Энтропия это простыми словами в биологии


Что называют «энтропией» на простом языке?

«Entropia«, в переводе с греческого поворот, превращение. Это слово можно определить, как меру беспорядка, стремление к хаосу. Для точного определения энтропии используются математические расчеты. Лучше всего ее эффект показывают примеры термодинамики, в которых процесс перехода тепла в механическую работу не является абсолютным. Часть его будет преобразована в другие виды энергии.

Совсем простой пример энтропии

Представим подготовку квартиры или офиса к праздничному мероприятию. Все вымыто, аккуратно разложено, столы накрыты, стулья расставлены. Получилась маленькая энтропия. Праздник идет по полной программе. Танцы, хлопушки, фейерверки! Гости расходятся. В квартире полный хаос. Вы получаете систему с большим показателем энтропии. Надо приводить помещение в порядок. Вы тратите на уборку свои силы, энергию. Через время величина энтропии в системе снижается. Порядок восстановлен. И все в соответствии со вторым законом термодинамики. Была добавлена энергия извне. И система теперь не может считаться изолированной.


На все вопросы есть простые ответы

Рудольф Клаузиус и Людвиг Больцман об энтропии

Термин entropia, впервые введенный немецким ученым Рудольфом Клаузисом в 1865-ом г., применялся для объяснения невозможности передачи теплоты из холодного в более теплое тело. Смысл термина определял «уход в себя” или “вовнутрь”. Идея “ухода в себя” в свою очередь заинтересовала учёного из Австрии Людвига Больцмана. Он провел ряд исследовательских работ и дал следующее разъяснение процесса энтропии.

Возьмем за основу любую систему. Например, газ в сосуде. Он имеет ряд характеристик, которые показывают его макросостояние:

  • температура;
  • давление;
  • объем.

Все эти показатели будут неразрывно связаны с микросостоянием системы:

  • расположение частиц;
  • скорость движения частиц.

Состояние системы непрерывно меняется. Это стремление к неорганизованности, к увеличению энтропии. И, одновременно, происходит поиск системой своего самого возможного состояния — равновесия. Следовательно, когда мы говорим о росте энтропии, это означает, что эта система пытается прийти к равновесию.

Вне зависимости от того, насколько хаотично будет происходить движение частиц в сосуде, скорость их движения всегда будет приближена к средней величине. В этом случае, энтропия будет максимальной.


Таким образом, считает Больцман, значение энтропии определяет вероятность микросостояния тела.

Энтропия и «демон Максвелла”

Классический пример “демона” рассматривался неоднократно в различных научных работах и трудах. Есть простое и ясное описание его сути данное «отцом кибернетики” Нобертом Винером. Рассмотрим резервуар, наполненный газом. Температура внутри его будет одинаковая. Скорость движения некоторого числа молекул газа больше, чем остальных.

Добавим в конструкцию тепловой двигатель и две трубы. Соединим резервуар и тепловой двигатель трубой. Вторая труба соединит выходное отверстие двигателя и газовую камеру. Входы из резервуара в двигатель и из двигателя в камеру снабдим маленькими дверцами, возле которых будут сидеть маленькие «демоны”. Их задача открыть или закрыть дверцу в зависимости от того как будут двигаться молекулы.

Первый демон будет открывать дверь только молекулам, имеющим большую скорость. Второй пропустит только самые медленные частицы. Итог работы — температура в резервуаре возле первого демона повысится, возле второго — понизится. Получаем источник абсолютно полезной энергии из случайного движения.


Связь между энтропией и информацией

“Демоны” смогли понизить уровень энтропии. Хотя по законам физики, она должна возрастать. С этим парадоксом справился уже венгерский физик Л. Сциллард. Его работа завершила исследование Максвелла.
Во время своей работы демон использует дополнительные силы, которые он тратит на усилия открыть или закрыть дверь. Демон снижает энтропию, но рассчитывается за процесс информации — можно ли пропустить данную частицу, своей энергией.
Мы получаем доказательство, что информация и энтропия неразрывно связаны между собой. Соответственно информация имеет обратную зависимость от энтропии. С помощью информации мы определяем направление движения частиц, определяем их скорость, производим оценку их движения. Под это правило подойдет любая другая категория. Например: разный смысл букв или символов.

На основании этих выводов, К Шеннон стал создателем формулы энтропии, применяемой для учета информации, где первая является мерой хаоса, вторая же несет в себе упорядоченность.

Понятие «энтропии» в настоящее время применяется в математике, информатике, биологии, химии, физике, психоанализе и социологии. Его применяют в случаях, когда надо проследить способность системы к потерям внутренней энергии и распаду, описать направление процесса.


Источник: fin-journal.ru

Формула энтропии

Существует несколько вариантов формулы энтропии. Одна из них:

Формула Энтропия
«S» — мера энтропии;
«Q» — мера тепла;
«Т» — температура системы (в градусах Кельвина).

Энтропия в физике

Простыми словами энтропия — это мера распределения энергии. Когда энтропия высокая — энергия распределена, когда низкая — энергия сконцентрирована.

Энтропия в термодинамике

Энтропия — это термодинамическое количество, которое показывает сколько энергии в системе, которая уже не доступна для выполнения механической работы.

Энтропия Вселенной

Во втором законе термодинамики говорится, что в спонтанном процессе общая энтропия Вселенной постоянно увеличивается; это означает, что она становится более неупорядоченной, хаотичной.

Энтропия идеального газа

Энтропия идеального газа

Энтропия идеального газа


Энтропия идеального газа

Энтропия идеального газа

Энтропия системы

Энтропия — это мера случайной активности в системе, мера тепловой энергии системы на единицу температуры, которая недоступна для выполнения полезной работы.

Количество энтропии — это ещё и мера молекулярного беспорядка или случайности системы.

Эту концепцию открыл немецкий физик Рудольф Юлиус Эмануэль Клаузиус в 1850 году.

Энтропия в химии

Энтропия — функция состояния каждого вещества. Энтропия веществ меняется когда происходит химическая реакция. Это изменение энтропии веществ (ΔS) называется «энтропия реакции» или «изменение энтропии в процессе».

Это включает все вещества в реакции, и указывает на состояние системы, а то, как это состояние было достигнуто игнорируется.

Чем выше степень неупорядоченности системы, тем выше энтропия системы.

Разница между энтальпией и энтропией

Простыми словами, энтропия — это мера количества случайности или беспорядка в системе, т. е. мера случайной активности в системе. В то время как энтальпия — это мера общего количества энергии в системе.

Смотрите также, что такое Полимер.

Источник: www.uznaychtotakoe.ru

Что обозначает термин «энтропия»?


Задумывались ли вы когда-нибудь, что означает термин » энтропия»? С помощью этого слова объясняется все, что происходит в жизни (начиная с физических и заканчивая химическими процессами). Мало кто может объяснить, что это значит. Объясняется это тем, что данное явление нельзя наглядно изучить или смерить каким-нибудь прибором.

На самом деле, человечество многое еще не изучило, энтропия является одним из таких явлений. Сотни и сотни лет ученые не могут до конца понять, откуда взялось это явление. Химики и физики » взявшись за руки» пытаются открыть что-то новое по этой теме с помощью различных экспериментов. А в этой статье вы можете узнать, что известно на данный момент.

Очень сложное явление


Как появился этот термин?

«Энтропию» ввел немецкий физик Р.Клаузис в 1865 г. Дошел он до этого, когда обдумывал один каверзный вопрос. Куда уходит энергия? Все знаем, что кол-во энергии из аккумулятора телефона тратится меньше, чем получается. Для нас это является нормой, а для ученых это была загадка. Этот термин раньше относили только к термодинамике. Однако сейчас оно распространилось на многие области. На данный момент есть много определений, перечислю некоторые из них:

  1. Шанс осуществления какого-то состояния.
  2. Мера хаоса и беспорядка.
  3. Количество информации о системе.

Какие энтропии бывают?

1. В термодинамике.

Каждая система пытается находиться в равновесии и не может сама выйти их него. Состояние равновесия — это беспорядок. Как он определяется? Самый простой метод — это предписание всем состояниям количество вариантов, нужных для реализации этого самого равновесия. Чем больше это значение, тем больше будет энтропия.

2. В экономике.


Коэффициент энтропии нужен для определения изменения её концентрации и уровня рынка. Тут такая зависимость, чем будет выше коэффициент, тем выше неопределенность. С его помощью можно дать оценку выгоде, которую приобрела фирма.

3. В теории информации.

В этой области энтропия помогает узнать уровень беспорядка у эксперимента или какого-либо события. А зависимость, чем больше кол-во состояний, тем больше неопределенность. упорядочивание всегда приводит к увеличению объема информации и к уменьшению неопределенности. Так же с ее помощью можно определить пропускную способность канала, она, в свою очередь, обеспечивает безопасную передачу информации. Так же можно вычислить вероятность какого-нибудь действия и расшифровать почти любой текст.

4. В социологии.

В данном случае энтропия — это характеристика уклона социума от общепринятых норм. его можно обнаружить если снижается развитие и ухудшается самостоятельность. Пример: школьники настолько загружены подготовкой к экзаменам, что просто не способны изучать программу. Тут мерой целесообразных использований будет информационная неопределенность.

Энтропия на простых примерах

Пример первый.

Каждый из нас сталкивался с проблемой опечаток в печатном тексте. Что нас обычно спасает? Т9. Она тоже работает по принципу энтропии. Замечали, что, если мало ошибок, программа с легкостью определяет нужный вариант, а если опечаток будет много. она не сможет определить слово. Это происходит потому что увеличение беспорядка (много ошибок) приводит к неопределенности, а порядок к ее отсутствию.


Пример второй.

Все любят играть в настольные игры. Чтобы на кубике выпала комбинация 4, нужно два раза по два или один раз 4. этот случай довольно непредсказуем. Энтропию можно считать мерой распределения энергии. При маленьком значении она сконцентрирована, а в высоком хаотична.

Пример третий.

Люди, у которых всегда порядок на поверхности рабочего стола могут с легкость найти нужный листик или карандаш потому что неопределенность намного меньше, чем у человека с настоящим хаосом на столе.

Пример четвертый.

На уроке, когда дети сидят упорядоченно каждый на своем месте. у учителя больше информации о каждом. а неопределенность увеличится на перемене, когда увеличится беспорядочность.

Пример пятый.

Те, кто разбирается в химии, знают, что молекулы газа всегда двигаются беспорядочно. Значит, все реакции, протекающие с выделением газа, например, все известные реакции горения (выделяется угарный газ) будут сопровождены высокой энтропией.

Вывод:

Мы дали множество определений энтропии, выбирайте то, которое вам ближе и понятнее. Добавим, что это так же может быть величина, не преобразованная в механическую работу. Более понятна энтропия в термодинамике (наверное, потому что она в этой области зародилась). Все процессы в природе сопровождаются увеличением энтропии. Интересно заметить, что все в мире хочет добиться максимума энтропии, а человек разумный препятствуя всему и показывая свою индивидуальность, к информации.


Автор: Виктор Щербань

Источник: wikifin.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.