Значение слова энтропия


(от греч. entropía ≈ поворот, превращение), понятие, впервые введенное в термодинамике для определения меры необратимого рассеяния энергии. Э. широко применяется и в других областях науки: в статистической физике как мера вероятности осуществления какого-либо макроскопического состояния; в теории информации как мера неопределенности какого-либо опыта (испытания), который может иметь разные исходы. Эти трактовки Э. имеют глубокую внутреннюю связь. Например, на основе представлений об информационной Э. можно вывести все важнейшие положения статистической физики. В термодинамике понятие «Э.» было введено Р. Клаузиусом (1865), который показал, что процесс превращения теплоты в работу следует общей физической закономерности ≈ второму началу термодинамики . Его можно сформулировать строго математически, если ввести особую функцию состояния ≈ Э. Так, для термодинамической системы, совершающей квазистатически (бесконечно медленно) циклический процесс, в котором система последовательно получает малые количества теплоты dQ при соответствующих значениях абсолютной температуры Т, интеграл от «приведенного» количества теплоты dQ/ Т по всему циклу равен нулю (, т.


равенство Клаузиуса). Это равенство, эквивалентное второму началу термодинамики для равновесных процессов, Клаузиус получил, рассматривая произвольный циклический процесс как сумму очень большого, в пределе бесконечного, числа элементарных обратимых Карно циклов . Математически равенство Клаузиуса необходимо и достаточно для того, чтобы выражение dS = dQ/T═════════(

  1. представляло собой полный дифференциал функции состояния S, названное «Э.» (дифференциальное определение Э.). Разность Э. системы в двух произвольных состояниях А и В (заданных, например, значениями температур и объемов) равна

    (

  2. (интегральное определение Э.). Интегрирование здесь ведется вдоль пути любого квазистатического процесса, связывающего состояния А и В, при этом, согласно равенству Клаузиуса, приращение Э. DS = SB ≈ SA не зависит от пути интегрирования.

    Т. о., из второго начала термодинамики следует, что существует однозначная функция состояния S, которая при квазистатических адиабатных процессах (dQ = 0) остаётся постоянной. Процессы, в которых Э. остаётся постоянной, называются изоэнтропийными. Примером может служить процесс, широко используемый для получения низких температур, ≈ адиабатное размагничивание (см. Магнитное охлаждение ). При изотермических процессах изменение Э. равно отношению сообщенной системе теплоты к абсолютной температуре. Например, изменение Э. при испарении жидкости равно отношению теплоты испарения к температуре испарения при условии равновесия жидкости с её насыщенным паром.


    Согласно первому началу термодинамики (закону сохранения энергии), dQ = dU+pdV, т. е. сообщаемое системе количество теплоты равно сумме приращения внутренней энергии dU и совершаемой системой работы pdV, где р ≈ давление, V ≈ объём системы. С учётом первого начала термодинамики дифференциальное определение Э. принимает вид

    ,(

  3. откуда следует, что при выборе в качестве независимых переменных внутренней энергии U и объёма V частные производные Э. связаны с абсолютной температурой и давлением соотношениями:

    ═(

  4. и . (

  5. Эти выражения представляют собой уравнения состояния системы (первое ≈ калорическое, второе ≈ термическое). Уравнение (4) лежит в основе определения абсолютной температуры (см. также Температура , Температурные шкалы ).

    Формула (2) определяет Э. лишь с точностью до аддитивной постоянной (т. е. оставляет начало отсчёта Э. произвольным). Абсолютное значение Э. позволяет установить третье начало термодинамики , или Нернста теорему: при стремлении абсолютной температуры к нулю разность DS для любого вещества стремится к нулю независимо от внешних параметров. Поэтому: Э. всех веществ при абсолютном нуле температуры можно принять равной нулю (эту формулировку теоремы Нернста предложил в 1911 М. Планк ). Основываясь на ней, за начальную точку отсчёта Э. принимают So = 0 при Т = 0.


    Важность понятия Э. для анализа необратимых (неравновесных) процессов: также была показана впервые Клаузиусом. Для необратимых процессов интеграл от приведённой теплоты dQ / Т по замкнутому пути всегда отрицателен

    (,т. н. неравенство Клаузиуса).

    Это неравенство ≈ следствие теоремы Карно: кпд частично или полностью необратимого циклического процесса всегда меньше, чем кпд обратимого цикла. Из неравенства Клаузиуса вытекает, что

    ═(

  6. поэтому Э. адиабатически изолированной системы при необратимых процессах может только возрастать.

    Т. о., Э. определяет характер процессов в адиабатической системе: возможны только такие процессы, при которых Э. либо остаётся неизменной (обратимые процессы), либо возрастает (необратимые процессы). При этом не обязательно, чтобы возрастала Э. каждого из тел, участвующего в процессе. Увеличивается общая: сумма Э. тел, в которых процесс вызвал изменения.

    Термодинамическому равновесию адиабатической системы соответствует состояние с максимумом Э. Энтропия может иметь не один, а несколько максимумов, при этом система будет иметь несколько состояний равновесия. Равновесие, которому соответствует наибольший максимум Э., называется абсолютно устойчивым (стабильным). Из условия максимальности Э. адиабатические системы в состоянии равновесия вытекает важное следствие: температура всех частей системы в состоянии равновесия одинакова.


    Понятие «Э.» применимо и к термодинамически неравновесным состояниям, если отклонения от термодинамического равновесия невелики и можно ввести представление о локальном термодинамическом равновесии в малых, но ещё макроскопических объёмах. Такие состояния можно охарактеризовать термодинамическими параметрами (температурой, давлением и т. д.), слабо зависящими от пространственных координат и времени, а Э. термодинамически неравновесного состояния определить как Э. равновесного состояния, характеризующегося теми же значениями параметров. В целом Э. неравновесной системы равна сумме Э. её частей, находящихся в локальном равновесии.

    ══ Термодинамика неравновесных процессов позволяет более детально, чем классическая термодинамика, исследовать процесс возрастания Э. и вычислить количество Э., образующейся в единице объёма в единицу времени вследствие отклонения системы от термодинамического равновесия ≈ производство энтропии . Производство Э. всегда положительно и математически выражается квадратичной формой от градиентов термодинамических параметров (температуры, гидродинамической скорости или концентраций компонентов смеси) с коэффициентами, называемыми кинетическими (см. Онсагера теорема ).

    Статистическая физика связывает Э. с вероятностью осуществления данного макроскопического состояния системы. Э. определяется через логарифм статистического веса W данного равновесного состояния

    S= k ln W (E, N), (


  7. где k ≈ Больцмана постоянная , W (E, N) ≈ число квантовомеханических уровней в узком интервале энергии DЕ вблизи значения энергии Е системы из N частиц. Впервые связь Э. с вероятностью состояния системы была установлена Л. Больцманом в 1872: возрастание Э. системы обусловлено её переходом из менее вероятного состояния в более вероятное. Иными словами, эволюция замкнутой системы осуществляется в направлении наиболее вероятного распределения энергии по отдельным подсистемам.

    В отличие от термодинамики статистическая физика рассматривает особый класс процессов ≈ флуктуации , при которых система переходит из более вероятного состояния в менее вероятное, и её Э. уменьшается. Наличие флуктуаций показывает, что закон возрастания Э. выполняется только в среднем для достаточно большого промежутка времени.

    Э. в статистической физике тесно связана с информационной Э., которая служит мерой неопределённости сообщений данного источника (сообщения описываются множеством величин х1, x2,…, xn, которые могут быть, например, словами какого-либо языка, и соответствующих вероятностей p1, p2,…, pn появления величин x1, x2,…, xnв сообщении). Для определённого (дискретного) статистического распределения вероятностей рк информационной Э. называют величину

    при условии

    ═(

  8. Значение Ни равно нулю, если какое-либо из pk равно 1, а остальные ≈ нулю, т. е. неопределённость в информации отсутствует. Э. принимает наибольшее значение, когда pk равны между собой и неопределённость в информации максимальна.
    формационная Э., как и термодинамическая, обладает свойством аддитивности (Э. нескольких сообщений равна сумме Э. отдельных сообщений). К. Э. Шеннон показал, что Э. источника информации определяет критическое значение скорости «помехоустойчивой» передачи информации по конкретному каналу связи (см. Шеннона теорема ). Из вероятностной трактовки информационной Э. могут быть выведены основные распределения статистической физики: каноническое Гиббса распределение , которое соответствует максимальному значению информационной Э. при заданной средней энергии, и большое каноническое распределение Гиббса ≈ при заданных средней энергии и числа частиц в системе.

    Понятие Э., как показал впервые Э. Шрёдингер (1944), существенно и для понимания явлений жизни. Живой организм с точки зрения протекающих в нём физико-химических процессов можно рассматривать как сложную открытую систему , находящуюся в неравновесном, но стационарном состоянии. Для организмов характерна сбалансированность процессов, ведущих к росту Э., и процессов обмена, уменьшающих её. Однако жизнь не сводится к простой совокупности физико-химических процессов, ей свойственны сложные процессы саморегулирования. Поэтому с помощью понятия Э. нельзя охарактеризовать жизнедеятельность организмов в целом.

    Д. Н. Зубарев.

    Э., характеризуя вероятность осуществления данного состояния системы, согласно (7) является мерой его неупорядоченности. Изменение Э. DS обусловлено как изменением р, V и Т, так и процессами, протекающими при р, Т = const и связанными с превращением веществ, включая изменение их агрегатного состояния, растворение и химическое взаимодействие.

    Изотермическое сжатие вещества приводит к уменьшению, а изотермическое расширение и нагревание ≈ к увеличению его Э., что соответствует уравнениям, вытекающим из первого и второго начал термодинамики (см. Термодинамика ):

    ; (


  9. ;

  10. . (

  11. Формулу (11) применяют для практического определения абсолютного значения Э. при температуре Т, используя постулат Планка и значения теплоёмкости С, теплот и температур фазовых переходов в интервале от 0 до Т К.

    В соответствии с (1) Э. измеряется в кал/(моль╥ К) (энтропийная единица ≈ э. е.) и дж/(моль╥К). При расчётах обычно применяют значения Э. в стандартном состоянии, чаще всего при 298,15 К (25 ╟С), т. е. S0298;таковы приводимыениже в статье значения Э.

    Э. увеличивается при переходе вещества в состояние с большей энергией. D S сублимации > DS парообразования >> DS плавления>DS полиморфного превращения. Например, Э. воды в кристаллическом состоянии равна 11,5, в жидком ≈ 16,75, в газообразном ≈ 45,11 э. е.

    Чем выше твёрдость вещества, тем меньше его Э.; так, Э. алмаза (0,57 э. е.) вдвое меньше Э. графита (1,37 э. е.). Карбиды, бориды и другие очень твёрдые вещества характеризуются небольшой Э.

    Э. аморфного тела несколько больше Э. кристаллического. Возрастание степени дисперсности системы также приводит к некоторому увеличению её Э.


    Э. возрастает по мере усложнения молекулы вещества; так, для газов N2О, N2O3 и N2O5 Э. составляет соответственно 52,6; 73,4 и 85,0 э. е. При одной и той же молекулярной массе Э. разветвленных углеводородов меньше Э. неразветвлённых; Э. циклоалкана (циклана) меньше Э. соответствующего ему алкен а.

    Э. простых веществ и соединений (например, хлоридов ACIn), а также её изменения при плавлении и парообразовании являются периодическими функциями порядкового номера соответствующего элемента. Периодичность изменения Э. для сходных химических реакций типа 1/n Акрист + 1/2Сl2газ= 1/n ACln крист практически не проявляется. В совокупности веществ-аналогов, например АСl4газ (А ≈ С, Si, Ge, Sn, Pb) Э. изменяется закономерно. Сходство веществ (N2 и СО; CdCl2 и ZnCl2; Ag2Se и Ag2Te; ВаСОз и BaSiO3; PbWO4 и РЬМоО4) проявляется в близости их Э. Выявление закономерности изменения Э. в рядах подобных веществ, обусловленного различиями в их строении и составе, позволило разработать методы приближённого расчёта Э.

    Знак изменения Э. при химической реакции DS х. р. определяется знаком изменения объёма системы DV х. р.; однако возможны процессы (изомеризация, циклизация), в которых DS х. р. ¹ 0, хотя DV х. р. » 0. В соответствии с уравнением DG = DН ≈ ТDS (G ≈ гиббсова энергия , Н ≈ энтальпия ) знак и абсолютное значение DS х. р. важны для суждения о влиянии температуры на равновесие химическое . Возможны самопроизвольные экзотермические. процессы (DG < 0, DH < 0), протекающие с уменьшением Э. (DS < 0). Такие процессы распространены, в частности, при растворении (например, комплексообразование), что свидетельствует о важности химических взаимодействий между участвующими в них веществами.


    М. X. Карапетьянц.

    Лит.: Клаузиус P., в кн.: Второе начало термодинамики, М.≈Л., 1934, с. 71≈158; Зоммерфельд А., Термодинамика и статистическая физика, пер. с нем., М., 1955; Майер Дж., Гепперт-Майер М., Статистическая механика, пер. с англ., М., 1952; Де Гроот С., Мазур П., Неравновесная термодинамика, пер. с англ., М., 1964; Зубарев Д. Н., Неравновесная статистическая термодинамика, М., 1971; Яглом А. М., Яглом И. М., Вероятность и информация, 3 изд., М., 1973; Бриллюен Л., Наука и теория информации, пер. с англ., М., 1959. См. также лит. при ст. Термодинамика, Термодинамика неравновесных процессов и Статистическая физика .

Источник: xn--b1algemdcsb.xn--p1ai

Определение

Энтропия (в переводе с древнегреческого – поворот, превращение) – это мера, степень неупорядоченности (хаоса) какой-либо системы. Используется в следующих точных и естественных науках:

  • В математике означает поиск логарифма числа доступных состояний системы;

  • В статистической науке – вероятностная величина наступления любого макроскопического состояния системы;
  • В термодинамике (физика) – степень необратимой диффузии энергии, т.е. стандартная величина ее потерь, которые неизбежны при взаимодействии более горячего тела с более холодным;
  • В информатике – означает информационную емкость системы. Интересным фактом является следующее: Клод Шеннон (основоположник этого термина в информационной теории) первоначально думал назвать энтропию информацией.

Сферы использования энтропии

История возникновения

Впервые понятие энтропии было введено в эпоху развития термодинамики, когда возникла необходимость в изучении процессов, происходящих внутри термодинамических тел. В 1865 году ученый-физик из Германии Рудольф Клаузиус этим термином описал состояние системы, в котором теплота имеет способность преобразовываться в иные виды энергии (механическую, химическую, световую и т.д.).

Рудольф Клаузиус

Прирост энтропии вызван притоком тепловой энергии в систему и связан с температурой, при которой этот приток возникает. Необходимость этой величины была вызвана тем, что вся физика строится на идеализации абстрактных объектов (идеальный маятник, равномерное движение, масса и т.д.).

В бытовом понимании энтропия представляет собой степень хаотичности и неопределенности системы: чем больше в системе упорядоченности, и чем больше ее элементы подчинены какому-либо порядку, тем меньше энтропия.

Пример: Шкаф – это определенная система. Если в нем все вещи лежат на своих местах, то энтропия меньше. Если же все вещи разбросаны и лежат не на своих полках, то соответственно она становится больше.

С этим термином тесно связана тепловая функция энтальпии – характеризует состояние термодинамической системы в состоянии равновесия при выборе ряда независимых переменных, таких как давление, энтропия и число частиц.

Величина, противоположная энтропии, называется экстропией.

Виды энтропии

Области применения:

  • физическая химия;
  • экономические науки;
  • статистическая физика или информационная теория;
  • социологическая наука.

Рассмотрим подробнее виды энтропии в каждой из областей ее применения.

В термодинамике

Второе начало термодинамики

В термодинамике (физической химии) энтропия – это та степень, в которой реальный процесс отклоняется от идеального. Основной постулат термодинамики, сформулированный физиками на базе изучения энтропии: каждая система термодинамики, которая изолирована от внешнего мира, постепенно становится равновесной и впоследствии не имеет возможности выйти самостоятельно из состояния равновесия. Беспорядок – основная характеристика состояния любой системы. Из него она стремится к равновесию.

Возникает вопрос: с помощью чего определить степень беспорядка?

Основной метод: каждому возможному состоянию системы присваивается число вариантных комбинаций, которыми это состояние может быть реализовано.

Вывод: чем больше число вариантов, тем больше величина энтропии. Чем больше организованности в структуре вещества, тем меньше его неупорядоченность.

Абсолютная величина энтропии равна приращению имеющейся в системе тепловой энергии в условиях теплопередачи при заданной температуре.

Клазиус определял энтропию как совокупность приведенных тепловых энергий, как функцию состояния системы, которое остается неизменным в условиях замкнутости, а в условиях открытых необратимых процессов – оно всегда положительно изменяется. Ее значение отражает связь между макро- и микросостояниями. Это единственная функциональная величина, показывающая направленность процессов. Но она не показывает сам процесс перехода состояний из одного в другое, а находится лишь исходным и итоговым состоянием системы.

В экономике

Энтропия в экономике

Коэффициент энтропии дает возможность проанализировать уровень концентрации рынка и его изменение. Чем этот коэффициент ниже, тем меньше неопределенность внешней среды, что ведет к повышению вероятности возникновения монополий. Этот показатель выступает в качестве косвенного помощника в оценивании выигрыша, который получает предприятие в ходе ведения монополистической деятельности или в условиях изменения рыночной концентрации (влияет на число потенциальных конкурентов фирмы).

В информатике или статистической физике

Энтропия в статической физике

Информационная энтропия – это степень непредсказуемости информационной системы. Этот показатель служит для определения степени хаотичности эксперимента, который проводится или произошедшего события. Значение хаотичности прямопропорционально числу состояний, нахождение системы в которых возможно. Все действия, направленные на упорядочивание системы, ведут к появлению информационных сведений о ней и снижают информационную неопределенность, которая выявляет пропускную способность информационного канала, обеспечивающую надежность и достоверность передачи информационных данных. Это позволяет прогнозировать частично возможный ход эксперимента, т.е. предсказывать вероятность того или иного события.

Пример: расшифровка закодированного текста. Для этого анализируется вероятность возникновения того или иного символа и высчитывается величина их энтропии.

В социологии

Энтропия в социологии

Энтропия – показатель, характеризующий отклонение общественной системы или ее составных частей от заданного (образцового) состояния. Проявления этого отклонения:

  • уменьшение эффективности общественного развития и жизнедеятельности общества как целостной системы;
  • снижение способности к самоорганизации.

Пример: персонал организации настолько загружен бумажной работой (составлением отчетов, ведением документации), что не может успевать выполнять свои должностные функции и обязанности (осуществление аудита). Мера неэффективного использования трудовых ресурсов собственником предприятия – это информационная неопределенность.

Примеры

Из бытовой жизни:

  1. При написании sms-сообщений на мобильном телефоне мы часто пользуемся программой Т9. Чем меньше ошибок в печатаемом нами слове, тем процесс его распознания программой будет легче и она быстрее предложит нам его замену. Вывод: чем больше беспорядка, тем больше информационная неопределенность.
  2. Когда мы бросаем два кубика при игре в кости, существует только один способ выкинуть комбинацию 2 или 12 (1 и 1, 6 и 6). Самое максимальное число способов выкинуть число 7 (6 вероятных комбинаций). Непредсказуемость в данном случае будет максимальной.
  3. Информация о количестве учеников больше в течение урока, чем во время перемены. Поскольку на уроке каждый ученик сидит на своем месте, то энтропия ниже. За пределами класса для передвижения школьников характерна хаотичность, что ведет к увеличению значения энтропии.
  4. Если прибрать на рабочей парте, разложить предметы по своим местам, то можно больше получить информации о том или ином предмете, находящемся на ней. Упорядоченность вещей на парте снижает величину энтропии.

Источник: advi.club

Энтропия: определение и история появления термина

История появления термина

Энтропия как определение состояния системы была введена в 1865 году немецким физиком Рудольфом Клаузиусом, чтобы описать способность теплоты превращаться в другие формы энергии, главным образом в механическую. С помощью этого понятия в термодинамике описывают состояние термодинамических систем. Приращение этой величины связано с поступлением тепла в систему и с температурой, при которой это поступление происходит.

Определение термина из Википедии

Этот термин долгое время использовался только в механической теории тепла (термодинамике), для которой оно вводилось. Но со временем это определение перешло в другие области и теории. Существует несколько определений термина «энтропия».

Википедия даёт краткое определение для нескольких областей, в которых этот термин используется:«Энтропия (от др.-греч. ἐντροπία «поворот»,«превращение») — часто употребляемый в естественных и точных науках термин. В статистической физике характеризует вероятность осуществления какого-либо макроскопического состояния. Помимо физики, этот термин широко используется в математике: теории информации и математической статистике».

Виды энтропий

Этот термин используется в термодинамике, экономике, теории информации и даже в социологии. Что же он определяет в этих областях?

В физической химии (термодинамике)

Как изменяется энтропияОсновной постулат термодинамики о равновесии: любая изолированная термодинамическая система приходит в равновесное состояние с течением времени и не может из него выйти самопроизвольно. То есть каждая система стремится в равновесное для неё состояние. И если говорить совсем простыми словами, то такое состояние характеризуется беспорядком.

Энтропия — это мера беспорядка. Как определить беспорядок? Один из способов — приписать каждому состоянию число вариантов, которыми это состояние можно реализовать. И чем больше таких способов реализации, тем больше значение энтропии. Чем больше организованно вещество (его структура), тем ниже его неопределённость (хаотичность).

Абсолютное значение энтропии (S абс.) равно изменению имеющейся у вещества или системы энергии во время теплопередачи при данной температуре. Его математическая величина определяется из значения теплопередачи (Q), разделённого на абсолютную температуру (T), при которой происходит процесс: S абс. = Q / T. Это означает, что при передаче большого количества теплоты показатель S абс. увеличится. Тот же эффект будет наблюдаться при теплопередаче в условиях низких температур.

В экономике

Энтропия сведение из википедииВ экономике используется такое понятие, как коэффициент энтропии. С помощью этого коэффициента исследуют изменение концентрации рынка и её уровень. Чем выше значение коэффициента, тем выше экономическая неопределённость и, следовательно, вероятность появления монополии снижается. Коэффициент помогает косвенно оценить выгоды, приобретённые фирмой в результате возможной монопольной деятельности или при изменении концентрации рынка.

В статистической физике или теории информации

Информационная энтропия (неопределённость)— это мера непредсказуемости или неопределённости некоторой системы. Эта величина помогает определить степень беспорядочности проводимого эксперимента или события. Чем больше количество состояний, в которых может находиться система, тем больше значение неопределённости. Все процессы упорядочивания системы приводят к появлению информации и снижению информационной неопределённости.

С помощью информационной непредсказуемости можно выявить такую пропускную способность канала, которая обеспечит надёжную передачу информации (в системе закодированных символов). А также можно частично предсказывать ход опыта или события, деля их на составные части и высчитывая значение неопределённости для каждой из них. Такой метод статистической физики помогает выявить вероятность события. С его помощью можно расшифровать закодированный текст, анализируя вероятность появления символов и их показатель энтропии.

Существует такое понятие, как абсолютная энтропия языка. Эта величина выражает максимальное количество информации, которое можно передать в единице этого языка. За единицу в этом случае принимают символ алфавита языка (бит).

В социологии

Объяснение термина энтропияЗдесь энтропия (информационная неопределённость) является характеристикой отклонения социума (системы) или его звеньев от принятого (эталонного) состояния, а проявляется это в снижении эффективности развития и функционирования системы, ухудшении самоорганизации. Простой пример: сотрудники фирмы так сильно загружены работой (выполнением большого количества отчётов), что не успевают заниматься своей основной деятельностью (выполнением проверок). В этом примере мерой нецелесообразного использования руководством рабочих ресурсов будет являться информационная неопределённость.

Энтропия: тезисно и на примерах

  • Чем больше способов реализации, тем больше информационная неопределённость.

Пример 1. Программа Т9. Если в слове будет небольшое количество опечаток, то программа легко распознает слово и предложит его замену. Чем больше опечаток, тем меньше информации о вводимом слове будет у программы. Следовательно, увеличение беспорядка приведёт к увеличению информационной неопределённости и наоборот, чем больше информации, тем меньше неопределённость.

Пример 2. Игральные кости. Выкинуть комбинацию 12 или 2 можно только одним способом: 1 плюс 1 или 6 плюс 6. А максимальным числом способов реализуется число 7 (имеет 6 возможных комбинаций). Непредсказуемость реализации числа семь самая большая в этом случае.

  • В общем смысле энтропию (S) можно понимать как меру распределения энергии. При низком значении S энергия сконцентрирована, а при высоком — распределена хаотично.

Пример. Н2О (всем известная вода) в своём жидком агрегатном состоянии будет обладать большей энтропией, чем в твёрдом (лёд). Потому что в кристаллическом твёрдом теле каждый атом занимает определённое положение в кристаллической решётке (порядок), а в жидком состоянии у атомов определённых закреплённых положений нет (беспорядок). То есть тело с более жёсткой упорядоченностью атомов имеет более низкое значение энтропии (S). Белый алмаз без примесей обладает самым низким значением S по сравнению с другими кристаллами.

  • Связь между информацией и неопределённостью.

Понятие термина энтропияПример 1. Молекула находится в сосуде, который имеет левую и правую часть. Если неизвестно, в какой части сосуда находится молекула, то энтропия (S) будет определяться по формуле S = S max = k * lgW, где k -число способов реализации, W- количество частей сосуда. Информация в этом случае будет равна нулю I = I min =0. Если же точно известно, в какой части сосуда находится молекула, то S = S min =k*ln1=0, а I = I max= log 2 W. Следовательно, чем больше информации, тем ниже значение информационной неопределённости.

Пример 2. Чем выше порядок на рабочем столе, тем больше информации можно узнать о вещах, которые на нём находятся. В этом случае упорядоченность предметов снижает энтропию системы «рабочий стол».

Пример 3. Информация о классе больше на уроке, чем на перемене. Энтропия на уроке ниже, так как ученики сидят упорядочено (больше информации о местоположении каждого ученика). А на перемене расположение учеников меняется хаотично, что повышает их энтропию.

  • Химические реакции и изменение энтропии.

Пример. При реакции щелочного металла с водой выделяется водород. Водород-это газ. Так как молекулы газа движутся хаотично и имеют высокую энтропию, то рассматриваемая реакция происходит с увеличением её значения. То есть энтропия химической системы станет выше.

В заключение

Если объединить всё вышесказанное, то получится, что энтропия является мерой беспорядка или неопределённости системы и её частей. Интересен тот факт, что всё в природе стремится к максимуму энтропии, а человек — к максимуму информации. И все рассмотренные выше теории направлены на установление баланса между стремлением человека и естественными природными процессами.

Источник: obrazovanie.guru

энтропия

Энтропия Энтропи́я (от  «в» +  «обращение; превращение») — широко используемый в естественных и точных науках термин. Впервые введён в рамках термодинамики как функция состояния термодинамической системы.

Википедия

энтропия

I ж.Физическая величина, характеризующая тепловое состояние тела или системы тел и возможные изменения этих состояний; мера внутренней неупорядоченности систем ( в термодинамике ) . II ж.Мера неопределенности какого-либо опыта, который может иметь разные исходы.

Большой современный толковый словарь русского языка

энтропия

( гр. en в, внутрь + trope поворот, превращение)
1) физ. одна из величин, характеризующих тепловое состояние тела или системы тел; мера внутренней неупорядоченности системы; при всех процессах, происходящих к замкнутой системе, э. или возрастает (необратимые процессы), или остается постоянной (обратимые процессы);
2) в теории информации — мера неопределенности ситуации (случайной величины) с конечным или с четным числом исходов, напр, опыт, до проведения которого результат в точности неизвестен;
3) мед. заворот век внутрь.

Новый словарь иностранных слов

энтропия

1. ж. Физическая величина, характеризующая тепловое состояние тела или системы тел и возможные изменения этих состояний.

2. ж. Мера, степень неопределенности ситуации (в теории информации).

Новый толково-словообразовательный словарь русского языка Ефремовой

энтропия

[гр. en в, внутрь + trope поворот, превращение]

1. физ. одна из величин, характеризующих тепловое состояние тела или системы тел; мера внутренней неупорядоченности системы; при всех процессах, происходящих к замкнутой системе, э. или возрастает (необратимые процессы), или остается постоянной (обратимые процессы);

2. в теории информации — мера неопределенности ситуации (случайной величины) с конечным или с четным числом исходов, напр, опыт, до проведения которого результат в точности неизвестен;

3. мед. заворот век внутрь.

Словарь иностранных выражений

энтропия

(от греч. entropia — поворот, превращение) (обычно обозначается S), функция состояния термодинамической системы, изменение которой dS в равновесном процессе равно отношению количества теплоты dQ, сообщенного системе или отведенного от нее, к термодинамической температуре Т системы. Неравновесные процессы в изолированной системе сопровождаются ростом энтропии, они приближают систему к состоянию равновесия, в котором S максимальна. Понятие «энтропия» введено в 1865 Р. Клаузиусом. Статистическая физика рассматривает энтропию как меру вероятности пребывания системы в данном состоянии (Больцмана принцип). Понятием энтропии широко пользуются в физике, химии, биологии и теории информации.

Современный толковый словарь, БСЭ

энтропия

энтропия

1. ж. Физическая величина, характеризующая тепловое состояние тела или системы тел и возможные изменения этих состояний.

2. ж. Мера, степень неопределенности ситуации (в теории информации).

Толковый словарь Ефремовой

энтропия

(греч. entropia — превращение) — величина, характеризующая степень неопределенности системы. ЭПИЛЕЦСИЯ — см. ДУШЕВНАЯ БОЛЕЗНЬ . ЭРГОНОМИКА —
1) раздел науки, изучающий поведение человека, движение органов его тела во время выполнения работы с целью создания условий на рабочем месте, обеспечивающих удобство и комфорт, повышающих производительность, снижающих затраты энергии;
2) степень удобства использования предмета, оборудования, приспособления.

Словарь экономических терминов

энтропия

(от греч. entropia — поворот, превращение), понятие, впервые введенное в термодинамике для определения меры необратимого рассеяния энергии. Э. широко применяется и в других областях науки: в статистической физике как мера вероятности осуществления какого-либо макроскопического состояния; в теории информации как мера неопределенности какого-либо опыта (испытания), который может иметь разные исходы. Эти трактовки Э. имеют глубокую внутреннюю связь. Например, на основе представлений об информационной Э. можно вывести все важнейшие положения статистической физики. В термодинамике понятие 'Э.' было введено Р. Клаузиусом (
1865), который показал, что процесс превращения теплоты в работу следует общей физической закономерности — второму началу термодинамики . Его можно сформулировать строго математически, если ввести особую функцию состояния — Э. Так, для термодинамической системы, совершающей квазистатически (бесконечно медленно) циклический процесс, в котором система последовательно получает малые количества теплоты dQ при соответствующих значениях абсолютной температуры Т, интеграл от 'приведенного' количества теплоты dQ/ Т по всему циклу равен нулю (, т. н. равенство Клаузиуса). Это равенство, эквивалентное второму началу термодинамики для равновесных процессов, Клаузиус получил, рассматривая произвольный циклический процесс как сумму очень большого, в пределе бесконечного, числа элементарных обратимых Карно циклов . Математически равенство Клаузиуса необходимо и достаточно для того, чтобы выражение dS dQ/T(
1) представляло собой полный дифференциал функции состояния S, названное 'Э.' (дифференциальное определение Э.). Разность Э. системы в двух произвольных состояниях А и В (заданных, например, значениями температур и объемов) равна (
2) (интегральное определение Э.). Интегрирование здесь ведется вдоль пути любого квазистатического процесса, связывающего состояния А и В, при этом, согласно равенству Клаузиуса, приращение Э. D S SB — SA не зависит от пути интегрирования. Т. о., из второго начала термодинамики следует, что существует однозначная функция состояния S, которая при квазистатических адиабатных процессах (d Q
0) остаётся постоянной. Процессы, в которых Э. остаётся постоянной, называются изоэнтропийными. Примером может служить процесс, широко используемый для получения низких температур, — адиабатное размагничивание (см. Магнитное охлаждение ) . При изотермических процессах изменение Э. равно отношению сообщенной системе теплоты к абсолютной температуре. Например, изменение Э. при испарении жидкости равно отношению теплоты испарения к температуре испарения при условии равновесия жидкости с её насыщенным паром. Согласно первому началу термодинамики (закону сохранения энергии), d Q dU+pdV, т. е. сообщаемое системе количество теплоты равно сумме приращения внутренней энергии dU и совершаемой системой работы pdV, где р — давление, V — объём системы. С учётом первого начала термодинамики дифференциальное определение Э. принимает вид , (
3) откуда следует, что при выборе в качестве независимых переменных внутренней энергии U и объёма V частные производные Э. связаны с абсолютной температурой и давлением соотношениями: (
4) и . (
5) Эти выражения представляют собой уравнения состояния системы (первое — калорическое, второе — термическое). Уравнение (
4) лежит в основе определения абсолютной температуры (см. также Температура , Температурные шкалы ) .Формула (
2) определяет Э. лишь с точностью до аддитивной постоянной (т. е. оставляет начало отсчёта Э. произвольным). Абсолютное значение Э. позволяет установить третье начало термодинамики , или Нернста теорему: при стремлении абсолютной температуры к нулю разность D S для любого вещества стремится к нулю независимо от внешних параметров. Поэтому: Э. всех веществ при абсолютном нуле температуры можно принять равной нулю (эту формулировку теоремы Нернста предложил в 1911 М. Планк ) . Основываясь на ней, за начальную точку отсчёта Э. принимают So 0 при Т 0 . Важность понятия Э. для анализа необратимых (неравновесных) процессов: также была показана впервые Клаузиусом. Для необратимых процессов интеграл от приведённой теплоты d Q / Т по замкнутому пути всегда отрицателен (,т. н. неравенство Клаузиуса). Это неравенство — следствие теоремы Карно: кпд частично или полностью необратимого циклического процесса всегда меньше, чем кпд обратимого цикла. Из неравенства Клаузиуса вытекает, что (
6) поэтому Э. адиабатически изолированной системы при необратимых процессах может только возрастать. Т. о., Э. определяет характер процессов в адиабатической системе: возможны только такие процессы, при которых Э. либо остаётся неизменной (обратимые процессы), либо возрастает (необратимые процессы). При этом не обязательно, чтобы возрастала Э. каждого из тел, участвующего в процессе. Увеличивается общая: сумма Э. тел, в которых процесс вызвал изменения. Термодинамическому равновесию адиабатической системы соответствует состояние с максимумом Э. Энтропия может иметь не один, а несколько максимумов, при этом система будет иметь несколько состояний равновесия. Равновесие, которому соответствует наибольший максимум Э., называется абсолютно устойчивым (стабильным). Из условия максимальности Э. адиабатические системы в состоянии равновесия вытекает важное следствие: температура всех частей системы в состоянии равновесия одинакова. Понятие 'Э.' применимо и к термодинамически неравновесным состояниям, если отклонения от термодинамического равновесия невелики и можно ввести представление о локальном термодинамическом равновесии в малых, но ещё макроскопических объёмах. Такие состояния можно охарактеризовать термодинамическими параметрами (температурой, давлением и т. д.), слабо зависящими от пространственных координат и времени, а Э. термодинамически неравновесного состояния определить как Э. равновесного состояния, характеризующегося теми же значениями параметров. В целом Э. неравновесной системы равна сумме Э. её частей, находящихся в локальном равновесии. Термодинамика неравновесных процессов позволяет более детально, чем классическая термодинамика, исследовать процесс возрастания Э. и вычислить количество Э., образующейся в единице объёма в единицу времени вследствие отклонения системы от термодинамического равновесия — производство энтропии . Производство Э. всегда положительно и математически выражается квадратичной формой от градиентов термодинамических параметров (температуры, гидродинамической скорости или концентраций компонентов смеси) с коэффициентами, называемыми кинетическими (см. Онсагера теорема ) .Статистическая физика связывает Э. с вероятностью осуществления данного макроскопического состояния системы. Э. определяется через логарифм статистического веса W данного равновесного состояния Sk ln W ( E, N ) , (
7) где k — Больцмана постоянная , W( E, N ) — число квантовомеханических уровней в узком интервале энергии D Е вблизи значения энергии Е системы из N частиц. Впервые связь Э. с вероятностью состояния системы была установлена Л. Больцманом в 1872: возрастание Э. системы обусловлено её переходом из менее вероятного состояния в более вероятное. Иными словами, эволюция замкнутой системы осуществляется в направлении наиболее вероятного распределения энергии по отдельным подсистемам. В отличие от термодинамики статистическая физика рассматривает особый класс процессов — флуктуации , при которых система переходит из более вероятного состояния в менее вероятное, и её Э. уменьшается. Наличие флуктуаций показывает, что закон возрастания Э. выполняется только в среднем для достаточно большого промежутка времени. Э. в статистической физике тесно связана с информационной Э., которая служит мерой неопределённости сообщений данного источника (сообщения описываются множеством величин х1, x2,…, xn, которые могут быть, например, словами какого-либо языка, и соответствующих вероятностей p1, p2,…, pn появления величин x1, x2,…, xn в сообщении). Для определённого (дискретного) статистического распределения вероятностей рк информационной Э. называют величинупри условии (
8) Значение Ни равно нулю, если какое-либо из pk равно 1, а остальные — нулю, т. е. неопределённость в информации отсутствует. Э. принимает наибольшее значение, когда pk равны между собой и неопределённость в информации максимальна. Информационная Э., как и термодинамическая, обладает свойством аддитивности (Э. нескольких сообщений равна сумме Э. отдельных сообщений). К. Э. Шеннон показал, что Э. источника информации определяет критическое значение скорости 'помехоустойчивой' передачи информации по конкретному каналу связи (см. Шеннона теорема ) . Из вероятностной трактовки информационной Э. могут быть выведены основные распределения статистической физики: каноническое Гиббса распределение , которое соответствует максимальному значению информационной Э. при заданной средней энергии, и большое каноническое распределение Гиббса — при заданных средней энергии и числа частиц в системе. Понятие Э., как показал впервые Э. Шрёдингер (
1944), существенно и для понимания явлений жизни. Живой организм с точки зрения протекающих в нём физико-химических процессов можно рассматривать как сложную открытую систему , находящуюся в неравновесном, но стационарном состоянии. Для организмов характерна сбалансированность процессов, ведущих к росту Э., и процессов обмена, уменьшающих её. Однако жизнь не сводится к простой совокупности физико-химических процессов, ей свойственны сложные процессы саморегулирования. Поэтому с помощью понятия Э. нельзя охарактеризовать жизнедеятельность организмов в целом. Д. Н. Зубарев.Э., характеризуя вероятность осуществления данного состояния системы, согласно (
7) является мерой его неупорядоченности. Изменение Э. D S обусловлено как изменением р, V и Т, так и процессами, протекающими при р, Т const и связанными с превращением веществ, включая изменение их агрегатного состояния, растворение и химическое взаимодействие. Изотермическое сжатие вещества приводит к уменьшению, а изотермическое расширение и нагревание — к увеличению его Э., что соответствует уравнениям, вытекающим из первого и второго начал термодинамики (см. Термодинамика ) :; (
9) ; (
10) . (
11) Формулу (
11) применяют для практического определения абсолютного значения Э. при температуре Т, используя постулат Планка и значения теплоёмкости С, теплот и температур фазовых переходов в интервале от 0 до Т К. В соответствии с (
1) Э. измеряется в кал/ ( мольT К) (энтропийная единица — э. е.) и дж/ ( мольTК ) . При расчётах обычно применяют значения Э. в стандартном состоянии, чаще всего при 298,15 К (25 |С), т. е. S0298;таковы приводимыениже в статье значения Э. Э. увеличивается при переходе вещества в состояние с большей энергией. D S сублимации > DS парообразования > > DS плавления > DS полиморфного превращения. Например, Э. воды в кристаллическом состоянии равна 11,5, в жидком — 16,75, в газообразном — 45,11 э. е. Чем выше твёрдость вещества, тем меньше его Э.; так, Э. алмаза (0,57 э. е.) вдвое меньше Э. графита (1,37 э. е.). Карбиды, бориды и другие очень твёрдые вещества характеризуются небольшой Э. Э. аморфного тела несколько больше Э. кристаллического. Возрастание степени дисперсности системы также приводит к некоторому увеличению её Э. Э. возрастает по мере усложнения молекулы вещества; так, для газов N2О, N2O3 и N2O5 Э. составляет соответственно 52,6; 73,4 и 85,0 э. е. При одной и той же молекулярной массе Э. разветвленных углеводородов меньше Э. неразветвлённых; Э. циклоалкана (циклана) меньше Э. соответствующего ему алкен а.Э. простых веществ и соединений (например, хлоридов ACIn), а также её изменения при плавлении и парообразовании являются периодическими функциями порядкового номера соответствующего элемента. Периодичность изменения Э. для сходных химических реакций типа 1/n Акрист + 1/2Сl2газ 1/n ACln крист практически не проявляется. В совокупности веществ-аналогов, например АСl4газ (А — С, Si, Ge, Sn, Pb) Э. изменяется закономерно. Сходство веществ (N2 и СО; CdCl2 и ZnCl2; Ag2Se и Ag2Te; ВаСОз и BaSiO3; PbWO4 и РЬМоО
4) проявляется в близости их Э. Выявление закономерности изменения Э. в рядах подобных веществ, обусловленного различиями в их строении и составе, позволило разработать методы приближённого расчёта Э. Знак изменения Э. при химической реакции DS х. р. определяется знаком изменения объёма системы DV х. р.; однако возможны процессы (изомеризация, циклизация), в которых DS х. р. ¹ 0, хотя DV х. р. ' 0 . В соответствии с уравнением DG DН — ТDS (G — гиббсова энергия , Н — энтальпия ) знак и абсолютное значение DS х. р. важны для суждения о влиянии температуры на равновесие химическое . Возможны самопроизвольные экзотермические. процессы (DG < 0, DH <
0), протекающие с уменьшением Э. (DS <
0). Такие процессы распространены, в частности, при растворении (например, комплексообразование), что свидетельствует о важности химических взаимодействий между участвующими в них веществами. М. X. Карапетьянц. Лит.: Клаузиус P., в кн.: Второе начало термодинамики, М.-Л., 1934, с. 71-158; Зоммерфельд А., Термодинамика и статистическая физика, пер. с нем., М., 1955; Майер Дж., Гепперт-Майер М., Статистическая механика, пер. с англ., М., 1952; Де Гроот С., Мазур П., Неравновесная термодинамика, пер. с англ., М., 1964; Зубарев Д. Н., Неравновесная статистическая термодинамика, М., 1971; Яглом А. М., Яглом И. М., Вероятность и информация, 3 изд., М., 1973; Бриллюен Л., Наука и теория информации, пер. с англ., М.,

1959. См. также лит. при ст. Термодинамика , Термодинамика неравновесных процессов и Статистическая физика .

Большая советская энциклопедия, БСЭ

энтропия

энтропия, -и

Полный орфографический словарь русского языка

энтропия

физическая величина, характеризующая тепловое состояние системы и возможные изменения этих состояний; мера внутренней неупорядоченности мера неопределённости какого-либо с конечным или счётным числом исходов заворот век внутрь

Викисловарь

Источник: xn--b1advjcbct.xn--p1ai


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.