для Марса — сейчас там ничего не разглядеть, разница расстояний в ~4 раза.
Jupiter: 1st of January 2014
Saturn: 1st of July 2014 — Сейчас он в стороне солнца — и ночью его не застать.
Uranus: Now
Neptune: 1st of August 2014
Pluto: 1st of June/July 2014 (Разница расстояний — 5%, слишком уж он далеко)

PS. На сайте стараются следить за тем, чтобы 1 человек не создавал несколько бесплатных/5$ аккаунтов. Мы тут конечно все умные, но давайте не будем злоупотреблять гостеприимством.

Источник: habr.com

Журнал BBC Sky at Night Magazine собрал 10 лучших космических снимков, полученных при помощи телескопа VLT (Очень Большой Телескоп), расположенного высоко в горах Чили.

Телескоп VLT (Very Large Telescope) — самая совершенная на сегодняшний день оптическая астрономическая обсерватория, способная работать с волнами разного диапазона — от ультрафиолетового до инфракрасного. Этот инструмент состоит из четырех Основных Телескопов с диаметром главного зеркала 8.2 м и четырех подвижных Вспомогательных с апертурой 1.8 м. Телескопы могут работать вместе, образуя гигантский интерферометр VLTI (The Very Large Telescope Interferometer), который позволяет специалистам делать в 25 раз более детальные снимки, чем с каждым из аппаратов по отдельности.

VLT установлен на горе Серро-Параналь в пустыне Атакама на севере Чили. С 1998 года он помогает астрономам получать фотографии невероятных красот Вселенной.

Представляем вашему вниманию 10 самых захватывающих снимков космоса, полученных VLT за последние 12 лет.

1. Туманность Ориона

Снимок от 12 июля 2016 года

Туманность Ориона

Туманность Ориона — одна из наиболее красивых и ярких туманностей на небе. Горячие молодые звезды подсвечивают окружающий их газ, а пылевые облака образуют интересные волокнистые структуры. Эта фотография сделана в инфракрасном диапазоне при помощи инструмента HAWK-I, что позволило заглянуть в самую глубь туманности Ориона.

2. Туманность Киля

Снимок получен 8 февраля 2012 года

Туманность Киля

Туманность Киля расположена на расстоянии 7500 световых лет от нас в рукаве Стрельца — одной из крупнейших спиральных ветвей нашей галактики Млечный Путь, и представляет собой огромное облако из пыли и газа. Это регион активного звездообразования, где старые светила умирают, а их вещество дает начало новому витку формирования звезд. Так как фотография была сделана в инфракрасном диапазоне, астрономам удалось заглянуть за “космическую вуаль туманности”, состоящую из пыли и газа, и увидеть молодые звезды.

3. Спиральные галактики NGC 799 и NGC 800

Изображение получено 12 августа 2013 года

Спиральная галактика NGC 799

При помощи VLT астрономы на одном снимке смогли запечатлеть сразу две галактики. Оба объекта — NGC 799 (внизу) и NGC 800 (вверху), находятся приблизительно в 300 миллионах световых лет от нас в созвездии Кита. Так как эти галактики расположены к земле “лицом”, у ученых появилась чудесная возможность сравнить эти объекты друг с другом и как следует их изучить. В ходе наблюдений выяснилось, что NGC 799 является спиральной галактикой с перемычкой из ярких звезд в центре, а NGC 800 — спиральной галактикой без перемычки, с большим количеством рукавов.

4. Система взаимодействующих галактик

Снимок сделан 9 декабря 2015 года

Система галактик NGC 5291

Перед нами система галактик в созвездии Центавр. Яркое овальное пятнышко чуть выше центра изображения — эллиптическая галактика NGC 5291, которая 360 миллионов лет назад столкнулась с другой галактикой. Из выброшенного после “космической аварии” вещества со временем сформировались карликовые галактики, одна из них — NGC 5291N, хорошо видна в правой части изображения.

5. Туманность Медуза

Снимок от 20 мая 2015 года

Туманность Медуза

Эта красочная туманность является планетарной, а это значит, что она появилась в результате активности “умирающей” звезды — тогда, когда красный гигант на закате своей жизни сбросил внешние слои в виде ионизирующего газа.

Туманность получила название “Медуза” из-за того, что ее волокна напоминают извивающихся змей, как у мифологической Медузы Горгоны на голове. Светящиеся волокна туманности состоят из областей красного свечения — это водород, и более слабого зеленоватого — это кислород.

6. Туманность Омега

Снимок получен 1 ноября 2010 года

Туманность Омега

Молодые голубые звезды и старые красные светила подсвечивают облака газа и пыли и создают призрачное сияние туманности Омега. Этот снимок — крупный план центрального региона туманности, размер которого составляет 15 световых лет. Космический объект находится на расстоянии 6000 световых лет от нас в созвездии Стрельца.

7. Галактика NGC 986

Фото сделано 1 февраля 2016 года

Галактика NGC 986

Пожалуй, галактика NGC 986 — это один из лучших примеров спиральной галактики с перемычкой. Расположена она в созвездии Печь на расстоянии около 56 миллионов лет от Солнца. Объект повернут к нам “лицом”, поэтому является очень удобным для изучения. NGC 986 имеет два широких рукава и огромную перемычку из звезд, пересекающую центр галактики. В перемычке также видны темные пылевые области, которые участвуют в рождении новых светил.

8. Галактика NGC 134

Фотография получена 9 ноября 2007 года

Галактика NGC 134

Спиральная галактика NGC 134 повернута к нам “ребром”, ее рукава усыпаны красными пятнышками — это горячие области, где происходит формирование новых звезд. Темные завитки — это пыль, эти участки достаточно плотные и блокируют видимый свет. Данный снимок был сделан в инфракрасном диапазоне, что позволило “посмотреть” сквозь пылевую завесу и увидеть NGC 134 во всей красе.

Галактика находится примерно в 60 миллионах световых лет от нас в созвездии Скульптора. Она охватывает область размером в 150 000 световых лет, что делает ее намного больше нашей галактики Млечный Путь (размер 100 000 световых лет).

9. Звезда VFTS 682 в Большом Магеллановом Облаке

Снимок получен 25 мая 2011 года

Звезда VFTS 682

Звезда VFTS 682, которая находится в центре этого фото — одна из самых массивных и самых мощных по светимости из известных звезд на сегодняшний день. Она расположена в галактике Большое Магелланово Облако на расстоянии около 164 000 световых лет от нашей системы.

Масса VFTS 682 составляет примерно 150 масс Солнца, а ее светимость в 3,2 миллиона раз превышает светимость нашей звезды. Температура поверхности VFTS 682 примерно 51926±2226 °C, в то время как температура поверхности Солнца — 5504°C.

10. Галактика NGC 1313

Снимок сделан 3 ноября 2006 года

Галактика NGC 1313

NGC 1313 — спиральная галактика с перемычкой в созвездии Сетка. В этой галактике звезды рождаются примерно в тысячу раз быстрее, чем в Млечном Пути. Некоторые ученые считают, что причина такого интенсивного звездообразования в том, что NGC 1313 когда-то столкнулась с другой галактикой. В результате “аварии” газовые облака в каждой из галактик начали сжиматься, при коллапсе молекулярные облака разделились на части, образуя все более и более мелкие сгустки, а фрагменты с массой меньше ~100 солнечных масс сформировали звезды.

NGC 1313 удалена от нас на расстояние в 15 миллионов световых лет.

Источник: severnymayak.ru

Вот уже более 25 лет легендарный телескоп Хаббл успешно путешествует по просторам космоса, передавая человечеству бесценные знания о самых отдаленных участках нашей Вселенной. 24 апреля 1990 года американский корабль Discovery доставил телескоп на околоземную орбиту, где он и находится до сих пор. За это время на Землю было передано более миллиона уникальных снимков отдаленных галактик и небесных тел.

Именно по фотографиям, сделанных Хабблом ученые смогли узнать примерный возраст Вселенной (13,7 млрд. лет), подтвердить теорию о существовании черных дыр, узнать, как зарождаются и умирают звезды и галактики. На работу телескопа было потрачено массу усилий и 6 миллиардов долларов, и все ради того, чтобы узнать хоть что-то новое о мирах вокруг нас.  Сейчас мы продемонстрируем вам наиболее известные фотографии Хаббла, которые полностью перевернули представление о расстояние и времени, о скорости и размерах. Приятного просмотра! 

Туманность Конская Голова

Ежегодно команда Хаббла публикует самую лучшую фотографию, сделанную телескопом, чтобы отпраздновать годовщину запуска 24 апреля. В этом году была продемонстрирована изумительная фотография туманности «Конская Голова», которая располагается в созвездии Ориона на расстоянии более 1500 световых лет от нашей планеты.

M16 или Столпы Творения

Это, пожалуй, самый известный снимок Хаббла и космоса в целом. Первая фотография была сделана телескопом в далеком 1995 году, второе изображение в более высоком качестве было опубликовано 1 января 2015 года. На снимке видны гигантские скопления межзвездного газа и пыли в туманности Орел. На самом деле взрыв, образовавший Столпы произошел примерно 6000 лет назад, а расстояние до самой туманности Орел составляет 7000 световых лет. Это означает, что фактически Столпы Творения уже не существуют, и их разрушение мы сможем наблюдать на Земле только через тысячу лет.

Туманность Кошачий глаз

Кошачий глаз имеет официальное название NGC 6543, и представляет собой уникальную планетарную туманность  в созвездии Дракона. Это одна из наиболее сложных по структуре туманностей. На снимке, сделанным Хабблом в 1994 году, можно наблюдать множество различных сплетений и ярких дугообразных элементов. В центре туманности находится огромное гало диаметром 3000 световых лет, состоящее из газообразного вещества.

Галактика Андромеды

В 2014 году телескоп Хаббл сделал наиболее высококачественную фотографию галактики Андромеды за всю историю ее наблюдения. Данная галактика самая близкая к Млечному Пути из гигантских галактик. Скорее всего, наша галактика выглядит идентично Андромеде. Миллиарды звезд, составляющие Андромеду вместе образуют мощное диффузное свечение. 

Крабовидная туманность

Крабовидная туманность или M1 появилась в результате взрыва сверхновой звезды в созвездии Тельца. Согласно записям арабских и китайских астрономов, они наблюдали этот взрыв в далеком 1054 году нашей эры. Туманность наполнена таинственными волокнами, а в ее центре находится пульсар — нейтронная звезда  с массой, равной массе Солнца, которая излучает мощные гамма-импульсы. 

Звезда V838 Mon

По неизвестным причинам звезда V838, находящаяся в созвездии Единорога, пережила мощный взрыв в начале 2002 года. После взрыва, внешняя оболочка V838 внезапно расширилась, сделав эту звезду самой яркой во всем Млечном Пути. После этого, также внезапно, звезда снова стала слабой. Ученые до сих пор не выяснили причину этого взрыва.

Туманность Кольцо

Туманность Кольцо была открыта Антуаном Даркье  в 1779 году и получила свое название благодаря четко выраженному кольцевому скоплению газа. Туманность состоит из газовых облаков, которые выбрасывают звезды перед концом своей жизни. На сегодняшний день туманность Кольцо является наиболее популярным объектом наблюдения у астронавтов-любителей, ее четко видно даже при мощной городской засветке в любое время года.

Столб и джеты в туманности Киля

Эта удивительная фотография, сделанная Хабблом, демонстрирует огромный космический газопылевой столб, расположенный в туманности Киля. Внутри столба находятся множество зарождающихся звезд, которые формируют мощные джеты — выбросы газа и плазмы, наблюдаемые вдоль оси их вращения.

Туманность Бабочка

Биполярная планетарная туманность в созвездии Скорпион получила свое название благодаря схожести с крыльями бабочки. В центре туманности находится, вероятно, одна из самых горячих звезд во Вселенной — ее температура превышает 200000°C.

Сверхновая звезда 

Данная фотография Хаббла демонстрирует сверхновую звезду, вспыхнувшую в 1994 году на окраине Спиральной галактики.

Галактика Сомбреро

Спиральная галактика Сомбреро или M104 располагается в созвездии Девы на расстоянии 28 млн. световых лет от Земли. Как показали последние исследования, Сомбреро на самом деле является скоплением двух галактик. В 1990 году командой Хаббла было установлено, что в центре галактик Сомбреро находится сверхмассивная черная дыра массой 1 млрд. масс Солнца.

Туманность S106

Массивная звезда IRS 4 расправляет крылья. Новорожденная звезда, возрастом всего 100000 лет выбрасывает из своих недр газ и пыль, образуя туманность Шарплесс S 106, изображенную на данной фотографии.

Центавр А

Снимок сделанный Хабблом в 2010 году демонстрирует линзовидную галактику Центавр А (NGC 5128), находящаяся в созвездии Центавр. На фото, восхитительное скопление молодых голубых звезд, огромных светящихся газовых облаков и темных пылевых волокон окружают центральную часть активной галактики Центавр А.

Celestial Fireworks

Блестящее полотно из скопления молодых звезд напоминает красочный фейерверк. Фотография сделана инфракрасной камерой Хаббла, способной понижать шумы и скрывать пыль, окружающую звезды.

Галактика водоворот

M 51 — это галактика, которая находится в созвездии Гончие Псы на расстоянии 23 млн. лет от Земли. Галактика Водоворот состоит из большой спиральной галактики NGC 5194, на правом рукаве которой находится карликовая галактика NGC 5195.

Источник: gagadget.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.