Показатель энтропии это


Что такое энтропияЧто такое энтропия? Этим словом можно охарактеризовать и объяснить почти все процессы в жизни человека (физические и химические процессы, а также социальные явления). Но не все люди понимают значение этого термина и уж тем более не все могут объяснить, что это слово значит. Теория сложна для восприятия, но если добавить в неё простые и понятные примеры из жизни, то разобраться с определением этого многогранного термина будет легче. Но обо всём по порядку.

  • Энтропия: определение и история появления термина
  • Виды энтропий
  • Энтропия: тезисно и на примерах
  • В заключение

Энтропия: определение и история появления термина

История появления термина

Энтропия как определение состояния системы была введена в 1865 году немецким физиком Рудольфом Клаузиусом, чтобы описать способность теплоты превращаться в другие формы энергии, главным образом в механическую. С помощью этого понятия в термодинамике описывают состояние термодинамических систем. Приращение этой величины связано с поступлением тепла в систему и с температурой, при которой это поступление происходит.

Определение термина из Википедии

Этот термин долгое время использовался только в механической теории тепла (термодинамике), для которой оно вводилось. Но со временем это определение перешло в другие области и теории. Существует несколько определений термина «энтропия».

Википедия даёт краткое определение для нескольких областей, в которых этот термин используется:«Энтропия (от др.-греч. ἐντροπία «поворот»,«превращение») — часто употребляемый в естественных и точных науках термин. В статистической физике характеризует вероятность осуществления какого-либо макроскопического состояния. Помимо физики, этот термин широко используется в математике: теории информации и математической статистике».

Виды энтропий

Этот термин используется в термодинамике, экономике, теории информации и даже в социологии. Что же он определяет в этих областях?

В физической химии (термодинамике)


Как изменяется энтропияОсновной постулат термодинамики о равновесии: любая изолированная термодинамическая система приходит в равновесное состояние с течением времени и не может из него выйти самопроизвольно. То есть каждая система стремится в равновесное для неё состояние. И если говорить совсем простыми словами, то такое состояние характеризуется беспорядком.

Энтропия — это мера беспорядка. Как определить беспорядок? Один из способов — приписать каждому состоянию число вариантов, которыми это состояние можно реализовать. И чем больше таких способов реализации, тем больше значение энтропии. Чем больше организованно вещество (его структура), тем ниже его неопределённость (хаотичность).

Абсолютное значение энтропии (S абс.) равно изменению имеющейся у вещества или системы энергии во время теплопередачи при данной температуре. Его математическая величина определяется из значения теплопередачи (Q), разделённого на абсолютную температуру (T), при которой происходит процесс: S абс. = Q / T. Это означает, что при передаче большого количества теплоты показатель S абс. увеличится. Тот же эффект будет наблюдаться при теплопередаче в условиях низких температур.

В экономике


Энтропия сведение из википедииВ экономике используется такое понятие, как коэффициент энтропии. С помощью этого коэффициента исследуют изменение концентрации рынка и её уровень. Чем выше значение коэффициента, тем выше экономическая неопределённость и, следовательно, вероятность появления монополии снижается. Коэффициент помогает косвенно оценить выгоды, приобретённые фирмой в результате возможной монопольной деятельности или при изменении концентрации рынка.

В статистической физике или теории информации

Информационная энтропия (неопределённость)— это мера непредсказуемости или неопределённости некоторой системы. Эта величина помогает определить степень беспорядочности проводимого эксперимента или события. Чем больше количество состояний, в которых может находиться система, тем больше значение неопределённости. Все процессы упорядочивания системы приводят к появлению информации и снижению информационной неопределённости.

С помощью информационной непредсказуемости можно выявить такую пропускную способность канала, которая обеспечит надёжную передачу информации (в системе закодированных символов). А также можно частично предсказывать ход опыта или события, деля их на составные части и высчитывая значение неопределённости для каждой из них. Такой метод статистической физики помогает выявить вероятность события. С его помощью можно расшифровать закодированный текст, анализируя вероятность появления символов и их показатель энтропии.


Существует такое понятие, как абсолютная энтропия языка. Эта величина выражает максимальное количество информации, которое можно передать в единице этого языка. За единицу в этом случае принимают символ алфавита языка (бит).

В социологии

Объяснение термина энтропияЗдесь энтропия (информационная неопределённость) является характеристикой отклонения социума (системы) или его звеньев от принятого (эталонного) состояния, а проявляется это в снижении эффективности развития и функционирования системы, ухудшении самоорганизации. Простой пример: сотрудники фирмы так сильно загружены работой (выполнением большого количества отчётов), что не успевают заниматься своей основной деятельностью (выполнением проверок). В этом примере мерой нецелесообразного использования руководством рабочих ресурсов будет являться информационная неопределённость.

Энтропия: тезисно и на примерах

  • Чем больше способов реализации, тем больше информационная неопределённость.

Пример 1. Программа Т9. Если в слове будет небольшое количество опечаток, то программа легко распознает слово и предложит его замену. Чем больше опечаток, тем меньше информации о вводимом слове будет у программы. Следовательно, увеличение беспорядка приведёт к увеличению информационной неопределённости и наоборот, чем больше информации, тем меньше неопределённость.

Пример 2. Игральные кости. Выкинуть комбинацию 12 или 2 можно только одним способом: 1 плюс 1 или 6 плюс 6. А максимальным числом способов реализуется число 7 (имеет 6 возможных комбинаций). Непредсказуемость реализации числа семь самая большая в этом случае.

  • В общем смысле энтропию (S) можно понимать как меру распределения энергии. При низком значении S энергия сконцентрирована, а при высоком — распределена хаотично.

Пример. Н2О (всем известная вода) в своём жидком агрегатном состоянии будет обладать большей энтропией, чем в твёрдом (лёд). Потому что в кристаллическом твёрдом теле каждый атом занимает определённое положение в кристаллической решётке (порядок), а в жидком состоянии у атомов определённых закреплённых положений нет (беспорядок). То есть тело с более жёсткой упорядоченностью атомов имеет более низкое значение энтропии (S). Белый алмаз без примесей обладает самым низким значением S по сравнению с другими кристаллами.

  • Связь между информацией и неопределённостью.

Понятие термина энтропияПример 1. Молекула находится в сосуде, который имеет левую и правую часть. Если неизвестно, в какой части сосуда находится молекула, то энтропия (S) будет определяться по формуле S = S max = k * lgW, где k -число способов реализации, W- количество частей сосуда. Информация в этом случае будет равна нулю I = I min =0. Если же точно известно, в какой части сосуда находится молекула, то S = S min =k*ln1=0, а I = I max= log 2 W. Следовательно, чем больше информации, тем ниже значение информационной неопределённости.

Пример 2. Чем выше порядок на рабочем столе, тем больше информации можно узнать о вещах, которые на нём находятся. В этом случае упорядоченность предметов снижает энтропию системы «рабочий стол».

Пример 3. Информация о классе больше на уроке, чем на перемене. Энтропия на уроке ниже, так как ученики сидят упорядочено (больше информации о местоположении каждого ученика). А на перемене расположение учеников меняется хаотично, что повышает их энтропию.

  • Химические реакции и изменение энтропии.

Пример. При реакции щелочного металла с водой выделяется водород. Водород-это газ. Так как молекулы газа движутся хаотично и имеют высокую энтропию, то рассматриваемая реакция происходит с увеличением её значения. То есть энтропия химической системы станет выше.

В заключение


Если объединить всё вышесказанное, то получится, что энтропия является мерой беспорядка или неопределённости системы и её частей. Интересен тот факт, что всё в природе стремится к максимуму энтропии, а человек — к максимуму информации. И все рассмотренные выше теории направлены на установление баланса между стремлением человека и естественными природными процессами.

Источник: obrazovanie.guru

Определение

Энтропия (в переводе с древнегреческого – поворот, превращение) – это мера, степень неупорядоченности (хаоса) какой-либо системы. Используется в следующих точных и естественных науках:

  • В математике означает поиск логарифма числа доступных состояний системы;
  • В статистической науке – вероятностная величина наступления любого макроскопического состояния системы;
  • В термодинамике (физика) – степень необратимой диффузии энергии, т.е. стандартная величина ее потерь, которые неизбежны при взаимодействии более горячего тела с более холодным;
  • В информатике – означает информационную емкость системы. Интересным фактом является следующее: Клод Шеннон (основоположник этого термина в информационной теории) первоначально думал назвать энтропию информацией.

Сферы использования энтропии

История возникновения

Впервые понятие энтропии было введено в эпоху развития термодинамики, когда возникла необходимость в изучении процессов, происходящих внутри термодинамических тел. В 1865 году ученый-физик из Германии Рудольф Клаузиус этим термином описал состояние системы, в котором теплота имеет способность преобразовываться в иные виды энергии (механическую, химическую, световую и т.д.).

Рудольф Клаузиус

Прирост энтропии вызван притоком тепловой энергии в систему и связан с температурой, при которой этот приток возникает. Необходимость этой величины была вызвана тем, что вся физика строится на идеализации абстрактных объектов (идеальный маятник, равномерное движение, масса и т.д.).

В бытовом понимании энтропия представляет собой степень хаотичности и неопределенности системы: чем больше в системе упорядоченности, и чем больше ее элементы подчинены какому-либо порядку, тем меньше энтропия.


Пример: Шкаф – это определенная система. Если в нем все вещи лежат на своих местах, то энтропия меньше. Если же все вещи разбросаны и лежат не на своих полках, то соответственно она становится больше.

С этим термином тесно связана тепловая функция энтальпии – характеризует состояние термодинамической системы в состоянии равновесия при выборе ряда независимых переменных, таких как давление, энтропия и число частиц.

Величина, противоположная энтропии, называется экстропией.

Виды энтропии

Области применения:

  • физическая химия;
  • экономические науки;
  • статистическая физика или информационная теория;
  • социологическая наука.

Рассмотрим подробнее виды энтропии в каждой из областей ее применения.

В термодинамике

Второе начало термодинамики

В термодинамике (физической химии) энтропия – это та степень, в которой реальный процесс отклоняется от идеального. Основной постулат термодинамики, сформулированный физиками на базе изучения энтропии: каждая система термодинамики, которая изолирована от внешнего мира, постепенно становится равновесной и впоследствии не имеет возможности выйти самостоятельно из состояния равновесия. Беспорядок – основная характеристика состояния любой системы. Из него она стремится к равновесию.


Возникает вопрос: с помощью чего определить степень беспорядка?

Основной метод: каждому возможному состоянию системы присваивается число вариантных комбинаций, которыми это состояние может быть реализовано.

Вывод: чем больше число вариантов, тем больше величина энтропии. Чем больше организованности в структуре вещества, тем меньше его неупорядоченность.

Абсолютная величина энтропии равна приращению имеющейся в системе тепловой энергии в условиях теплопередачи при заданной температуре.

Клазиус определял энтропию как совокупность приведенных тепловых энергий, как функцию состояния системы, которое остается неизменным в условиях замкнутости, а в условиях открытых необратимых процессов – оно всегда положительно изменяется. Ее значение отражает связь между макро- и микросостояниями. Это единственная функциональная величина, показывающая направленность процессов. Но она не показывает сам процесс перехода состояний из одного в другое, а находится лишь исходным и итоговым состоянием системы.

В экономике

Энтропия в экономике

Коэффициент энтропии дает возможность проанализировать уровень концентрации рынка и его изменение. Чем этот коэффициент ниже, тем меньше неопределенность внешней среды, что ведет к повышению вероятности возникновения монополий. Этот показатель выступает в качестве косвенного помощника в оценивании выигрыша, который получает предприятие в ходе ведения монополистической деятельности или в условиях изменения рыночной концентрации (влияет на число потенциальных конкурентов фирмы).

В информатике или статистической физике

Энтропия в статической физике

Информационная энтропия – это степень непредсказуемости информационной системы. Этот показатель служит для определения степени хаотичности эксперимента, который проводится или произошедшего события. Значение хаотичности прямопропорционально числу состояний, нахождение системы в которых возможно. Все действия, направленные на упорядочивание системы, ведут к появлению информационных сведений о ней и снижают информационную неопределенность, которая выявляет пропускную способность информационного канала, обеспечивающую надежность и достоверность передачи информационных данных. Это позволяет прогнозировать частично возможный ход эксперимента, т.е. предсказывать вероятность того или иного события.

Пример: расшифровка закодированного текста. Для этого анализируется вероятность возникновения того или иного символа и высчитывается величина их энтропии.

В социологии

Энтропия в социологии

Энтропия – показатель, характеризующий отклонение общественной системы или ее составных частей от заданного (образцового) состояния. Проявления этого отклонения:

  • уменьшение эффективности общественного развития и жизнедеятельности общества как целостной системы;
  • снижение способности к самоорганизации.

Пример: персонал организации настолько загружен бумажной работой (составлением отчетов, ведением документации), что не может успевать выполнять свои должностные функции и обязанности (осуществление аудита). Мера неэффективного использования трудовых ресурсов собственником предприятия – это информационная неопределенность.

Примеры

Из бытовой жизни:

  1. При написании sms-сообщений на мобильном телефоне мы часто пользуемся программой Т9. Чем меньше ошибок в печатаемом нами слове, тем процесс его распознания программой будет легче и она быстрее предложит нам его замену. Вывод: чем больше беспорядка, тем больше информационная неопределенность.
  2. Когда мы бросаем два кубика при игре в кости, существует только один способ выкинуть комбинацию 2 или 12 (1 и 1, 6 и 6). Самое максимальное число способов выкинуть число 7 (6 вероятных комбинаций). Непредсказуемость в данном случае будет максимальной.
  3. Информация о количестве учеников больше в течение урока, чем во время перемены. Поскольку на уроке каждый ученик сидит на своем месте, то энтропия ниже. За пределами класса для передвижения школьников характерна хаотичность, что ведет к увеличению значения энтропии.
  4. Если прибрать на рабочей парте, разложить предметы по своим местам, то можно больше получить информации о том или ином предмете, находящемся на ней. Упорядоченность вещей на парте снижает величину энтропии.

Источник: advi.club

Дополнительным измерителем уровня концентрации в отрасли может служить индекс энтропии, который показывает степень неупорядоченности , хаотичности рынка.

Показывает среднюю долю фирм, действующих на рынке, взвешенную по натуральному логарифму обратной ей величины:

Показатель энтропии это.

Индекс энтропии представляет собой показатель, обратный концентрации: чем выше показатель энтропии, тем ниже концентрация продавцов на рынке, и наоборот, чем выше показатель энтропии, тем ниже возможности продавцов влиять на рыночную цену. Для сравнения показателей энтропии на разных рынках часто используют относительный показатель энтропии:

Показатель энтропии это

Данный показатель принимает значения от нуля до единицы и лучше интерпретируется при осуществлении анализа уровня конкуренции.

Индекс Линда.

В странах ЕЭС для анализа рыночных структур широко используется индекс, предложенный сотрудником Комиссии ЕЭС в Брюсселе Ремо Линда. Этот индекс, как и индекс концентрации, рассчитывается лишь для нескольких (m) крупнейших фирм и, следовательно, также не учитывает ситуации на "окраине" рынка. Однако в отличие от индекса концентрации он ориентирован на учет различий в "ядре" рынка. Для двух крупнейших фирм он равен процентному отношению их рыночных долей:

Показатель энтропии это

Если k1 = 50%, k2= 25%, то IL= 200%.

Для трех крупнейших фирм индекс Линда определяется по формуле:

Показатель энтропии это

Для четырех фирм:

Показатель энтропии это

Однако самым сложным при анализе рыночных структур является не выбор индекса, а определение границ рынка в пространстве товаров. Следует ли ограничить рынок лишь определенной маркой товара, включить ли в него и другие его марки, или расширить границы рынка, включив в него все взаимозаменяемые товары, — вот вопросы, которые приходится решать антимонопольным службам всех стран.

Обычно рекомендуется начинать с изучения рынка данного товара, затем принять во внимание наличие товаров-заменителей, затем расширить анализ, включив в него заменители этих заменителей, и т. д., до тех пор, пока не появится определенный разрыв в отношениях заменяемости. Этот разрыв и образует границы рынка.

Концентрация на отраслевом рынке достаточно часто оценивается с позиции неравномерности распределения единиц совокупности по уровню признака.

Источник: studopedia.ru

Термодинамика, основы которой должны быть известны каждому ученику, наука занятная. Самым занятным для многих был вопрос — почему у термодинамики есть целых 2 начала и ни одного конца? Если с первыми 2 началами термодинамики особых непонятностей нет, то 3 вызывает немало споров даже в кругу ученых.

Источник изображения: coco02.net

Для 3 начала термодинамики имеется множество формулировок — автору статьи известно 9, и он полагает наиболее доступной формулировку в виде тепловой теоремы Нернста. Она гласит — "Абсолютный нуль недостижим". Однако в большинство учебников общей физики вошла иная формулировка — "Энтропия замкнутой системы нарастает".

Здесь сразу начинаются проблемы — понять, что есть энтропия реально сложно. Впервые понятие энтропии ввел германский физик Рудольф Клаузиус. С помощью этой функции он описывал возможность тепла преобразовываться в иные виды энергии. Длительное время термин «энтропия» применялся исключительно в физике, позднее он перешел и в прочие науки.

Энтропия в физике

Согласно термодинамике, всякая замкнутая система стремится достичь равновесного состояния — это значит перейти в положение, когда нет никакого излучения энергии или ее перехода из одного состояния в другое. Выйти из такого состояния невозможно и она характеризуется максимальным уровнем беспорядка. Таким образом — энтропия мера беспорядка. Чем он выше, тем больше и значение энтропии. Чем сложнее организована структура вещества, тем меньше уровень энтропии и выше вероятность ее распада.

Источник изображения: gutuka.co.ke

Например, Останкинская телевышка весьма сложная структура, она стремится к упрощению. Если за ней не смотреть и не ремонтировать, то через определенный промежуток времени конструкция телевышки развалится на составляющие части. Беспорядок сооружения, а следовательно и энтропия, увеличатся.

Еще одним способом подачи энтропии в физике является ее определение, как разность между идеальным процессом, описываемым формулами, и процессом реальным. Чтобы не усложнять статью рассмотрим это явление на простом примере.

Человек ставит свой мобильный телефон на зарядку. Идеальным будет вариант, когда вся полученная электрическая энергия перейдет в химическую энергию аккумулятора, который затем снова будет преобразовывать ее в электроэнергию необходимую для питания сотового. На самом деле, все далеко не так — часть энергии полученной из электросети необратимо тратится на нагрев блока питания, проводов и самого аккумулятора. В этом несложно убедиться, прикоснувшись к блоку питания или телефону в процессе подзарядки — они будут теплые. Энергия, преобразовавшаяся в тепло, и есть в данной ситуации энтропия.

Самые распространенные формулировки энтропии в физике

Многие известные физики пытались доступным для простых людей объяснить понятие энтропии. Выделим 3 наиболее известные формулировки объяснения.

Утверждение Клаузиуса

Нагрев тела с более высокой температурой невозможен посредством тела с более низкой температурой.

Источник изображения:pixabay.com

На примере это выглядит так — поставить чайник с водой на кусок льда можно (априори температура воды выше температуры льда), но дождаться, что вода закипит не получится. Хотя первые 2 начала термодинамики не отрицают подобной возможности.

Формулировка Томсона

В замкнутой системе невозможен процесс, единственным результатом которого была бы работа, совершаемая за счет тепловой энергии полученной от какого-либо тела.

Подобный вариант формулировки означает, что вечный двигатель построить в принципе невозможно.

Утверждение Больцмана

Уменьшение энтропии в замкнутой системе невозможно.

Эта формулировка вызывает множество споров, хотя интуитивно все понятно. В заброшенном жилище будет нарастать хаос — осядет пыль, некоторые вещи развалятся. Навести порядок можно, но только приложив внешнюю энергию, то есть работу уборщика.

Проблема в том, что Вселенная в современных представлениях является замкнутой системой. Образовалась она где-то 14-15 миллиардов лет назад. За это время ее энтропия привела бы к тому, что галактики распались, звезды погасли и никаких новых звезд не появилось бы в принципе. А ведь нашему Солнцу не больше 5 миллиардов лет, да и Вселенная в целом не пришла в состояние хаоса.

Источник изображения: pikby.com

Следовательно, Вселенная получает подпитку энергией извне. Вот только откуда?

Энтропия в химии

Источник изображения: freepng.com

Многие химические процессы являются необратимыми и происходят с выбросом энергии. Например взрыв при сотрясении нитроглицерина никого не удивляет — это и есть химическая реакция сопровождаемая резким увеличением энтропии.

Экономика и энтропия

Специалистам в экономике известно понятие коэффициент энтропии. Этот коэффициент показывает изменение уровня концентрации рынка и возможность появления монополий. С ростом этого показателя вероятность захвата рынка монополистами снижается. Этот коэффициент помогает определить выгоды монопольной деятельности в том или ином сегменте рынка.

Энтропия и социология

Под энтропией в социологии полагают информационную неопределенность, которая характеризуется отклонением системы (социума), или ее частей (звеньев), от идеального (эталонного) состояния.

Источник изображения: istockphoto.com

Пример можно взять следующий — некая организация занимается проверкой деятельности других организаций. За проверкой следует составление отчета. Если руководство требует очень подробные отчеты, то наступает момент, когда почти все время сотрудников уходит на составление этих самых отчетов. Время расходуемое на основную деятельность сотрудников (собственно проверки) становится недопустимо малым. Это положение характеризуется высоким состоянием информационной неопределенности (энтропии). Руководство в такой ситуации обязано принять меры по упрощению отчетности.

Если вам понравилась статья, то поставьте лайк и подпишитесь на канал Научпоп. Наука для всех. Оставайтесь с нами, друзья! Впереди ждёт много интересного!

Источник: zen.yandex.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.