Энтропия это простыми словами в физике


В современном мире статистическая наука является неотъемлемой частью в жизни каждого общества. Она дает возможность определить динамику развития любого явления или процесса. Одной из вероятностных статистических величин, с помощью которой можно объяснить практически все процессы человеческой жизнедеятельности как социальные, так и индвидуальные, является энтропия. Что же означает простыми словами этот многогранный термин?

Содержание:

  1. Определение
  2. История возникновения
  3. Виды энтропии
    1. В термодинамике
    2. В экономике
    3. В информатике или статистической физике
    4. В социологии
  4. Примеры

Определение

Энтропия (в переводе с древнегреческого – поворот, превращение) – это мера, степень неупорядоченности (хаоса) какой-либо системы. Используется в следующих точных и естественных науках:

  • В математике означает поиск логарифма числа доступных состояний системы;

  • В статистической науке – вероятностная величина наступления любого макроскопического состояния системы;
  • В термодинамике (физика) – степень необратимой диффузии энергии, т.е. стандартная величина ее потерь, которые неизбежны при взаимодействии более горячего тела с более холодным;
  • В информатике – означает информационную емкость системы. Интересным фактом является следующее: Клод Шеннон (основоположник этого термина в информационной теории) первоначально думал назвать энтропию информацией.

Сферы использования энтропии

История возникновения

Впервые понятие энтропии было введено в эпоху развития термодинамики, когда возникла необходимость в изучении процессов, происходящих внутри термодинамических тел. В 1865 году ученый-физик из Германии Рудольф Клаузиус этим термином описал состояние системы, в котором теплота имеет способность преобразовываться в иные виды энергии (механическую, химическую, световую и т.д.).

Рудольф Клаузиус


Прирост энтропии вызван притоком тепловой энергии в систему и связан с температурой, при которой этот приток возникает. Необходимость этой величины была вызвана тем, что вся физика строится на идеализации абстрактных объектов (идеальный маятник, равномерное движение, масса и т.д.).

В бытовом понимании энтропия представляет собой степень хаотичности и неопределенности системы: чем больше в системе упорядоченности, и чем больше ее элементы подчинены какому-либо порядку, тем меньше энтропия.

Пример: Шкаф – это определенная система. Если в нем все вещи лежат на своих местах, то энтропия меньше. Если же все вещи разбросаны и лежат не на своих полках, то соответственно она становится больше.

С этим термином тесно связана тепловая функция энтальпии – характеризует состояние термодинамической системы в состоянии равновесия при выборе ряда независимых переменных, таких как давление, энтропия и число частиц.

Величина, противоположная энтропии, называется экстропией.

Виды энтропии

Области применения:

  • физическая химия;
  • экономические науки;
  • статистическая физика или информационная теория;
  • социологическая наука.

Рассмотрим подробнее виды энтропии в каждой из областей ее применения.

В термодинамике

Второе начало термодинамики


В термодинамике (физической химии) энтропия – это та степень, в которой реальный процесс отклоняется от идеального. Основной постулат термодинамики, сформулированный физиками на базе изучения энтропии: каждая система термодинамики, которая изолирована от внешнего мира, постепенно становится равновесной и впоследствии не имеет возможности выйти самостоятельно из состояния равновесия. Беспорядок – основная характеристика состояния любой системы. Из него она стремится к равновесию.

Возникает вопрос: с помощью чего определить степень беспорядка?

Основной метод: каждому возможному состоянию системы присваивается число вариантных комбинаций, которыми это состояние может быть реализовано.

Вывод: чем больше число вариантов, тем больше величина энтропии. Чем больше организованности в структуре вещества, тем меньше его неупорядоченность.

Абсолютная величина энтропии равна приращению имеющейся в системе тепловой энергии в условиях теплопередачи при заданной температуре.

Клазиус определял энтропию как совокупность приведенных тепловых энергий, как функцию состояния системы, которое остается неизменным в условиях замкнутости, а в условиях открытых необратимых процессов – оно всегда положительно изменяется. Ее значение отражает связь между макро- и микросостояниями. Это единственная функциональная величина, показывающая направленность процессов. Но она не показывает сам процесс перехода состояний из одного в другое, а находится лишь исходным и итоговым состоянием системы.

В экономике


Энтропия в экономике

Коэффициент энтропии дает возможность проанализировать уровень концентрации рынка и его изменение. Чем этот коэффициент ниже, тем меньше неопределенность внешней среды, что ведет к повышению вероятности возникновения монополий. Этот показатель выступает в качестве косвенного помощника в оценивании выигрыша, который получает предприятие в ходе ведения монополистической деятельности или в условиях изменения рыночной концентрации (влияет на число потенциальных конкурентов фирмы).

В информатике или статистической физике

Энтропия в статической физике

Информационная энтропия – это степень непредсказуемости информационной системы. Этот показатель служит для определения степени хаотичности эксперимента, который проводится или произошедшего события.
ачение хаотичности прямопропорционально числу состояний, нахождение системы в которых возможно. Все действия, направленные на упорядочивание системы, ведут к появлению информационных сведений о ней и снижают информационную неопределенность, которая выявляет пропускную способность информационного канала, обеспечивающую надежность и достоверность передачи информационных данных. Это позволяет прогнозировать частично возможный ход эксперимента, т.е. предсказывать вероятность того или иного события.

Пример: расшифровка закодированного текста. Для этого анализируется вероятность возникновения того или иного символа и высчитывается величина их энтропии.

В социологии

Энтропия в социологии

Энтропия – показатель, характеризующий отклонение общественной системы или ее составных частей от заданного (образцового) состояния. Проявления этого отклонения:

  • уменьшение эффективности общественного развития и жизнедеятельности общества как целостной системы;
  • снижение способности к самоорганизации.

Пример: персонал организации настолько загружен бумажной работой (составлением отчетов, ведением документации), что не может успевать выполнять свои должностные функции и обязанности (осуществление аудита). Мера неэффективного использования трудовых ресурсов собственником предприятия – это информационная неопределенность.

Примеры

Из бытовой жизни:


  1. При написании sms-сообщений на мобильном телефоне мы часто пользуемся программой Т9. Чем меньше ошибок в печатаемом нами слове, тем процесс его распознания программой будет легче и она быстрее предложит нам его замену. Вывод: чем больше беспорядка, тем больше информационная неопределенность.
  2. Когда мы бросаем два кубика при игре в кости, существует только один способ выкинуть комбинацию 2 или 12 (1 и 1, 6 и 6). Самое максимальное число способов выкинуть число 7 (6 вероятных комбинаций). Непредсказуемость в данном случае будет максимальной.
  3. Информация о количестве учеников больше в течение урока, чем во время перемены. Поскольку на уроке каждый ученик сидит на своем месте, то энтропия ниже. За пределами класса для передвижения школьников характерна хаотичность, что ведет к увеличению значения энтропии.
  4. Если прибрать на рабочей парте, разложить предметы по своим местам, то можно больше получить информации о том или ином предмете, находящемся на ней. Упорядоченность вещей на парте снижает величину энтропии.

Источник: advi.club

Что такое энтропия: просто о сложном


Понятие “Энтропия” (ударение на последнем слоге) впервые появилось в термодинамике. Там оно обозначает степень рассеивания энергии в замкнутой системе. В общем смысле под энтропией понимают степень развития хаоса или разрушения первоначально установленного порядка в замкнутой системе.

Энтропия в закрытой системе, как её понимают физики

Пример из жизни: Возьмём некую замкнутую систему. Допустим, Ребенок + Кожаный мяч в комнате. Ребенок произвольно пользуется мячом – играет, ударяет об пол, подбрасывает к потолку… Через 6 месяцев активного использования мяч заметно сдулся, играть им стало труднее. Замкнутая система открывается: приходит папа с насосом и накачивает мяч. Функции мяча, подвергнутого энтропии, восстанавливаются.

2 закон термодинамики гласит, что энтропия в замкнутой системе не может уменьшаться, она только увеличивается.

Даже если замкнутая система с мячом не предполагает активного разрушающего фактора (играющий ребёнок), энтропия всё равно будет, хоть и с меньшими показателями.

Пример 2. Мяч 6 месяцев пролежал в комнате: сдулся незначительно, но сильно покрылся пылью и немного выцвел со стороны, обращенной к окну.

Чтобы энтропия уменьшилась в закрытой системе, надо ее открыть и добавить в неё ресурс из другой системы. Чтобы мяч восстановить в прежних размерах, нужно внести в замкнутую систему изменения с помощью папиной энергии и нового воздуха, закачанного насосом в мяч. Чтобы мяч, пролежавший в комнате, вернул первоначальные свойства, мама должна вытереть его мокрой тряпкой от пыли, а сестра – покрыть новой краской.


Узнаем об этом подробнее

Понятием энтропии пользуются многие сферы человеческих знаний и деятельности:

  • биология и медицина;
  • химия;
  • физика;
  • информатика и программирование;
  • социология;
  • психология и др.

Энтропия в биосистемах

Все биосистемы (живые системы) являются открытыми, а не закрытыми, поэтому понятие энтропии в биосистеме несколько отличается от энтропии неживых объектов, рассматриваемых физиками.

Биосистемы находятся в состоянии динамического равновесия. Оно существует по другим законам, нежели термодинамическое равновесие. Системы любого живого организма открыты для взаимодействия друг с другом в рамках самого организма, а сам организм в свою очередь открыт для взаимодействия с окружающей средой местности планеты. Планета, как живой организм, в свою очередь, подвержена влиянию и взаимодействию с одной стороны – с живыми организмами, её населяющими, а с другой – с космическими объектами и явлениями.


Все это создаёт разветвлённую систему корректировок, чтобы поддерживать между всеми и во всех живых организмах гомеостаз – то есть баланс. Явление энтропии (разрушения и разбалансировки) является самым сложным в больших живых системах. Ведь они используют увеличивающуюся энтропию одних своих частей в качестве пищи и строительного материала для уменьшения энтропии в других своих частях.

Энтропия в теории информации и коммуникаций

Над данной темой в этой сфере работал Клод Шеннон. Он изучал рациональные способы передачи информации через зашумлённый канал. По Шеннону, энтропия – это мера непредсказуемости какого-либо опыта, события, испытания. Это количество информации на 1 сообщение источника, выдающего независимые сообщения.


Он рассматривал информационную энтропию в своей «Математической теории Коммуникации», где ввёл связанное понятие «вероятность». По Шеннону, чем меньше вероятность какого-либо события, тем больше информации оно содержит.

Энтропия в социуме

Это степень отклонения социальной системы, организации (предприятия) и т.д. от принятой нормы (эталона) и установленных целей. На социальную энтропию влияют:

  • Деятельность людей;
  • Ошибки управления;
  • Недостаток информации;
  • Ошибки планирования;
  • Ошибками в подборе персонала.

Обобщая до бытового уровня, можно сказать, что “Энтропия” – это мера или степень беспорядка (хаоса) или неопределённости.

Существуют 3 понятия, противоположные энтропии:

  1. Негэнтропия;
  2. Синтропия;
  3. Отрицательная энтропия.

Но эти термины действуют только для живых систем. Негэнтропия в живой системе – это энтропия, которую живая система экспортирует, чтобы снизить свою собственную энтропию. Другими словами, синтропия – это свободная или освободившаяся энергия одного организма или группы организмов, отправляемая на упорядочивание и уравновешивание другого организма в системе.

Жизнь потребляет то, что меньше упорядочено (убитый организм, ставший пищей) и превращает это в то, что более упорядочено (живые клетки, ткани, органы, системы, целые организмы). Поэтому считается что жизнь сама по себе имеет свойство отрицательной энтропии.

Автор: Александра Светлова

Источник: gadget-house.ru

Простыми словами про энтропию можно сказать так:энтропия-это беспорядок,хаос.Но это очень грубо,просто неграмотно.Поэтому надо всё-таки надо поднапрячься и разобраться посеръёзней.

Обратимся ко второму началу термодинамики.Оно утверждает:

В изолированной системе самопроизвольно могут протекать только такие процессы,которые ведут к увеличению неупорядоченности системы,т.е.к росту энтропии.

И это подтверждает,что энтропия-хаос.Но есть нюансы.Совершенно строго энтропия была введена в термодинамике как функция состояния системы S,изменение которой определяется отношением количества теплоты Q,полученной (или отданной) системой при температуре T, к этой температуре:

S=Q/T

Если изолированная система получает некоторое количество теплоты при постоянной температуре,то вся теплота идёт на увеличение беспорядочного,хаотичного движения частиц,то есть на увеличение энтропии.Так происходит при плавлении вещества или при его испарении,например при кипении(лёд плавится и вода и кипит при постоянной температуре).Наоборот,порядок увеличивается,например при кристаллизации(замерзании) жидкости,энтропия системы уменьшается и выделяется скрытая теплота плавления.

В газе,где частицы движутся независимо,неупорядоченность гораздо больше,чем в кристалле.Жидкость занимает промежуточное положение.Соответственно,и энтропия вещества в газообразном состоянии больше,чем в жидком,а в жидком больше,чем в твердом.

При обсуждении химических проблем удобно пользоваться определением энтропии,данном Больцманом.

Энтропия  ( S ) пропорциональна логарифму термодинамической вероятности ( W ) состояния системы: S = k lnW,

где k — постоянная Больцмана,а термодинамическая вероятность W определяется числом микросостояний,которыми может осуществляться рассматриваемое (макро)состояние.

Вот простой пример соотношения макро- и микросостояния системы.Система-кинозал с 10 рядами по 10 кресел и 100 зрителей.Для наилучшего обзора экрана зрители должны быть рассажены строго по росту с первого по 100 место.Это единственное микросостояние.Если рассадить зрителей по росту в только колонках,то число микросостояний будет равно числу сочетаний из 100 по 10,что составляет 1013

Но если зрители будут рассаживаться произвольно,число микростояний будет равно 100! и это будет самая неупорядоченная система.

Энтропия это простыми словами в физике

В химии же системы такие,что  число частиц очень велико.Например,один моль составляет 6·1023

частиц и число микросостояний становится невообразимо большим.

Увеличение энтропии означает возможность самопроизвольного протекания таких процессов,как диффузия газов и жидкостей,любой процесс растворения,осмос.

  Второе начало термодинамики говорит только о направлении изменения энтропии в процессе,но ничего не говорит об абсолютном значении энтропии.В 19 столетии путем экспериментов  были установлены температурные зависимости энтропии для газов и жидкостей при фазовых переходах.При понижении температуры энтропия медленно уменьшается,а при конденсации газа и при кристаллизации жидкости уменьшается резко, скачком.

В 1911 году М.Планк постулировал:

Для идеального кристалла при стремлении температуры к абсолютному нулю,энтропия также стремится к нулю.

Третье начало термодинамики гласит:

Энтропия идеального кристалла при 0 K равна нулю.

Таким образом,значения энтропии отсчитываются от нуля и могут быть найдены для любого состояния вещества и любых условий.

Энтропия измеряется в единицах Дж/K и относится к определённому количеству вещества,обычно к 1 моль.Для веществ в одинаковых состояниях энтропия увеличивается с ростом молярной массы.

Таким образом,появилась ещё одна характеристика химической реакции-изменение энтропии и ещё один критерий-стремление системы к максимуму энтропии.

Итак,ещё раз,энтропия простыми словами-это функция состояния системы (системой может быть простое вещество).

Источник: luxeducation.ru

Определение

Энтропия (в переводе с древнегреческого – поворот, превращение) – это мера, степень неупорядоченности (хаоса) какой-либо системы. Используется в следующих точных и естественных науках:

  • В математике означает поиск логарифма числа доступных состояний системы;
  • В статистической науке – вероятностная величина наступления любого макроскопического состояния системы;
  • В термодинамике (физика) – степень необратимой диффузии энергии, т.е. стандартная величина ее потерь, которые неизбежны при взаимодействии более горячего тела с более холодным;
  • В информатике – означает информационную емкость системы. Интересным фактом является следующее: Клод Шеннон (основоположник этого термина в информационной теории) первоначально думал назвать энтропию информацией.

Сферы использования энтропии

История возникновения

Впервые понятие энтропии было введено в эпоху развития термодинамики, когда возникла необходимость в изучении процессов, происходящих внутри термодинамических тел. В 1865 году ученый-физик из Германии Рудольф Клаузиус этим термином описал состояние системы, в котором теплота имеет способность преобразовываться в иные виды энергии (механическую, химическую, световую и т.д.).

Рудольф Клаузиус

Прирост энтропии вызван притоком тепловой энергии в систему и связан с температурой, при которой этот приток возникает. Необходимость этой величины была вызвана тем, что вся физика строится на идеализации абстрактных объектов (идеальный маятник, равномерное движение, масса и т.д.).

В бытовом понимании энтропия представляет собой степень хаотичности и неопределенности системы: чем больше в системе упорядоченности, и чем больше ее элементы подчинены какому-либо порядку, тем меньше энтропия.

Пример: Шкаф – это определенная система. Если в нем все вещи лежат на своих местах, то энтропия меньше. Если же все вещи разбросаны и лежат не на своих полках, то соответственно она становится больше.

С этим термином тесно связана тепловая функция энтальпии – характеризует состояние термодинамической системы в состоянии равновесия при выборе ряда независимых переменных, таких как давление, энтропия и число частиц.

Величина, противоположная энтропии, называется экстропией.

Виды энтропии

Области применения:

  • физическая химия;
  • экономические науки;
  • статистическая физика или информационная теория;
  • социологическая наука.

Рассмотрим подробнее виды энтропии в каждой из областей ее применения.

В термодинамике

Второе начало термодинамики

В термодинамике (физической химии) энтропия – это та степень, в которой реальный процесс отклоняется от идеального. Основной постулат термодинамики, сформулированный физиками на базе изучения энтропии: каждая система термодинамики, которая изолирована от внешнего мира, постепенно становится равновесной и впоследствии не имеет возможности выйти самостоятельно из состояния равновесия. Беспорядок – основная характеристика состояния любой системы. Из него она стремится к равновесию.

Возникает вопрос: с помощью чего определить степень беспорядка?

Основной метод: каждому возможному состоянию системы присваивается число вариантных комбинаций, которыми это состояние может быть реализовано.

Вывод: чем больше число вариантов, тем больше величина энтропии. Чем больше организованности в структуре вещества, тем меньше его неупорядоченность.

Абсолютная величина энтропии равна приращению имеющейся в системе тепловой энергии в условиях теплопередачи при заданной температуре.

Клазиус определял энтропию как совокупность приведенных тепловых энергий, как функцию состояния системы, которое остается неизменным в условиях замкнутости, а в условиях открытых необратимых процессов – оно всегда положительно изменяется. Ее значение отражает связь между макро- и микросостояниями. Это единственная функциональная величина, показывающая направленность процессов. Но она не показывает сам процесс перехода состояний из одного в другое, а находится лишь исходным и итоговым состоянием системы.

В экономике

Энтропия в экономике

Коэффициент энтропии дает возможность проанализировать уровень концентрации рынка и его изменение. Чем этот коэффициент ниже, тем меньше неопределенность внешней среды, что ведет к повышению вероятности возникновения монополий. Этот показатель выступает в качестве косвенного помощника в оценивании выигрыша, который получает предприятие в ходе ведения монополистической деятельности или в условиях изменения рыночной концентрации (влияет на число потенциальных конкурентов фирмы).

В информатике или статистической физике

Энтропия в статической физике

Информационная энтропия – это степень непредсказуемости информационной системы. Этот показатель служит для определения степени хаотичности эксперимента, который проводится или произошедшего события. Значение хаотичности прямопропорционально числу состояний, нахождение системы в которых возможно. Все действия, направленные на упорядочивание системы, ведут к появлению информационных сведений о ней и снижают информационную неопределенность, которая выявляет пропускную способность информационного канала, обеспечивающую надежность и достоверность передачи информационных данных. Это позволяет прогнозировать частично возможный ход эксперимента, т.е. предсказывать вероятность того или иного события.

Пример: расшифровка закодированного текста. Для этого анализируется вероятность возникновения того или иного символа и высчитывается величина их энтропии.

В социологии

Энтропия в социологии

Энтропия – показатель, характеризующий отклонение общественной системы или ее составных частей от заданного (образцового) состояния. Проявления этого отклонения:

  • уменьшение эффективности общественного развития и жизнедеятельности общества как целостной системы;
  • снижение способности к самоорганизации.

Пример: персонал организации настолько загружен бумажной работой (составлением отчетов, ведением документации), что не может успевать выполнять свои должностные функции и обязанности (осуществление аудита). Мера неэффективного использования трудовых ресурсов собственником предприятия – это информационная неопределенность.

Примеры

Из бытовой жизни:

  1. При написании sms-сообщений на мобильном телефоне мы часто пользуемся программой Т9. Чем меньше ошибок в печатаемом нами слове, тем процесс его распознания программой будет легче и она быстрее предложит нам его замену. Вывод: чем больше беспорядка, тем больше информационная неопределенность.
  2. Когда мы бросаем два кубика при игре в кости, существует только один способ выкинуть комбинацию 2 или 12 (1 и 1, 6 и 6). Самое максимальное число способов выкинуть число 7 (6 вероятных комбинаций). Непредсказуемость в данном случае будет максимальной.
  3. Информация о количестве учеников больше в течение урока, чем во время перемены. Поскольку на уроке каждый ученик сидит на своем месте, то энтропия ниже. За пределами класса для передвижения школьников характерна хаотичность, что ведет к увеличению значения энтропии.
  4. Если прибрать на рабочей парте, разложить предметы по своим местам, то можно больше получить информации о том или ином предмете, находящемся на ней. Упорядоченность вещей на парте снижает величину энтропии.

Источник: advi.club

И снова об энтропии

Помните красивое слово «энтропия»?  Для тех, кто подзабыл, напомним, и попробуем рассказать о том, что такое энтропия такое простыми словами:

Энтропия – это мера хаоса в какой-либо системе.

В качестве системы может выступать Ваш письменный стол или кастрюля с борщом, или даже эта, ну как ее… Вселенная!

Чем меньше в  системе порядка, тем больше энтропия. Например, в шкафу все вещи разбросаны как попало. Энтропия такой системы больше, чем в том же шкафу после того, как Вы решили вдруг прибраться и все сложили по полочкам.

Энтропия растет
Энтропия растет

Если говорить об определении энтропии в термодинамике, то она является функцией состояния термодинамической системы, то есть не зависит от пути перехода системы из одного состояния в другое.

Абсолютный ноль

Абсолютным нулем температуры называют такой нижний предел температуры, которую во Вселенной  может иметь физическое тело.

Абсолютный ноль принят за начало температурной шкалы Кельвина. Если переводить в привычную нам шкалу Цельсия, то его значение равно -273,15 градусов.

Абсолютный ноль - это очень холодно
Абсолютный ноль — это очень холодно

В рамках классической термодинамики абсолютного нуля достичь нельзя, да и на практике тоже не удастся. Можно только сколь угодно близко подобраться, чем с удовольствием и занимаются ученые.

Что же творится с вещами у абсолютного нуля? При этой температуре энергия теплового движения атомов и молекул становится равной нулю, прекращается всякое хаотическое движения частиц, и последние образуют упорядоченную структуру без всяких колебаний атомов кристаллической решетки и прочих беспорядков.

Кстати, самая низкая температура во Вселенной была зарегистрирована в туманности Бумаранг и равняется примерно  -271 градусу Цельсия.

Туманность Бумеранг
Туманность Бумеранг

Третье начало термодинамики

Третье начало термодинамики – фундаментальный закон, который не вытекает из первых двух начал и также основывается на экспериментальных данных. Его еще называют теоремой Нернста.

О чем говорит этот закон? Он рассматривает поведение энтропии у абсолютного нуля и гласит:

Энтропия правильно образованного кристалла при абсолютном нуле равна нулю.

Или вот еще одна формулировка третьего начала термодинамики: Приращение энтропии при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система.

В чем же смысл третьего начала? В том, что охладить тело до значения абсолютного нуля невозможно! Иначе стал бы возможен вечный двигатель второго рода. А если бы он стал возможен, с нашим миром определенно начало бы твориться неизвестно что. Так что вот и хорошо, что есть третье начало термодинамики!

Абсолютный ноль недостижим
Абсолютный ноль недостижим

Друзья! Сегодня мы кратко рассмотрели третье начало термодинамики и еще раз освежили в памяти представление об энтропии в контексте основ термодинамики. Если хотите быстро научиться решать задачки по термодинамике, написать реферат или курсовую – добро пожаловать к нашим авторам. Поможем, объясним, решим качественно и быстро!

Источник: Zaochnik.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.