Энтропия растет


Сегодня мы вернемся к термодинамике. Попробуем понять, почему хаос так важен и может ли он объяснить загадку, как работает время. Обычно мы говорим о космологии, теории относительности, квантовой механике, физике частиц и другом, но что плохого в том, чтобы на миг нырнуть в 19 век в объятья старомодной термодинамики? Термодинамика не так уж плоха: она помогла осуществить промышленную революцию и в конечном итоге будет ответственна за смерть вселенной. Она заслуживает вашего уважения.

Сальвадор Дали

Вопрос будет следующим:

«Допустим, энтропия — это мера беспорядка объектов. Но что в ней такого важного, что она должна быть законом?».

Если вы посмотрите почти на все законы физики, время будет течь почти с опозданием. Сделайте фильм из столкновения двух электронов, а потом запустите фильм в обратном порядке, и вторая версия будет выглядеть так же нормально и физически достоверно, как и первый вариант. На микроскопическом уровне время кажется практически симметричным. Потому что, как мы писали, на этом уровне не работает привычная нам термодинамика.


На макроскопическом уровне все совершенно иначе. Вы не помните будущее, например, не можете склеить яйцо или разделить коктейль на составляющие. И говоря о возможности путешествий во времени, мы подразумеваем только одну стрелу времени, один вектор, одно направление: вперед.

Есть один общий знаменатель, отличающий будущее от прошлого: все запутывается. Вы знаете это как «второй закон термодинамики». Или не знаете. Мне все равно.

Второй закон гласит, буквально, что все разваливается, или что вещи становятся все более и более хаотичными и беспорядочными со временем, но это не совсем так. Правильно так: полная энтропия замкнутой системы возрастает со временем. Энтропия является мерой числа способов, которыми вы можете переворачивать вещи с ног на голову и сохранять все макроскопические величины неизменными.

Весьма школьный пример

На примере все станет понятным. Допустим, у вас было три молекулы воздуха и вы поместили их в левой части коробки. Это очень аккуратный способ организовать вещи. Позвольте природе сделать свое дело — и молекулы разлетятся в разные стороны, и каждая из них проведет половину своего времени в правой части коробки, и другую половину — в левой части.


В любой момент времени вы будете видеть случайный снимок трех молекул. Есть восемь разных путей организовать молекулы, но только два из них (ЛЛЛ, ППП) разместят все три молекулы в одной части контейнера. Это всего лишь 25 % вероятности. В остальное время атомы, скорее всего, будут распределены равномерно. И равномерное распределение — это более высокое состояние энтропии, чем концентрированное.

Вы можете играть в эту же игру, набрав полную ладонь монет и подбрасывая их в воздух. Орел и решка — это правая и левая часть коробки, и наоборот. Проделайте этот жест несколько раз и увидите, что молекулы почти всегда равномерно распределяются.

Большие числа превращают вероятность в закон

Если вы увеличите число молекул воздуха, к примеру, до 1026 или выше, вероятность подсказывает, что случайные движения в итоге распределят молекулы «равномерно». Благодаря квантовой механике, случайность становится принципиальной составляющей всего этого. То есть, поскольку есть техническая вероятность того, что все молекулы воздуха внезапно покинут вашу спальню, пока вы спите, за несколько минут, это явно не то, чего стоит бояться ночью.

Растущая энтропия — на самом деле закон, поскольку во Вселенной так много частиц, что вероятность того, что все они спонтанно выстроятся в состояние низкой энтропии, ошеломляюще мала. Этот же тип случайно работает в отношении азартных игр и прогнозирования погоды.


Ну или еще пример. Вам выпадает решка два раза подряд, и вы совсем не удивляетесь этому. Но если кому-то решка выпадает сто раз кряду, это становится подозрительным. Чтобы оценить масштаб такого события, представьте себе: если вы будете подбрасывать монетку 10 раз в секунду, у вас уйдет времени в триллион раз больше нынешнего возраста вселенной, прежде чем вы дождетесь результата. Грубо говоря, в определенный момент система становится настолько большой, что шанс на то, что энтропия будет уменьшаться, не просто мал, но крайне близок к нулю. Поэтому мы называем это «вторым законом».

Креационисты среди вас могут использовать это как доказательство, что сложные вещи (вроде людей или динозавров) никогда не смогли бы сформироваться. В конце концов, вы ведь высоко упорядоченный человек, стоит полагать. Если вы облако газа, примите мои извинения. Но если предположить, что вы человек, нет ничего странного в том, что вы существуете как маленький шанс высокого порядка.

Суть правила в том, что энтропия растет во всей вселенной. Например, если вы сделаете хорошенький холодильник, полный холодного воздуха, вы сделаете это за счет высокой энтропии горячего воздуха. Вот почему кондиционер нуждается в выхлопе, а обогреватель — нет. По этой же причине вы не можете построить вечный двигатель. Часть энергии всегда будет преобразовываться в тепло.

Энтропия непрерывно увеличивается со временем. Вы сидите в горячей ванне в прохладной комнате, чувствуете себя тепло и уютно, но потом события начинают принимать угрожающий поворот: вода в номере по температуре приближается к воздуху, вам становится холодно, вас атакуют мурашки.

То же самое касается будущего Вселенной. С течением времени тепло равномерно распределится во Вселенной. Звезды выгорят, черные дыры испарятся, станет темно и холодно. Бум.

Время и второй закон


Физики постоянно спорят на тему того, работает ли второй закон термодинамики наоборот. Другими словами, определяется ли течение времени увеличением энтропии во Вселенной? Шон Кэрролл написал очень интересную книгу на эту тему. Стивен Хокинг лихо связывал «психологическое время», способ нашего запоминания вещей, с «энтропийным временем». Другими словами, если поток энтропии обратить вспять, время будет течь в обратном направлении.

Одной из причин, почему вообще эти идеи набирают обороты, является загадка наблюдателя. Юная вселенная, судя по всему, находилась в состоянии высокого порядка, но нет никаких фундаментальных причин, почему это должно быть так. Вселенная, созданная сразу после Большого Взрыва, должна была бы находиться в состоянии полного хаоса, но вместо этого она была невероятно упорядоченной. Гравитационная система высокой энтропии свернулась в комки (произведя звезды, галактики и черные дыры), но вселенная была гладкой. Почему?

Другие заходят еще дальше. Эрик Верлинде, например, утверждает, что такие явления, как гравитация, вытекают из второго закона термодинамики (и теории струн). Стоит отметить, что интересных идей много. Многие говорят, что время заставляет энтропию расти, но не энтропия порождает время. Для кого-то энтропия это просто то, что происходит.


Или должно произойти с высокой вероятностью.

Источник: Hi-News.ru

Этот пост является вольным переводом ответа, который Mark Eichenlaub дал на вопрос What’s an intuitive way to understand entropy?, заданный на сайте Quora

Энтропия. Пожалуй, это одно из самых сложных для понимания понятий, с которым вы можете встретиться в курсе физики, по крайней мере если говорить о физике классической. Мало кто из выпускников физических факультетов может объяснить, что это такое. Большинство проблем с пониманием энтропии, однако, можно снять, если понять одну вещь. Энтропия качественно отличается от других термодинамических величин: таких как давление, объём или внутренняя энергия, потому что является свойством не системы, а того, как мы эту систему рассматриваем. К сожалению в курсе термодинамики её обычно рассматривают наравне с другими термодинамическими функциями, что усугубляет непонимание.
энтропия

Если в двух словах, то

Энтропия — это то, как много информации вам не известно о системе


Например, если вы спросите меня, где я живу, и я отвечу: в России, то моя энтропия для вас будет высока, всё-таки Россия большая страна. Если же я назову вам свой почтовый индекс: 603081, то моя энтропия для вас понизится, поскольку вы получите больше информации.
почтовый индекс
Почтовый индекс содержит шесть цифр, то есть я дал вам шесть символов информации. Энтропия вашего знания обо мне понизилась приблизительно на 6 символов. (На самом деле, не совсем, потому что некоторые индексы отвечают большему количеству адресов, а некоторые — меньшему, но мы этим пренебрежём).
игральные кости
Или рассмотрим другой пример. Пусть у меня есть десять игральных костей (шестигранных), и выбросив их, я вам сообщаю, что их сумма равна 30. Зная только это, вы не можете сказать, какие конкретно цифры на каждой из костей — вам не хватает информации. Эти конкретные цифры на костях в статистической физике называют микросостояниями, а общую сумму (30 в нашем случае) — макросостоянием. Существует 2 930 455 микросостояний, которые отвечают сумме равной 30. Так что энтропия этого макросостояния равна приблизительно 6,5 символам (половинка появляется из-за того, что при нумерации микросостояний по порядку в седьмом разряде вам доступны не все цифры, а только 0, 1 и 2).


А что если бы я вам сказал, что сумма равна 59? Для этого макросостояния существует всего 10 возможных микросостояний, так что его энтропия равна всего лишь одному символу. Как видите, разные макросостояния имеют разные энтропии.

Пусть теперь я вам скажу, что сумма первых пяти костей 13, а сумма остальных пяти — 17, так что общая сумма снова 30. У вас, однако, в этом случае имеется больше информации, поэтому энтропия системы для вас должна упасть. И, действительно, 13 на пяти костях можно получить 420-ю разными способами, а 17 — 780-ю, то есть полное число микросостояний составит всего лишь 420х780 = 327 600. Энтропия такой системы приблизительно на один символ меньше, чем в первом примере.

Мы измеряем энтропию как количество символов, необходимых для записи числа микросостояний. Математически это количество определяется как логарифм, поэтому обозначив энтропию символом S, а число микросостояний символом Ω, мы можем записать:

S = log Ω

Это есть ничто иное как формула Больцмана (с точностью до множителя k, который зависит от выбранных единиц измерения) для энтропии. Если макросостоянию отвечают одно микросостояние, его энтропия по этой формуле равна нулю. Если у вас есть две системы, то полная энтропия равна сумме энтропий каждой из этих систем, потому что log(AB) = log A + log B.
больцман
Из приведённого выше описания становится понятно, почему не следует думать об энтропии как о собственном свойстве системы. У системы есть опеделённые внутренняя энергия, импульс, заряд, но у неё нет определённой энтропии: энтропия десяти костей зависит от того, известна вам только их полная сумма, или также и частные суммы пятёрок костей.


Другими словами, энтропия — это то, как мы описываем систему. И это делает её сильно отличной от других величин, с которыми принято работать в физике.

Классической системой, которую рассматривают в физике, является газ, находящийся в сосуде под поршнем. Микросостояние газа — это положение и импульс (скорость) каждой его молекулы. Это эквивалентно тому, что вы знаете значение, выпавшее на каждой кости в рассмотренном раньше примере. Макросостояние газа описывается такими величинами как давление, плотность, объём, химический состав. Это как сумма значений, выпавших на костях.
газ в сосуде под поршнем
Величины, описывающие макросостояние, могут быть связаны друг с другом через так называемое «уравнение состояния». Именно наличие этой связи позволяет, не зная микросостояний, предсказывать, что будет с нашей системой, если начать её нагревать или перемещать поршень. Для идеального газа уравнение состояния имеет простой вид:

p = ρT

хотя вы, скорее всего, лучше знакомы с уравнением Клапейрона — Менделеева pV = νRT — это то же самое уравнение, только с добавлением пары констант, чтобы вас запутать. Чем больше микросостояний отвечают данному макросостоянию, то есть чем больше частиц входят в состав нашей системы, тем лучше уравнение состояния её описывают. Для газа характерные значения числа частиц равны числу Авогадро, то есть составляют порядка 1023.


Величины типа давления, температуры и плотности называются усреднёнными, поскольку являются усреднённым проявлением постоянно сменяющих друг друга микросостояний, отвечающих данному макросостоянию (или, вернее, близким к нему макросостояниям). Чтобы узнать в каком микросостоянии находится система, нам надо очень много информации — мы должны знать положение и скорость каждой частицы. Количество этой информации и называется энтропией.

Как меняется энтропия с изменением макросостояния? Это легко понять. Например, если мы немного нагреем газ, то скорость его частиц возрастёт, следовательно, возрастёт и степень нашего незнания об этой скорости, то есть энтропия вырастет. Или, если мы увеличим объём газа, отведя поршень, увеличится степень нашего незнания положения частиц, и энтропия также вырастет.

Если мы рассмотрим вместо газа какое-нибудь твёрдое тело, особенно с упорядоченной структурой, как в кристаллах, например, кусок металла, то его энтропия будет невелика. Почему? Потому что зная положение одного атома в такой структуре, вы знаете и положение всех остальных (они же выстроены в правильную кристаллическую структуру), скорости же атомов невелики, потому что они не могут улететь далеко от своего положения и лишь немного колеблются вокруг положения равновесия.

кристаллическая стурктура
Если кусок металла находится в поле тяготения (например, поднят над поверхностью Земли), то потенциальная энергия каждого атома в металле приблизительно равна потенциальной энергии других атомов, и связанная с этой энергией энтропия низка. Это отличает потенциальную энергию от кинетической, которая для теплового движения может сильно меняться от атома к атому.

Если кусок металла, поднятый на некоторую высоту, отпустить, то его потенциальная энергия будет переходить в кинетическую энергию, но энтропия возрастать практически не будет, потому что все атомы будут двигаться приблизительно одинаково. Но когда кусок упадёт на землю, во время удара атомы металла получат случайное направление движения, и энтропия резко увеличится. Кинетическая энергия направленного движения перейдёт в кинетическую энергию теплового движения. Перед ударом мы приблизительно знали, как движется каждый атом, теперь мы эту информацию потеряли.

Второй закон термодинамики утверждает, что энтропия (замкнутой системы) никогда не уменьшается. Мы теперь можем понять, почему: потому что невозможно внезапно получить больше информации о микросостояниях. Как только вы потеряли некую информацию о микросостоянии (как во время удара куска металла об землю), вы не можете вернуть её назад.
нельзя просто так взять и объяснить второй закон термодинамики
Давайте вернёмся обратно к игральным костям. Вспомним, что макросостояние с суммой 59 имеет очень низкую энтропию, но и получить его не так-то просто. Если бросать кости раз за разом, то будут выпадать те суммы (макросостояния), которым отвечает большее количество микросостояний, то есть будут реализовываться макросостояния с большой энтропией. Самой большой энтропией обладает сумма 35, и именно она и будет выпадать чаще других. Именно об этом и говорит второй закон термодинамики. Любое случайное (неконтролируемое) взаимодействие приводит к росту энтропии, по крайней мере до тех пор, пока она не достигнет своего максимума.

И ещё один пример, чтобы закрепить сказанное. Пусть у нас имеется контейнер, в котором находятся два газа, разделённых расположенной посередине контейнера перегородкой. Назовём молекулы одного газа синими, а другого — красными.

Если открыть перегородку, газы начнут перемешиваться, потому что число микросостояний, в которых газы перемешаны, намного больше, чем микросостояний, в которых они разделены, и все микросостояния, естественно, равновероятны. Когда мы открыли перегородку, для каждой молекулы мы потеряли информацию о том, с какой стороны перегородки она теперь находится. Если молекул было N, то утеряно N бит информации (биты и символы, в данном контексте, это, фактически, одно и тоже, и отличаются только неким постоянным множителем).

Ну и напоследок рассмотрим решение в рамках нашей парадигмы знаменитого парадокса демона Максвелла. Напомню, что он заключается в следующем. Пусть у нас есть перемешанные газы из синих и красных молекул. Поставим обратно перегородку, проделав в ней небольшое отверстие, в которое посадим воображаемого демона. Его задача — пропускать слева направо только красных, и справа налево только синих. Очевидно, что через некоторое время газы снова будут разделены: все синие молекулы окажутся слева от перегородки, а все красные — справа.
демон максвелла
Получается, что наш демон понизил энтропию системы. С демоном ничего не случилось, то есть его энтропия не изменилась, а система у нас была закрытой. Получается, что мы нашли пример, когда второй закон термодинамики не выполняется! Как такое оказалось возможно?

Решается этот парадокс, однако, очень просто. Ведь энтропия — это свойство не системы, а нашего знания об этой системе. Мы с вами знаем о системе мало, поэтому нам и кажется, что её энтропия уменьшается. Но наш демон знает о системе очень много — чтобы разделять молекулы, он должен знать положение и скорость каждой из них (по крайней мере на подлёте к нему). Если он знает о молекулах всё, то с его точки зрения энтропия системы, фактически, равна нулю — у него просто нет недостающей информации о ней. В этом случае энтропия системы как была равна нулю, так и осталась равной нулю, и второй закон термодинамики нигде не нарушился.

Но даже если демон не знает всей информации о микросостоянии системы, ему, как минимум, надо знать цвет подлетающей к нему молекулы, чтобы понять, пропускать её или нет. И если общее число молекул равно N, то демон должен обладать N бит информации о системе — но именно столько информации мы и потеряли, когда открыли перегородку. То есть количество потерянной информации в точности равно количеству информации, которую необходимо получить о системе, чтобы вернуть её в исходное состояние — и это звучит вполне логично, и опять же не противоречит второму закону термодинамики.

Источник: habr.com

В древние времена самым простым, а иногда и единственным способом для достижения чего-либо невозможного человек считал обращение к помощи потусторонних сил.

Позже, вместе с бурным развитием наук появилась надежда, что технологический прогресс поможет устранить необходимость привлечения сверхъестественного для решения насущных проблем.

Но ведь потребности человека фактически не удовлетворимы, а границы желаемого расширяются намного быстрее, пределов достижимого.

Поэтому даже ученые иногда прибегают к помощи демонов, особенно когда им необходимо бросить вызов какому-нибудь фундаментальному научному закону. Например, второму началу термодинамики, неумолимая суровость которого, теоретически когда-нибудь приведет к концу своего существования всю нашу Вселенную.

И вот, примерно полтора века назад, чтобы обойти этот закон Джеймс Клерк Максвелл призвал демона, которого теперь все так и называют — «демон Максвелла».

Правда «демоном» его назвал другой знаменитый ученый — Уильям Томсон, которого в свою очередь королева Виктория в благодарность за заслуги перед короной нарекла «бароном Кельвином», именем, под которым он с тех пор и известен всему миру.

Кстати, Томсон в 1851 году и сформулировал одно из определений второго закона термодинамики, который в его интерпретации звучит следующим образом: невозможен процесс, единственным результатом которого является получение системой теплоты от одного источника (теплового резервуара) и выполнение ею эквивалентного количества работы.

При этом Томсон опирался на исследования Сади Карно, который в 1824 году в своей работе «Размышления о движущей силе огня и о машинах, способных развивать эту силу», посвящённой паровым машинам, первым сформулировал идею, заложившую основу для понимания второго начала термодинамики:

при отсутствии разности температур теплота не может быть преобразована в работу; для постоянного производства работы тепловой машине необходимо иметь по крайней мере два тепловых резервуара с различными температурами — нагреватель и холодильник.

Но и здесь, если говорить о названиях, не все просто и однозначно. На самом деле, исторически первая формулировка закона и его определение «вторым началом термодинамики» принадлежат Рудольфу Клаузиусу.

Более того, понятие энтропии, её обозначение и название тоже были введены Клаузиусом в 1865 году.

Хотя, когда речь заходит об энтропии, большинство в первую очередь вспоминает Людвига Больцмана.

Энтропия — степень упорядоченности системы.

И раз речь, наконец, дошла до энтропии, то самое время вернуться к нашему демону.

Итак, «демон» впервые появился в письме, которое Максвелл написал Питеру Гатри Тейту 11 декабря 1867 года в виде описания мысленного эксперимента, гипотетически позволяющего нарушать второй закон термодинамики. Позже он снова появился в письме Джону Уильяму Стратту в 1871 году, и только потом он был окончательно представлен публике в книге Максвелла 1872 года по термодинамике под названием «Теория тепла».

В своих письмах и книгах Максвелл описывал агента, открывающего дверь между комнатами, как «определенное существо» («finite being»). Как уже упоминалось, Уильям Томсон, он же лорд Кельвин, первым использовавший слово «демон» для концепции Максвелла в журнале Nature в 1874 году, на самом деле имел в виду посредническую, а не злобную коннотацию этого слова.

Согласно описанию Максвелла суть его мысленного эксперимента состоит в следующем:

представим себе герметичный контейнер, разделенный на две одинаковые части A и B газонепроницаемой перегородкой, в которой имеется единственная дверца. В начале опыта обе половины заполнены газом определенной температуры. Как известно температура вещества зависит от средней скорости движения молекул в нем, но при этом отдельные молекулы двигаются с разной скоростью — есть быстрые и медленные молекулы. Задача «демона» состоит в том, чтобы распознавать и отслеживать быстрые и медленные молекулы, и открывать дверцу в нужный момент, чтобы молекулы с высокой кинетической энергией переходили из секции от A в секцию B, а молекулы с низкой кинетической энергией из B в A. Таким образом, он без затрат работы поднимет температуру секции B и понизит температуру секции A, что противоречит второму закону термодинамики.
При этом тепловая машина, работающая между секциями A и B, могла бы извлечь полезную работу из этой разницы температур.

Но это было бы слишком здорово, практически прямой путь к созданию вечного двигателя.

Все надежды на привлечение «демона Максвелла» к такому нужному делу были развеяны в 1929 году Лео Сцилардом. Сцилард обратил внимание на то, что реальный демон Максвелла должен иметь какие-то средства измерения молекулярной скорости и что получение информации тоже потребует затрат энергии. Поскольку демон и газ взаимодействуют, следует учитывать общую энтропию газа и демона вместе взятых. Расход энергии демоном вызовет увеличение энтропии демона, которое будет больше, чем понижение энтропии газа.

Звучит исчерпывающе! Казалось бы, вопрос закрыт? Снова «невозможное изобретение»!

И да, и нет.

Да – такое изобретение воплотить невозможно. Но, нет — вопрос не закрыт до сих пор.

Поскольку нарушение законов физики, в отличие от прочих законов, не грозит перспективой наказания, а вот на премию типа Нобелевской нарушитель вполне может рассчитывать, то желающих представить миру свою версию демона Максвелла превеликое множество.

Только за последнее десятилетие было предпринято несколько эффектных попыток.

В 2010 году мысленный эксперимент в реальности удалось воплотить физикам из университетов Тюо и Токийского университета.

Источник: pikabu.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.